Exploring Chemical and Cultural Weed Management for Industrial Hemp Production in Georgia, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Herbicide Screening Experiments
2.2. Transplant Method Comparison
2.3. Plastic Mulch and Bareground Production System Comparison
3. Results and Discussion
3.1. PRE Herbicide Screening
3.2. POST Herbicide Screening
3.3. Transplant Method Comparison
3.4. Plastic Mulch and Bareground Production System Comparison
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouloc, P.; Allegret, S.; Arnaud, L. Hemp Industrial Production and Uses; CABI: Boston, MA, USA, 2013; ISBN 978-1-84593-792-8. [Google Scholar]
- US House of Representatives. HR 2: Agriculture Improvement Act of 2018. House Reports 115-661 and 115-1072. 2018. Available online: https://www.congress.gov/bill/115th-congress/house-bill/2/text (accessed on 29 August 2022).
- Mechoulam, R.; Parker, L.A.; Gallily, R. Cannabidiol: An overview of some pharmacological aspects. J. Clin. Pharmacol. 2002, 42, 11S–19S. [Google Scholar] [CrossRef] [PubMed]
- Coolong, T. A Preview of Industrial Hemp for Flower Production in Georgia; University of Georgia Cooperative Extension: Athens, GA, USA, 2023. [Google Scholar]
- Bonanno, A.R.; Lamont, W.J., Jr. Effect of polyethylene mulches, irrigation method, and row covers on soil and air temperature and yield of muskmelon. J. Am. Soc. Hort. Sci. 1987, 112, 735–738. [Google Scholar] [CrossRef]
- Perry, K.B.; Sanders, D.C. Tomato yield as influenced by plant protection system. HortScience 1986, 21, 238–239. [Google Scholar] [CrossRef]
- Monks, C.D.; Monks, D.W.; Basden, T.; Selders, A.; Poland, S.; Rayburn, E. Soil temperature, soil moisture, and tomato (Lycopersicon esculentum) response to mulching. Weed Technol. 1997, 11, 561–566. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (EPA). Sonalan HFP PRIA Label Amendment. 2023. Available online: https://www3.epa.gov/pesticides/chem_search/ppls/010163-00356-20230413.pdf (accessed on 28 April 2024).
- Byrd, J. Industrial Hemp (Cannabis sativa L.) Germination Temperatures and Herbicide Tolerance Screening. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2019. [Google Scholar]
- Flessner, M.L.; Bryd, J.; Bamber, K.W.; Fike, J.H. Evaluation herbicide tolerance of industrial hemp (Cannabis sativa L.). Crop Sci 2020, 60, 419–427. [Google Scholar] [CrossRef]
- Maxwell, B.A. Effects of Herbicides on Industrial Hemp (Cannabis sativa) Phytotoxicity, Biomass, and Seed Yield. Master’s Thesis, Western Kentucky University, Bowling Green, KY, USA, 2016. [Google Scholar]
- Puiu, I.; Popa, L.-D.; Ghițău, C.S.; Samuil, C.; Lungoci, C.; Pintrijel, L. Weeds control in industrial hemp (Cannabis sativa L.) by using herbicides in pre-emergency and post-emergency. Sci. Pap. Ser. A Agron. 2023, 66, 356–361. [Google Scholar]
- Gitsopoulos, T.; Tsaliki, E.; Korres, N.E.; Georgoulas, I.; Panoras, I.; Botsoglou, D.; Vazanelli, E.; Fifis, K.; Zisis, K. Response of industrial hemp (Cannabis sativa L.) to herbicides and weed control. Int. J. Plant Biol. 2024, 15, 281–292. [Google Scholar] [CrossRef]
- Singh, A.; Saini, R.; Kafle, A.; Signh, M.; Singh, S. Impact of soil-residual herbicides on industrial hemp (Canabis sativa) phytotoxicity and biomass yield in west Texas. Weed Technol. 2024, 38, e29. [Google Scholar] [CrossRef]
- Kousta, A.; Papastylianou, P.; Travlos, I.; Mavroeidis, A.; Kakabouki, I. Effect of fertilization and weed management practices on weed diversity and hemp agronomic performance. Agronomy 2023, 13, 1060. [Google Scholar] [CrossRef]
