Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = hemp hurds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3709 KiB  
Article
Analysis of the Physical and Thermal Characteristics of Gypsum Panels with Hemp Hurds for Building Insulation
by Chatpon Chaimongkol, Sukunya Ross, Dachaphon Kealkaew and Atthakorn Thongtha
Sustainability 2025, 17(15), 6801; https://doi.org/10.3390/su17156801 - 26 Jul 2025
Viewed by 442
Abstract
The study investigates the potential of enhancing gypsum board properties through the integration of hemp hurds and glass fibers. The investigation focuses on evaluating the composite material’s density, water absorption, flexural strength, compressive strength, and thermal performance. Experimental results demonstrate a reduction in [...] Read more.
The study investigates the potential of enhancing gypsum board properties through the integration of hemp hurds and glass fibers. The investigation focuses on evaluating the composite material’s density, water absorption, flexural strength, compressive strength, and thermal performance. Experimental results demonstrate a reduction in gypsum composite density and improved thermal insulating properties with the introduction of hemp hurds. Water absorption, a significant drawback of gypsum boards, is mitigated with hemp hurds, indicating potential benefits for insulation efficiency. For mechanical tests, the gypsum ceiling board at approximately 5% by weight exhibits a flexural strength value exceeding the minimum average threshold of 1 MPa and the highest average compressive strength at 2.94 MPa. Thermal testing reveals lower temperatures and longer time lags in gypsum boards with 5% hemp hurds, suggesting enhanced heat resistance and reduced energy consumption for cooling. The study contributes valuable insights into the potential use of hemp hurds in gypsum-based building materials, presenting a sustainable and energy-efficient alternative for the construction industry. Full article
Show Figures

Figure 1

13 pages, 4362 KiB  
Article
Binder Jetting 3D Printing of Biomass–Fungi Composite Materials: A Preliminary Experimental Study
by Yeasir Mohammad Akib, Caleb Oliver Bedsole, Jackson Sanders, Harlie Warren, Zhijian Pei and Brian D. Shaw
Biomimetics 2025, 10(7), 441; https://doi.org/10.3390/biomimetics10070441 - 4 Jul 2025
Viewed by 535
Abstract
This paper reports on a preliminary experimental study on binder jetting 3D printing of biomass–fungi composite materials. Biomass–fungi composite materials have potential applications in the packaging, furniture, and construction industries. Biomass particles (prepared from agricultural residues) act as the substrate of the composite [...] Read more.
This paper reports on a preliminary experimental study on binder jetting 3D printing of biomass–fungi composite materials. Biomass–fungi composite materials have potential applications in the packaging, furniture, and construction industries. Biomass particles (prepared from agricultural residues) act as the substrate of the composite materials. The filamentous roots of fungi intertwine and bind biomass particles together. In this study, the biomass (hemp hurd) powders used had two distinct average particle sizes. The liquid binder used contained fungi (Trametes versicolor) cells. T-shaped samples were printed using a lab-designed binder jetting setup. Printed samples were kept inside an incubator oven for four days to allow fungi to grow. Afterward, loose biomass powder was removed from the T-shaped samples. The samples were then kept inside the incubator oven for eight more days to allow further fungal growth. The samples were subsequently placed in an oven at 120 °C for four hours to terminate all fungal activity in the samples. SEM micrographs were taken of the cross-sectional surfaces of the samples. The micrographs showed a significant presence of fungi hyphae inside the printed samples, providing evidence of the binding of biomass particles by the hyphae. Full article
(This article belongs to the Special Issue Biomimetic Design of Multifunctional Natural Macromolecular Materials)
Show Figures

Figure 1

9 pages, 1815 KiB  
Article
Evaluating the Thermal Conductivity of Hemp-Based Insulation
by Thomas Fiedler and James Pedersen
Materials 2025, 18(8), 1723; https://doi.org/10.3390/ma18081723 - 9 Apr 2025
Viewed by 1239
Abstract
This study evaluates the thermal conductivity of hemp-based insulation materials, focusing on loose bulk mixtures of hemp fibre and hurd. Transient Plane Source (TPS) measurements were employed to assess the thermal conductivity of these materials, with a controlled variation in the fibre-to-hurd ratio [...] Read more.
This study evaluates the thermal conductivity of hemp-based insulation materials, focusing on loose bulk mixtures of hemp fibre and hurd. Transient Plane Source (TPS) measurements were employed to assess the thermal conductivity of these materials, with a controlled variation in the fibre-to-hurd ratio and bulk density. Samples from various suppliers, including those with different fibre diameters and hurd contents, were tested. The results indicate thermal conductivities ranging from 0.055 to 0.065 W/mK, demonstrating good insulation performance. This study also highlights the influence of sample compression on thermal conductivity, with higher compression leading to both increased bulk density and thermal conductivity. When compared to the conventional insulation materials glass wool and polystyrene, hemp-based materials exhibited approximately double the thermal conductivity. However, the same thermal resistance (R-value) could be achieved by increasing the thickness of the hemp-based insulation. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

