Eustress and Plants: A Synthesis with Prospects for Cannabis sativa Cultivation
Abstract
:1. Introduction
2. Plant Hormesis and Its Links with Priming, Preconditioning, Biostimulation, and Elicitation
2.1. Potentially Toxic Elements and Eustress
2.2. Nutrient Eustress
2.3. Salinity Eustress
2.4. Nanoparticle Eustress
3. Response of C. sativa to Exogenous Factors
3.1. C. sativa vs. Drought
3.2. C. sativa vs. Salinity
3.3. C. sativa vs. Cold
3.4. C. sativa vs. Heavy Metals
3.5. The Impact of Light on C. sativa Development and Secondary Metabolism
3.6. The Impact of Macronutrients on C. sativa Growth and Metabolism
4. Prospects of Applying Eustress for C. sativa Cultivation: Salinity as a Proof-of-Concept
5. Future Avenues of Research and Conclusions
5.1. Future Research Avenues
5.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lichtenthaler, H.K. The Stress Concept in Plants: An Introduction. Ann. N. Y. Acad. Sci. 1998, 851, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Barton, K.E. Tougher and Thornier: General Patterns in the Induction of Physical Defence Traits. Funct. Ecol. 2016, 30, 181–187. [Google Scholar] [CrossRef]
- Mithöfer, A.; Boland, W. Plant Defense Against Herbivores: Chemical Aspects. Annu. Rev. Plant Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Hernández, M.C.; Parola-Contreras, I.; Montoya-Gómez, L.M.; Torres-Pacheco, I.; Schwarz, D.; Guevara-González, R.G. Eustressors: Chemical and Physical Stress Factors Used to Enhance Vegetables Production. Sci. Hortic. 2019, 250, 223–229. [Google Scholar] [CrossRef]
- Agathokleous, E.; Saitanis, C.; Markouizou, A. Hormesis Shifts the No-Observed-Adverse-Effect Level (NOAEL). Dose Response 2021, 19, 15593258211001667. [Google Scholar] [CrossRef] [PubMed]
- Henschler, D. The Origin of Hormesis: Historical Background and Driving Forces. Hum. Exp. Toxicol. 2006, 25, 347–351. [Google Scholar] [CrossRef]
- Xu, N.; Sun, Y.; Wang, Y.; Cui, Y.; Jiang, Y.; Zhang, C. Hormesis Effects in Tomato Plant Growth and Photosynthesis Due to Acephate Exposure Based on Physiology and Transcriptomic Analysis. Pest Manag. Sci. 2023, 79, 2029–2039. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Báez, G.A.; Trejo-Téllez, L.I.; Ramírez-Olvera, S.M.; Salinas-Ruíz, J.; Bello-Bello, J.J.; Alcántar-González, G.; Hidalgo-Contreras, J.V.; Gómez-Merino, F.C. Silver Nanoparticles Increase Nitrogen, Phosphorus, and Potassium Concentrations in Leaves and Stimulate Root Length and Number of Roots in Tomato Seedlings in a Hormetic Manner. Dose Response 2021, 19, 15593258211044576. [Google Scholar] [CrossRef]
- Sperdouli, I.; Ouzounidou, G.; Moustakas, M. Hormesis Responses of Photosystem II in Arabidopsis thaliana under Water Deficit Stress. Int. J. Mol. Sci. 2023, 24, 9573. [Google Scholar] [CrossRef]
- Marchica, A.; Ascrizzi, R.; Flamini, G.; Cotrozzi, L.; Tonelli, M.; Lorenzini, G.; Nali, C.; Pellegrini, E. Ozone as Eustress for Enhancing Secondary Metabolites and Bioactive Properties in Salvia officinalis. Ind. Crops Prod. 2021, 170, 113730. [Google Scholar] [CrossRef]
- Fitzner, M.; Schreiner, M.; Baldermann, S. Between Eustress and Distress: UVB Induced Changes in Carotenoid Accumulation in Halophytic Salicornia europaea. J. Plant Physiol. 2023, 291, 154124. [Google Scholar] [CrossRef] [PubMed]
- Seeburger, P.; Herdenstam, A.; Kurtser, P.; Arunachalam, A.; Castro-Alves, V.C.; Hyötyläinen, T.; Andreasson, H. Controlled Mechanical Stimuli Reveal Novel Associations between Basil Metabolism and Sensory Quality. Food Chem. 2023, 404, 134545. [Google Scholar] [CrossRef] [PubMed]
- Belz, R.G.; Cedergreen, N. Parthenin Hormesis in Plants Depends on Growth Conditions. Environ. Exp. Bot. 2010, 69, 293–301. [Google Scholar] [CrossRef]
- Costa, R.N.; Bevilaqua, N.d.C.; Krenchinski, F.H.; Giovanelli, B.F.; Pereira, V.G.C.; Velini, E.D.; Carbonari, C.A. Hormetic Effect of Glyphosate on the Morphology, Physiology and Metabolism of Coffee Plants. Plants 2023, 12, 2249. [Google Scholar] [CrossRef] [PubMed]