- Mettler, J.E. Herbicide Screening in Industrial Hemp (Cannabis sativa L.) Production. Master’s Thesis, North Dakota State University, Fargo, ND, USA, 2021. [Google Scholar]
- Ortmeier-Clark, H.J.; Oliveira, M.C.; Arneson, N.J.; Conley, S.P.; Werle, R. Dose-response screening of industrial hemp to herbicides commonly used in corn and soybean. Weed Technol. 2022, 36, 245–252. [Google Scholar] [CrossRef]
- Amaducci, S.; Scordia, D.; Liu, F.H.; Zhang, Q.; Guo, H.; Testa, G.; Cosentino, S.L. Key cultivation techniques for hemp in Europe and China. Ind. Crops Prod. 2015, 68, 2–16. [Google Scholar] [CrossRef]
- Coolong, T.; Bagby, T.; Elsner, E. An Introduction to Fiber Hemp Production in Georgia; University of Georgia Cooperative Extension: Athens, GA, USA, 2022. [Google Scholar]
- Hardcastle, W.S. Differences in the tolerance of metribuzin to varieties of soybeans. Weed Res. 1974, 14, 181–184. [Google Scholar] [CrossRef]
- Masiunas, J.B. Tomato (Lycopersicon esculentum) tolerance to diphenyl ether herbicides applied postemergence. Weed Technol. 1989, 3, 602–607. [Google Scholar] [CrossRef]
- Young, M.L.; Norsworthy, J.K.; Scott, R.C.; Barber, L.T. Tolerance of southern US rice cultivars to benzobicyclon. Weed Technol. 2017, 31, 658–665. [Google Scholar] [CrossRef]
- Anderson, L.C. Leaf Variation Among Cannabis Species from a Controlled Garden. Bot. Mus. Leafl. 1980, 28, 61–69. Available online: https://www.jstor.org/stable/41762825 (accessed on 29 August 2022). [CrossRef]
- Borthwick, H.A.; Scully, N.J. Photoperiodic responses of hemp. Bot. Gaz. 1954, 116, 14–29. [Google Scholar] [CrossRef]
- US Department of Agriculture. Soil Survey. Web Soil Survey—Soil Survey of Tift Counties, Georgia. 2023. Available online: https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx (accessed on 12 December 2023).
- Storm, C.; Zumwalt, M.; Macherone, A. Dedicated Cannabinoid Potency Testing in Cannabis or Hemp Products Using the Agilent 1220 Infinity II lc System. 2018. Available online: https://www.agilent.com/cs/library/applications/application-dedicated-cannabinoid-potency-testing-5991-9285-en-us-agilent.pdf (accessed on 4 January 2023).
- Moore, K.J.; Dixon, P.M. Analysis of combined experiments revisited. Agron. J. 2015, 107, 763–771. [Google Scholar] [CrossRef]
- Flessner, M.L.; Bamber, K.W.; Sias, C. Transplanted industrial hemp tolerance to soil-active herbicides grown for cannabidiol. In Proceedings of the Weed Science Society of America Annual Meeting, Virtual, 15–18 February 2021; p. 57. [Google Scholar]
- Coffman, C.B.; Gentner, W.A. Cannabinoid profile and elemental uptake of Cannabis sativa L. as influenced by soil characteristics. Agron. J. 1975, 67, 491–497. [Google Scholar] [CrossRef]
- Darby, H.; Bruce, J. 2020 Hemp Flower Harvest Date; University of Vermont Cooperative Extension: Burlington, VT, USA, 2021. [Google Scholar]
- Pacifico, D.; Miselli, F.; Corboni, A.; Moschella, A.; Mandolino, G. Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica 2008, 160, 231–240. [Google Scholar] [CrossRef]
- Post, A.R. Safety of pre- and early-post herbicides to hemp for seed production. In Proceedings of the Weed Science Society of America Annual Meeting, Maui, HI, USA, 2–5 March 2020. [Google Scholar]
- Sosnoskie, L.M.; Maloney, E. Industrial hemp sensitivity to pre- and post-emergence herbicides. In Proceedings of the Weed Science Society of America Annual Meeting, Virtual, 15–18 February 2021; p. 8. [Google Scholar]
- Howatt, K.; Mettler, J. Industrial Hemp Response to Herbicides: IR-4 Project Number 12840. 2018. Available online: https://ir4.cals.ncsu.edu/Fooduse/PerfData/4830.pdf (accessed on 29 August 2022).