17 pages, 3091 KiB  
Article
Optimizing Hempcrete Properties Through Thermal Treatment of Hemp Hurds for Enhanced Sustainability in Green Building
by Veronica D’Eusanio, Mirco Rivi, Daniele Malferrari and Andrea Marchetti
Sustainability 2024, 16(23), 10404; https://doi.org/10.3390/su162310404 - 27 Nov 2024
Viewed by 2670
Abstract
This study examines the effects of the thermal pre-treatment of hemp hurds on the physical, mechanical, and thermal properties of hempcrete, evaluating its potential as a sustainable building material. Hemp hurds were pre-treated at various temperatures (120–280 °C) and characterized by proximate analysis, [...] Read more.
This study examines the effects of the thermal pre-treatment of hemp hurds on the physical, mechanical, and thermal properties of hempcrete, evaluating its potential as a sustainable building material. Hemp hurds were pre-treated at various temperatures (120–280 °C) and characterized by proximate analysis, CHNS elemental analysis, and thermogravimetric analysis (TGA). The resulting hempcrete samples were analyzed for density, water absorption, compressive strength, and thermal conductivity. Three different hempcrete formulations, with varying lime:hemp proportions, were analyzed. The findings indicate that higher pre-treatment temperatures lead to reduced density and water absorption across all formulations. Formulations containing a higher hemp hurd content had lower densities but higher water absorption values. Compressive strength increased consistently with the pre-treatment temperature, suggesting that higher temperatures enhance matrix bonding and structural rigidity, and with the lime content. However, thermal conductivity also rose with pre-treatment, with only the composition containing the highest hemp hurd content maintaining the optimal insulation threshold (0.1 W/mK). This suggests a trade-off between compressive strength and insulation performance, influenced by the balance of hemp hurd and lime content. These findings underscore the potential of thermal pre-treatment to tailor hempcrete properties, promoting its application as a durable, moisture-resistant material for sustainable building, though the optimization of hurd–lime ratios remains essential. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

26 pages, 3398 KiB  
Review
Natural Fibers in Composite Materials for Sustainable Building: A State-of-the-Art Review on Treated Hemp Fibers and Hurds in Mortars
by Louiza Siouta, Maria Apostolopoulou and Asterios Bakolas
Sustainability 2024, 16(23), 10368; https://doi.org/10.3390/su162310368 - 27 Nov 2024
Cited by 3 | Viewed by 3943
Abstract
In recent years, natural-fiber composite building materials have experienced a revival and have become an important area of interest for the international building and scientific community as a sustainable solution for new constructions and restoration interventions. Natural fibers are obtained from renewable sources [...] Read more.
In recent years, natural-fiber composite building materials have experienced a revival and have become an important area of interest for the international building and scientific community as a sustainable solution for new constructions and restoration interventions. Natural fibers are obtained from renewable sources and are thus environmentally friendly, while at the same time they do not harm human health, as they do not contain toxic substances. Furthermore, natural reinforced composites present enhanced thermal and acoustic properties. However, the variety of components, the presence of hydroxyl groups, and the surface impurities which plant fibers possess, create a series of issues related to the design of composite materials, as they affect their final properties. Aiming to optimize the physical and chemical characteristics of fibers, several treatments have been applied. International research focuses mainly on hemp fibers, which are considered particularly durable and have thus been extensively studied. This literature review discusses the properties of hemp fibers and hurds, treatments which have been applied up to today, and their effect on the fiber and hurds, as well as the composite materials and discusses future trends. Mortars reinforced with treated hemp present mechanical benefits in most of the cases, such as higher flexural and tensile strength. Also, the improved adhesion between hemp and mortar matrices is commonly accepted by researchers. Full article
(This article belongs to the Special Issue Advances in Green and Sustainable Construction Materials)
Show Figures