- Gressel, J.; Dodds, J. Commentary: Hormesis Can Be Used in Enhancing Plant Productivity and Health; but Not as Previously Envisaged. Plant Sci. 2013, 213, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Flores-Aguilar, P.S.; Rico-Chávez, A.K.; Rodriguez-deLeón, E.; Aguirre-Becerra, H.; Zamora-Castro, S.A.; Soto-Zarazúa, G.M. Bioactive Compounds of Endemic Medicinal Plants (Cuphea spp.) Cultured in Aquaponic Systems: A Short Study. Agriculture 2023, 13, 2018. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef]
- Moscariello, C.; Matassa, S.; Esposito, G.; Papirio, S. From Residue to Resource: The Multifaceted Environmental and Bioeconomy Potential of Industrial Hemp (Cannabis sativa L.). Resour. Conserv. Recycl. 2021, 175, 105864. [Google Scholar] [CrossRef]
- Agathokleous, E.; Kitao, M.; Calabrese, E.J. Hormesis: A Compelling Platform for Sophisticated Plant Science. Trends Plant Sci. 2019, 24, 318–327. [Google Scholar] [CrossRef]
- Vargas-Hernandez, M.; Macias-Bobadilla, I.; Guevara-Gonzalez, R.G.; Romero-Gomez, S.d.J.; Rico-Garcia, E.; Ocampo-Velazquez, R.V.; Alvarez-Arquieta, L.d.L.; Torres-Pacheco, I. Plant Hormesis Management with Biostimulants of Biotic Origin in Agriculture. Front. Plant Sci. 2017, 8, 1762. [Google Scholar] [CrossRef]
- Magaña-López, E.; Palos-Barba, V.; Zuverza-Mena, N.; Vázquez-Hernández, M.C.; White, J.C.; Nava-Mendoza, R.; Feregrino-Pérez, A.A.; Torres-Pacheco, I.; Guevara-González, R.G. Nanostructured Mesoporous Silica Materials Induce Hormesis on Chili Pepper (Capsicum annuum L.) under Greenhouse Conditions. Heliyon 2022, 8, e09049. [Google Scholar] [CrossRef]
- Godínez-Mendoza, P.L.; Rico-Chávez, A.K.; Ferrusquía-Jimenez, N.I.; Carbajal-Valenzuela, I.A.; Villagómez-Aranda, A.L.; Torres-Pacheco, I.; Guevara-González, R.G. Plant Hormesis: Revising of the Concepts of Biostimulation, Elicitation and Their Application in a Sustainable Agricultural Production. Sci. Total Environ. 2023, 894, 164883. [Google Scholar] [CrossRef]
- Belz, R.G. Investigating a Potential Auxin-Related Mode of Hormetic/Inhibitory Action of the Phytotoxin Parthenin. J. Chem. Ecol. 2016, 42, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Sidibé, A.; Charles, M.T.; Lucier, J.-F.; Xu, Y.; Beaulieu, C. Preharvest UV-C Hormesis Induces Key Genes Associated with Homeostasis, Growth and Defense in Lettuce Inoculated with Xanthomonas campestris Pv. Vitians. Front. Plant Sci. 2022, 12, 793989. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lin, L.; Yuan, X.; Zhu, Y.; Wang, Y.; Li, D.; He, J.; Xiao, Y. Low-Level Cadmium Exposure Induced Hormesis in Peppermint Young Plant by Constantly Activating Antioxidant Activity Based on Physiological and Transcriptomic Analyses. Front. Plant Sci. 2023, 14, 1088285. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tang, Z.; Agathokleous, E.; Zheng, G.; Xu, L.; Li, P. Hormesis in the Heavy Metal Accumulator Plant Tillandsia ionantha under Cd Exposure: Frequency and Function of Different Biomarkers. Sci. Total Environ. 2023, 889, 164328. [Google Scholar] [CrossRef]
- Li, P.; Zhang, J.; Sun, X.; Agathokleous, E.; Zheng, G. Atmospheric Pb Induced Hormesis in the Accumulator Plant Tillandsia usneoides. Sci. Total Environ. 2022, 811, 152384. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, P.; Zheng, G. Biomarker Responses of Spanish Moss Tillandsia usneoides to Atmospheric Hg and Hormesis in This Species. Front. Plant Sci. 2021, 12, 625799. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Tian, L.; Chen, M.; Zhang, L.; Lu, Q.; Wei, J.; Duan, X. Hormesis Responses of Growth and Photosynthetic Characteristics in Lonicera japonica Thunb. to Cadmium Stress: Whether Electric Field Can Improve or Not? Plants 2023, 12, 933. [Google Scholar] [CrossRef]