- Campbell, B.J.; Berrada, A.F.; Hudalla, C.; Amaducci, S.; McKay, J.K. Genotype X environment interactions of industrial hemp cultivars highlight diverse responses to environmental factors. Agrosyst. Geosci. Environ. 2019, 2, 180057. [Google Scholar] [CrossRef]
- Culpepper, A.S.; Vance, J.C.; Randell, T.M.; Wright, H.E. Transplant method influences herbicide injury in broccoli and collard. In Proceedings of the Southern Weed Science Society Annual Meeting, Austin, TX, USA, 23–27 January 2022; p. 83. [Google Scholar]
- University of Georgia. UGA Weather Network. Available online: http://www.georgiaweather.net/ (accessed on 20 March 2024).
- Nelson, C.H. Growth responses of hemp to differential soil and air temperatures. Plant Physiol. 1944, 19, 294–309. [Google Scholar] [CrossRef]
- Grandon, B.; Bloomquist, M.; Edmisten, K.; Davis, J.; Post, A. Effects of plastic mulch vs. open-beds on biomass yield in six low-THC Cannabis sativa hemp strains. In Proceedings of the National Association of County Agricultural Agents, Virtual, 28 September–1 October 2020; p. 33. [Google Scholar]
- Ham, J.M.; Kluitenberg, G.J.; Lamont, W.J. Optical properties of plastic mulches affect the field temperature regime. J. Am. Soc. Hort. Sci. 1993, 118, 188–193. [Google Scholar] [CrossRef]
Herbicide | Product | Manufacturer | Rate ai (g·ha−1) |
---|---|---|---|
acetochlor | Warrant | Bayer CropScience, St. Louis, MO, USA | 841 |
dithiopyr | Dimension® EC | Corteva Agriscience, Indianapolis, IN, USA | 280 |
flumioxazin | Valor®SX | Valent U.S.A. Corporation, Walnut Creek, CA, USA | 72 |
fomesafen | Reflex® | Syngenta Crop Protection, Greensboro, NC, USA | 210 |
halosulfuron-methyl | Sandea® | Gowan Company, Yuma, AZ, USA | 39 |
isoxaben | Gallery® | Corteva Agriscience Indianapolis, IN, USA | 631 |
isoxaflutole | Alite™ 27 | BASF Corporation, Research Triangle Park, NC, USA | 112 |
metribuzin | Tricor® DF | United Phosphorus, Inc., King of Prussia, PA, USA | 210 |
norflurazon | Solicam® DF | Tessenderlo Kerley, Inc. Phoenix, AZ, USA | 138 |
oxyfluorfen | Goal® 2XL | Corteva Agriscience, Indianapolis, IN, USA | 421 |
pendimethalin | Prowl® H2O | BASF Corporation, Research Triangle Park, NC, USA | 1065 |
prometryn | Caparol® 4L | Syngenta Crop Protection, Greensboro, NC, USA | 1121 |
S-metolachlor | Dual Magnum® | Syngenta Crop Protection, Greensboro, NC, USA | 1068 |
Herbicide | Product | Manufacturer | Rate (g·ha−1) |
---|---|---|---|
acetochlor | Warrant | Bayer CropScience St. Louis, MO, USA | 841 |
clethodim | Select Max® | Valent U.S.A. Corporation Walnut Creek, CA, USA | 136 * |