Figure 1

16 pages, 8585 KiB  
Article
Hemp Waste Stream Valorization Through Pyrolytic Carbonization for Epoxy Composite Strengthening
by Silvia Zecchi, Giovanni Cristoforo, Mattia Bartoli, Carlo Rosso and Alberto Tagliaferro
J. Compos. Sci. 2024, 8(11), 473; https://doi.org/10.3390/jcs8110473 - 14 Nov 2024
Viewed by 990
Abstract
This research addresses a gap in the literature by exploring the combined use of hemp and hemp hurds in composites, presenting a novel approach to bio-composite development. We report on the mechanical properties of epoxy resin composites reinforced with hemp fibers and hemp [...] Read more.
This research addresses a gap in the literature by exploring the combined use of hemp and hemp hurds in composites, presenting a novel approach to bio-composite development. We report on the mechanical properties of epoxy resin composites reinforced with hemp fibers and hemp hurds, selected for their sustainability, biodegradability, and environmental benefits. These natural fibers offer a renewable alternative to synthetic fibers, aligning with the growing demand for eco-friendly materials in various industries. The primary objective was to evaluate how different filler contents and hemp hurd-to-hemp fiber ratios affect the composite’s performance. Composites with 1:1 and 3:1 ratios were prepared at filler concentrations ranging from 1 wt.% to 10 wt.%. Tensile tests revealed that the 3:1 ratio composites exhibited better stiffness and tensile strength, with a notable UTS of 19.8 ± 0.4 MPa at 10 wt.%, which represents a 160% increase over neat epoxy. The 1:1 ratio composites showed significant reductions in mechanical properties at higher filler contents due to filler agglomeration. The study concludes that a 3:1 hemp hurd-to-hemp fiber ratio optimizes mechanical properties, offering a sustainable solution for enhancing composite materials’ performance in industrial applications. Full article
Show Figures

Figure 1

9 pages, 3257 KiB  
Communication
Mechanochemical Preparation of New Biocomposites Starting from Polymers and Plant-Derived Fibres
by Lorenzo Gallina, Salah Chaji, Stefano Mantegna, Maela Manzoli and Giancarlo Cravotto
J. Compos. Sci. 2024, 8(11), 452; https://doi.org/10.3390/jcs8110452 - 1 Nov 2024
Cited by 1 | Viewed by 1450
Abstract
This work presents the extrusion-based preparation of new biocomposites from two plant fibres (namely Cannabis sativa L. and Opuntia ficus-indica Mill.) that are added to two different polymers (an ethylene–octene elastomer and polylactic acid), which act as matrices. Structural and morphological characterization (using [...] Read more.
This work presents the extrusion-based preparation of new biocomposites from two plant fibres (namely Cannabis sativa L. and Opuntia ficus-indica Mill.) that are added to two different polymers (an ethylene–octene elastomer and polylactic acid), which act as matrices. Structural and morphological characterization (using X-ray diffraction and field emission scanning electron microscopy) have been used to correlate the interactions between the biomass and the polymers employed with the efficiency of the proposed approach. It was found that Opuntia-based composites can be easily formed in a range of biomass/polymer ratios. However, the interaction between hemp and the matrix means that only specific ratios can form tightly bound composites. The present communication thus paves the way for more complex and comprehensive studies on the formulation of biocomposites containing these matrices. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

13 pages, 9236 KiB  
Article
A Preliminary Experimental Study on Biodegradation of 3D-Printed Samples from Biomass–Fungi Composite Materials
by Yeasir Mohammad Akib, Caleb Oliver Bedsole, Al Mazedur Rahman, Jillian Hamilton, Fahim Khan, Zhijian Pei, Brian D. Shaw and Chukwuzubelu Okenwa Ufodike
J. Compos. Sci. 2024, 8(10), 412; https://doi.org/10.3390/jcs8100412 - 8 Oct 2024
Cited by 3 | Viewed by 2091
Abstract
Products made from petroleum-derived plastic materials are linked to many environmental problems, such as greenhouse gas emissions and plastic pollution. It is desirable to manufacture products from environmentally friendly materials instead of petroleum-based plastic materials. Products made from biomass–fungi composite materials are biodegradable [...] Read more.
Products made from petroleum-derived plastic materials are linked to many environmental problems, such as greenhouse gas emissions and plastic pollution. It is desirable to manufacture products from environmentally friendly materials instead of petroleum-based plastic materials. Products made from biomass–fungi composite materials are biodegradable and can be utilized for packaging, construction, and furniture. In biomass–fungi composite materials, biomass particles (derived from agricultural wastes) serve as the substrate, and the fungal hyphae network binds the biomass particles together. There are many reported studies on the 3D printing of biomass–fungi composite materials. However, there are no reported studies on the biodegradation of 3D-printed samples from biomass–fungi composite materials. In this study, two types of biomass materials were used to prepare printable mixture hemp hurd and beechwood sawdust. The fungi strain used was Trametes versicolor. Extrusion based 3D printing was used to print samples. 3D-printed samples were left for five days to allow fungi to grow. The samples were then dried in an oven for 4 h at 120 °C to kill all the fungi in the samples. The samples were buried in the soil using a mesh bag and kept in an environmental chamber at 25 °C with a relative humidity of 48%. The weight of these samples was measured every week over a period of three months. During the testing period, the hemp hurd test samples lost about 33% of their original weight, whereas the beechwood sawdust samples lost about 30% of their original weight. The SEM (scanning electron microscope) micrographs showed the presence of zygospores in the test samples, providing evidence of biodegradation of the test samples in the soils. Additionally, the difference in peak intensity between the control samples and test samples (for both hemp hurd and beechwood sawdust) showed additional evidence of biodegradation of the test samples in the soils. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

21 pages, 2658 KiB  
Article
Energetic, Exergetic, and Techno-Economic Analysis of A Bioenergy with Carbon Capture and Utilization Process via Integrated Torrefaction–CLC–Methanation
by Enrico Alberto Cutillo, Claudio Tregambi, Piero Bareschino, Erasmo Mancusi, Gaetano Continillo and Francesco Pepe
Energies 2024, 17(11), 2690; https://doi.org/10.3390/en17112690 - 1 Jun 2024
Cited by 2 | Viewed by 1572
Abstract
Bioenergy with carbon capture and storage (BECCS) or utilization (BECCU) allows net zero or negative carbon emissions and can be a breakthrough technology for climate change mitigation. This work consists of an energetic, exergetic, and economic analysis of an integrated process based on [...] Read more.
Bioenergy with carbon capture and storage (BECCS) or utilization (BECCU) allows net zero or negative carbon emissions and can be a breakthrough technology for climate change mitigation. This work consists of an energetic, exergetic, and economic analysis of an integrated process based on chemical looping combustion of solar-torrefied agro-industrial residues, followed by methanation of the concentrated CO2 stream with green H2. Four agro-industrial residues and four Italian site locations are considered. Depending on the considered biomass, the integrated plant processes about 18–93 kg h−1 of raw biomass and produces 55–70 t y−1 of synthetic methane. Global exergetic efficiencies ranged within 45–60% and 67–77% when neglecting and considering, respectively, the valorization of torgas. Sugar beet pulp and grape marc required a non-negligible input exergy flow for the torrefaction, due to the high moisture content of the raw biomasses. However, for these biomasses, the water released during drying/torrefaction and CO2 methanation could be recycled to the electrolyzer to eliminate external water consumption, thus allowing for a more sustainable use of water resources. For olive stones and hemp hurd, this water recycling brings, instead, a reduction of approximately 65% in water needs. A round-trip electric efficiency of 28% was estimated assuming an electric conversion efficiency of 40%. According to the economic analysis, the total plant costs ranged within 3–5 M€ depending on the biomass and site location considered. The levelized cost of methane (LCOM) ranged within 4.3–8.9 € kgCH4−1 but, if implementing strategies to avoid the use of a large temporary H2 storage vessel, can be decreased to 2.6–5.3 € kgCH4−1. Lower values are obtained when considering hemp hurd and grape marc as raw biomasses, and when locating the PV field in the south of Italy. Even in the best scenario, values of LCOM are out of the market if compared to current natural gas prices, but they might become competitive with the introduction of a carbon tax or through government incentives for the purchase of the PV field and/or electrolyzer. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