halosulfuron-methyl | Sandea® | Gowan Company Yuma, AZ, USA | 26 * |
halosulfuron-methyl | Sandea® | Gowan Company | 53 * |
imazethapyr | Pursuit® | BASF Corporation, Research Triangle Park, NC, USA | 35 * |
metribuzin | Tricor® DF | United Phosphorus, Inc. King of Prussia, PA, USA | 210 |
metribuzin | Tricor® DF | United Phosphorus, Inc. | 420 |
metribuzin | Tricor® DF | United Phosphorus, Inc. | 210 * |
metribuzin | Tricor® DF | United Phosphorus, Inc. | 420 * |
pendimethalin | Prowl® H2O | BASF Corporation | 1065 |
prometryn | Caparol® 4L | Syngenta Crop Protection, Greensboro, NC, USA | 1121 * |
S-metolachlor | Dual Magnum® | Syngenta Crop Protection | 1068 |
trifloxysulfuron | Envoke® | Syngenta Crop Protection | 5 * |
Herbicide | Rate (g·ha−1) | Injury | Height | Biomass | Dry Flower | ||||
---|---|---|---|---|---|---|---|---|---|
% | |||||||||
acetochlor | 841 | 6 | de | 103 | a | 84 | ab | 96 | a |
dithiopyr | 280 | 50 | bc | 92 | ab | 98 | ab | 91 | ab |
flumioxazin | 72 | 9 | de | 97 | ab | 64 | abc | 103 | a |
fomesafen | 210 | 10 | de | 103 | a | 62 | abc | 87 | ab |
halosulfuron | 39 | 55 | bc | 70 | abcd | 42 | bc | 53 | bc |
isoxaben | 631 | 66 | ab | 57 | cd | 55 | abc | 29 | cd |
isoxaflutole | 112 | 96 | a | 14 | e | 8 | c | 0 | c |
metribuzin | 210 | 32 | cd | 68 | bcd | 37 | bc | 74 | abc |
norflurazon | 138 | 11 | de | 93 | ab | 80 | ab | 104 | a |
oxyfluorfen | 421 | 25 | cde | 84 | abc | 68 | ab | 87 | ab |
pendimethalin | 1065 | 10 | de | 99 | ab | 87 | ab | 89 | ab |
prometryn | 1121 | 33 | cd | 42 | de | 35 | bc | 102 | a |
S-metolachlor | 1068 | 37 | bcd | 80 | abc | 50 | abc | 94 | ab |
none | - | 0 | e | 100 | a | 100 | a | 100 | a |
p-value | <0.0001 | <0.0001 | 0.0002 | <0.0001 |
Herbicide | THC | CBD | Total Cannabinoids | ||
---|---|---|---|---|---|
% | |||||
acetochlor | 0.58 | abc | 12.67 | 13.05 | ab |
dithiopyr | 0.46 | c | 11.91 | 10.36 | b |
flumioxazin | 0.66 | ab | 11.41 | 13.11 | ab |
fomesafen | 0.54 | bc | 11.13 | 12.13 | ab |
norflurazon | 0.73 | a | 13.54 | 14.42 | a |
pendimethalin | 0.56 | abc | 10.74 | 12.12 | ab |
none | 0.66 | ab | 13.51 | 14.41 | a |
p-value | 0.0009 | 0.0887 | 0.0227 |
Herbicide | Rate (g·ha−1) | Injury | Height | Biomass | Dry Flower | ||||
---|---|---|---|---|---|---|---|---|---|
% | |||||||||
acetochlor | 841 | 14 | d | 95 | a | 87 | a | 93 | a |
clethodim | 136 | 0 | e | 115 | a | 102 | a | 116 | a |
halosulfuron | 26 | 83 | b | 64 | b | 29 | bc | 44 | bcd |
53 | 95 | a | 42 | bcd | 17 | c | 20 | d | |
imazethapyr | 35 | 52 | c | 65 | b | 42 | bc | 83 | ab |
metribuzin | 210 | 91 | ab | 32 | cde | 17 | c | 34 | cd |