27 pages, 1231 KiB  
Review
State of the Art Review of Attributes and Mechanical Properties of Hempcrete
by Nima Asghari and Ali M. Memari
Biomass 2024, 4(1), 65-91; https://doi.org/10.3390/biomass4010004 - 2 Feb 2024
Cited by 14 | Viewed by 10874
Abstract
The global surge in environmental pollution, largely attributed to industrialization, has fueled a pressing need for sustainable solutions. In response, the construction sector is increasingly focusing on bio-based materials such as hemp, recognized for its low environmental footprint and prominent carbon-negative quality. As [...] Read more.
The global surge in environmental pollution, largely attributed to industrialization, has fueled a pressing need for sustainable solutions. In response, the construction sector is increasingly focusing on bio-based materials such as hemp, recognized for its low environmental footprint and prominent carbon-negative quality. As designers, housebuilders, and an environmentally conscious society pivot towards ecological alternatives to standard building materials, hempcrete emerges as a promising candidate. As a composite material mainly made from hemp hurd/shiv, water, and lime, hempcrete offers the ability to sequester carbon long after its incorporation into structures. As a result, the hemp cultivation process—which can be completed within less than four months—ensures that more carbon is absorbed during production and deployment than emitted, e.g., per one study, sequestration on the order of 300 kg of CO2 per m3 of hempcrete. In comparison to concrete, hempcrete offers a more sustainable footprint, given its recyclability post life cycle. This state-of-the-art review paper delves deep into different aspects of hempcrete, summarizing its multifaceted attributes, particularly its compressive strength. Based on the study conducted, the paper also suggests strategies to augment this strength, thereby transitioning hempcrete from a non-load-bearing material to one capable of shouldering significant weight. As architects and designers consistently strive to align their projects with high ecological standards, focusing not just on aesthetic appeal but also environmental compatibility, hempcrete becomes an increasingly fitting solution for the future of construction. Full article
(This article belongs to the Special Issue Innovative Systems for Biomass Crop Production and Use)
Show Figures

Figure 1

17 pages, 2819 KiB  
Review
Eustress and Plants: A Synthesis with Prospects for Cannabis sativa Cultivation
by Roberto Berni, Margaux Thiry, Jean-Francois Hausman, Stanley Lutts and Gea Guerriero
Horticulturae 2024, 10(2), 127; https://doi.org/10.3390/horticulturae10020127 - 30 Jan 2024
Cited by 3 | Viewed by 3040
Abstract
Cannabis sativa L. is a species of great economic value. It is a medicinal plant that produces several bioactive phytochemicals, and the stems of the industrial cultivars, commonly referred to as “hemp”, are sources of both cellulosic fibers and hurds used in textiles [...] Read more.
Cannabis sativa L. is a species of great economic value. It is a medicinal plant that produces several bioactive phytochemicals, and the stems of the industrial cultivars, commonly referred to as “hemp”, are sources of both cellulosic fibers and hurds used in textiles and bio-composites. Environmental stresses of biotic and abiotic nature affect plant development and metabolism and can, consequently, impact biomass yield and phytochemical content. Stress factors can be divided into eustressors and distressors; while the former stimulate a positive response in terms of growth, productivity, and resistance, the latter impair plant development. Eustressors are factors that, applied at low–moderate doses, can improve plant performance. Several studies have investigated different types of distress in C. sativa and evaluated the impact on biomass and phytochemicals, while less attention has been paid to the study of eustress. This review discusses the concept of plant eustress by referring to the recent literature and extrapolates it to applications in C. sativa cultivation. The data available on the response of C. sativa to exogenous factors are reviewed, and then, salinity eustress applied to hemp cultivation is taken as a proof-of-concept example. The knowledge developed on plant eustress and the results collected so far are discussed in light of future applications to improve the production of biomass and phytochemicals in plants of economic interest. Emphasis is placed on the potential use of eustress in conjunction with other factors shown to impact both the physiological response and metabolism of Cannabis, among which there are macronutrients and biofertilizers. Perspectives are also drawn with respect to applying the knowledge developed on the elicitation of whole plants to Cannabis cell suspension cultures, which provide a controlled, scalable, and season-independent platform to produce secondary metabolites. Full article
Show Figures

Figure 1

12 pages, 6588 KiB  
Article
Three-Dimensional Printing of Biomass–Fungi Biocomposite Materials: The Effects of Mixing and Printing Parameters on Fungal Growth
by Al Mazedur Rahman, Abhinav Bhardwaj, Joseph G. Vasselli, Zhijian Pei and Brian D. Shaw
J. Manuf. Mater. Process. 2024, 8(1), 2; https://doi.org/10.3390/jmmp8010002 - 19 Dec 2023
Cited by 7 | Viewed by 3566
Abstract
Biomass–fungi biocomposite materials are derived from sustainable sources and can biodegrade at the end of their service. They can be used to manufacture products that are traditionally made from petroleum-based plastics. There are potential applications for these products in the packaging, furniture, and [...] Read more.
Biomass–fungi biocomposite materials are derived from sustainable sources and can biodegrade at the end of their service. They can be used to manufacture products that are traditionally made from petroleum-based plastics. There are potential applications for these products in the packaging, furniture, and construction industries. In the biomass–fungi biocomposite materials, the biomass particles (made from agricultural waste such as hemp hurd) act as the substrate, and a network of fungal hyphae grow through and bind the biomass particles together. Typically, molding-based methods are used to manufacture products using these biocomposite materials. Recently, the authors reported a novel extrusion-based 3D printing method using these biocomposite materials. This paper reports a follow-up investigation into the effects of mixing parameters (mixing time and mixing mode) on fungal growth in biomass–fungi mixtures prepared for 3D printing and the effects of printing parameters (printing speed and extrusion pressure) on fungal growth in printed samples. The fungal growth was quantified using the number of fungal colonies that grew from samples. The results show that, when mixing time increased from 15 to 120 s, there was a 52% increase in fungal growth. Changing from continuous to intermittent mixing mode resulted in an 11% increase in fungal growth. Compared to mixtures that were not subjected to printing, samples printed with a high printing speed and high extrusion pressure had a 14.6% reduction in fungal growth, while those with a low printing speed and low extrusion pressure resulted in a 16.5% reduction in fungal growth. Full article
Show Figures

Figure 1

23 pages, 11982 KiB  
Article
Retarding Effect of Hemp Hurd Lixiviates on the Hydration of Hydraulic and CSA Cements
by Donato Tale Ponga, Amirmohammad Sabziparvar, Patrice Cousin, Lina Boulos, Mathieu Robert and M. Reza Foruzanmehr
Materials 2023, 16(16), 5561; https://doi.org/10.3390/ma16165561 - 10 Aug 2023
Cited by 2 | Viewed by 1859
Abstract
Wood wool panels are widely used in the construction industry as sustainable cementitious composites, but there is a growing need to replace traditional Portland cement with a binder that has a lower embodied carbon footprint. In addition, the sustainability of these panels may [...] Read more.
Wood wool panels are widely used in the construction industry as sustainable cementitious composites, but there is a growing need to replace traditional Portland cement with a binder that has a lower embodied carbon footprint. In addition, the sustainability of these panels may face serious impediments if the required amount of wood for their production needs a harvest rate higher than the rate at which the tree sources reach maturity. One solution is to use the wooden part of fast-growing plants such as hemp. However, the compounds extracted from the mixture of plants and water are the main cause of the delay observed during the hydration process of hydraulic binders in these cementitious composites. The objective of this study is to evaluate the effect of bio-aggregate lixiviates (hemp hurd) on the hydration kinetics of calcium sulfoaluminate (CSA) cement as a low-embodied-carbon alternative to ordinary Portland cement (OPC). The isothermal calorimeter showed that the hemp hurd lixiviate caused a greater delay in GU’s hydration process than CSA’s. At a 5% concentration, the main hydration peak for GU cement emerged after 91 h, whereas for CSA cement, it appeared much earlier, at 2.5 h. XRD and TGA analysis showed that after 12 h of hydration, hydration products such as calcium silicate hydrates (C-S-H) and portlandite (CH) were not able to form on GU cement, indicating low hydration of silicate products. Moreover, at 5% concentration, the carbonation of ettringite was observed in CSA cement. The compressive strength values obtained from the mixes containing hemp hurd lixiviate consistently showed lower values compared to the reference samples prepared with distilled water. Furthermore, the CSA samples demonstrated superior compressive strength when compared to the GU samples. After 28 days of hydration, the compressive strength values for CSA cement were 36.7%, 63.5% and 71% higher than GU cement at a concentration of 0.5%, 2% and 5% hemp hurd lixiviate, respectively. Full article
(This article belongs to the Special Issue Properties and Applications of Cement-based Composites)
Show Figures