210 + NIS | 94 | a | 24 | def | 10 | c | 35 | cd | |
420 | 99 | a | 4 | f | 9 | c | 5 | d | |
420 + NIS | 99 | a | 3 | f | 7 | c | 1 | d | |
pendimethalin | 1065 | 0 | e | 97 | a | 35 | bc | 100 | a |
prometryn | 1121 | 97 | a | 8 | ef | 8 | c | 13 | d |
S-metolachlor | 1068 | 4 | de | 112 | a | 61 | ab | 77 | abc |
trifloxysulfuron | 5 | 92 | ab | 53 | bc | 19 | c | 13 | d |
none | - | 0 | e | 100 | a | 100 | a | 100 | a |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Herbicide | THC | CBD | Total Cannabinoids | |
---|---|---|---|---|
% | ||||
acetochlor | 0.52 | ab | 11.02 | 11.94 |
clethodim | 0.46 | b | 10.71 | 11.41 |
pendimethalin | 0.63 | a | 12.67 | 13.8 |
S-metolachlor | 0.53 | ab | 11.62 | 12.45 |
none | 0.49 | b | 11.36 | 12.4 |
p-value | 0.0108 | 0.1497 | 0.071 |
Transplanting Method | Herbicide | Injury | Height | Biomass | |||
---|---|---|---|---|---|---|---|
% | |||||||
Mechanical | halosulfuron | 11 | bc | 84 | ab | 57 | b |
metribuzin | 32 | b | 65 | bc | 47 | bc | |
none | 0 | c | 100 | a | 100 | a | |
Hole punch | halosulfuron | 67 | a | 51 | c | 22 | cd |
metribuzin | 84 | a | 51 | c | 18 | d | |
none | 0 | c | 100 | a | 100 | a | |
p-value | <0.0001 | 0.0174 | 0.0045 |
Height 2 WAP | Height 4 WAP | Biomass | Dry Flower | ||
---|---|---|---|---|---|
cm | g·plant−1 | ||||
Bareground | 12.7 | 40.4 | 41.3 | a | 596.9 |
Plastic | 11.5 | 31.4 | 19.1 | b | 665.9 |
p-value | 0.3051 | 0.1472 | 0.0059 | 0.6562 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wright-Smith, H.E.; Coolong, T.W.; Culpepper, A.S.; Randell-Singleton, T.M.; Vance, J.C. Exploring Chemical and Cultural Weed Management for Industrial Hemp Production in Georgia, USA. Agrochemicals 2024, 3, 219-231. https://doi.org/10.3390/agrochemicals3030015
Wright-Smith HE, Coolong TW, Culpepper AS, Randell-Singleton TM, Vance JC. Exploring Chemical and Cultural Weed Management for Industrial Hemp Production in Georgia, USA. Agrochemicals. 2024; 3(3):219-231. https://doi.org/10.3390/agrochemicals3030015
Chicago/Turabian StyleWright-Smith, Hannah E., Timothy W. Coolong, A. Stanley Culpepper, Taylor M. Randell-Singleton, and Jenna C. Vance. 2024. "Exploring Chemical and Cultural Weed Management for Industrial Hemp Production in Georgia, USA" Agrochemicals 3, no. 3: 219-231. https://doi.org/10.3390/agrochemicals3030015
APA StyleWright-Smith, H. E., Coolong, T. W., Culpepper, A. S., Randell-Singleton, T. M., & Vance, J. C. (2024). Exploring Chemical and Cultural Weed Management for Industrial Hemp Production in Georgia, USA. Agrochemicals, 3(3), 219-231. https://doi.org/10.3390/agrochemicals3030015