Figure 1

14 pages, 3305 KiB  
Article
Effect of Hemp Hurd Biochar and Humic Acid on the Flame Retardant and Mechanical Properties of Ethylene Vinyl Acetate
by Mattia Di Maro, Maria Giulia Faga, Riccardo Pedraza, Giulio Malucelli, Mattia Bartoli, Giovanna Gomez d’Ayala and Donatella Duraccio
Polymers 2023, 15(6), 1411; https://doi.org/10.3390/polym15061411 - 12 Mar 2023
Cited by 4 | Viewed by 2640
Abstract
In this work, the combination of biochar produced through a pyrolytic process of hemp hurd with commercial humic acid as a potential biomass-based flame-retardant system for ethylene vinyl acetate copolymer is thoroughly investigated. To this aim, ethylene vinyl acetate composites containing hemp-derived biochar [...] Read more.
In this work, the combination of biochar produced through a pyrolytic process of hemp hurd with commercial humic acid as a potential biomass-based flame-retardant system for ethylene vinyl acetate copolymer is thoroughly investigated. To this aim, ethylene vinyl acetate composites containing hemp-derived biochar at two different concentrations (i.e., 20 and 40 wt.%) and 10 wt.% of humic acid were prepared. The presence of increasing biochar loadings in ethylene vinyl acetate accounted for an increasing thermal and thermo-oxidative stability of the copolymer; conversely, the acidic character of humic acid anticipated the degradation of the copolymer matrix, even in the presence of the biochar. Further, as assessed by forced-combustion tests, the incorporation of humic acid only in ethylene vinyl acetate slightly decreased both peaks of heat release rate (pkHRR) and total heat release (THR, by 16% and 5%, respectively), with no effect on the burning time. At variance, for the composites containing biochar, a strong decrease in pkHRR and THR values was observed, approaching −69 and −29%, respectively, in the presence of the highest filler loading, notwithstanding, for this latter, a significant increase in the burning time (by about 50 s). Finally, the presence of humic acid significantly lowered the Young’s modulus, unlike biochar, for which the stiffness remarkably increased from 57 MPa (unfilled ethylene vinyl acetate) to 155 Mpa (for the composite containing 40 wt.% of the filler). Full article
(This article belongs to the Special Issue Feature Papers in Polymer Analysis)
Show Figures

Figure 1

12 pages, 2097 KiB  
Article
Valorization of Hemp-Based Packaging Waste with One-Pot Ionic Liquid Technology
by Julius Choi, Alberto Rodriguez, Blake A. Simmons and John M. Gladden
Molecules 2023, 28(3), 1427; https://doi.org/10.3390/molecules28031427 - 2 Feb 2023
Cited by 2 | Viewed by 2524
Abstract
The range of applications for industrial hemp has consistently increased in various sectors over the years. For example, hemp hurd can be used as a resource to produce biodegradable packaging materials when incorporated into a fungal mycelium composite, a process that has been [...] Read more.
The range of applications for industrial hemp has consistently increased in various sectors over the years. For example, hemp hurd can be used as a resource to produce biodegradable packaging materials when incorporated into a fungal mycelium composite, a process that has been commercialized. Although these packaging materials can be composted after usage, they may present an opportunity for valorization in a biorefinery setting. Here, we demonstrate the potential of using this type of discarded packaging composite as a feedstock for biofuel production. A one-pot ionic liquid-based biomass deconstruction and conversion process was implemented, and the results from the packaging material were compared with those obtained from untreated hemp hurd. At a 120 °C reaction temperature, 7.5% ionic liquid loading, and 2 h reaction time, the packaging materials showed a higher lignocellulosic sugar yield and sugar concentrations than hemp hurd. Hydrolysates prepared from packaging materials also promoted production of higher titers (1400 mg/L) of the jet-fuel precursor bisabolene when used to cultivate an engineered strain of the yeast Rhodosporidium toruloides. Box–Behnken experiments revealed that pretreatment parameters affected the hemp hurd and packaging materials differently, evidencing different degrees of recalcitrance. This study demonstrated that a hemp hurd-based packaging material can be valorized a second time once it reaches the end of its primary use by supplying it as a feedstock to produce biofuels. Full article
Show Figures

Figure 1

Back to TopTop