- Małkowski, E.; Sitko, K.; Szopiński, M.; Gieroń, Ż.; Pogrzeba, M.; Kalaji, H.M.; Zieleźnik-Rusinowska, P. Hormesis in Plants: The Role of Oxidative Stress, Auxins and Photosynthesis in Corn Treated with Cd or Pb. Int. J. Mol. Sci. 2020, 21, 2099. [Google Scholar] [CrossRef]
- Salinitro, M.; Mattarello, G.; Guardigli, G.; Odajiu, M.; Tassoni, A. Induction of Hormesis in Plants by Urban Trace Metal Pollution. Sci. Rep. 2021, 11, 20329. [Google Scholar] [CrossRef] [PubMed]
- El-Nakhel, C.; Pannico, A.; Kyriacou, M.C.; Giordano, M.; De Pascale, S.; Rouphael, Y. Macronutrient Deprivation Eustress Elicits Differential Secondary Metabolites in Red and Green-Pigmented Butterhead Lettuce Grown in a Closed Soilless System. J. Sci. Food Agric. 2019, 99, 6962–6972. [Google Scholar] [CrossRef] [PubMed]
- Trejo-Téllez, L.I.; García-Jiménez, A.; Escobar-Sepúlveda, H.F.; Ramírez-Olvera, S.M.; Bello-Bello, J.J.; Gómez-Merino, F.C. Silicon Induces Hormetic Dose-Response Effects on Growth and Concentrations of Chlorophylls, Amino Acids and Sugars in Pepper Plants during the Early Developmental Stage. PeerJ 2020, 8, e9224. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.M.A.; Serralheiro, R.P. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Rouphael, Y.; Petropoulos, S.A.; Cardarelli, M.; Colla, G. Salinity as Eustressor for Enhancing Quality of Vegetables. Sci. Hortic. 2018, 234, 361–369. [Google Scholar] [CrossRef]
- Santander, C.; Vidal, G.; Ruiz, A.; Vidal, C.; Cornejo, P. Salinity Eustress Increases the Biosynthesis and Accumulation of Phenolic Compounds That Improve the Functional and Antioxidant Quality of Red Lettuce. Agronomy 2022, 12, 598. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Carillo, P.; Pizzolongo, F.; Romano, R.; Sifola, M.I. Chemical Eustress Elicits Tailored Responses and Enhances the Functional Quality of Novel Food Perilla frutescens. Molecules 2019, 24, 185. [Google Scholar] [CrossRef] [PubMed]
- Voutsinos-Frantzis, O.; Karavidas, I.; Petropoulos, D.; Zioviris, G.; Fortis, D.; Ntanasi, T.; Ropokis, A.; Karkanis, A.; Sabatino, L.; Savvas, D.; et al. Effects of NaCl and CaCl2 as Eustress Factors on Growth, Yield, and Mineral Composition of Hydroponically Grown Valerianella locusta. Plants 2023, 12, 1454. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C. Enhancing Quality of Fresh Vegetables Through Salinity Eustress and Biofortification Applications Facilitated by Soilless Cultivation. Front. Plant Sci. 2018, 9, 1254. [Google Scholar] [CrossRef]
- Moya, C.; Oyanedel, E.; Verdugo, G.; Flores, M.F.; Urrestarazu, M.; Álvaro, J.E. Increased Electrical Conductivity in Nutrient Solution Management Enhances Dietary and Organoleptic Qualities in Soilless Culture Tomato. HortScience 2017, 52, 868–872. [Google Scholar] [CrossRef]
- Giuffrida, F.; Cassaniti, C.; Malvuccio, A.; Leonardi, C. Effects of Salt Stress Imposed during Two Growth Phases on Cauliflower Production and Quality. J. Sci. Food Agric. 2017, 97, 1552–1560. [Google Scholar] [CrossRef]
- Sarker, U.; Ercisli, S. Salt Eustress Induction in Red Amaranth (Amaranthus gangeticus) Augments Nutritional, Phenolic Acids and Antiradical Potential of Leaves. Antioxidants 2022, 11, 2434. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Hossain, M.N.; Oba, S.; Ercisli, S.; Marc, R.A.; Golokhvast, K.S. Salinity Stress Ameliorates Pigments, Minerals, Polyphenolic Profiles, and Antiradical Capacity in Lalshak. Antioxidants 2023, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Kolbert, Z.; Szőllősi, R.; Rónavári, A.; Molnár, Á. Nanoforms of Essential Metals: From Hormetic Phytoeffects to Agricultural Potential. J. Exp. Bot. 2022, 73, 1825–1840. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Zhang, H.-J.; Zhang, Y.-F.; Wang, M.; Tsui, M.T.-K.; Yang, L.; Miao, A.-J. Silica Nanoparticle Accumulation in Plants: Current State and Future Perspectives. Nanoscale 2023, 15, 15079–15091. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, G.; Sutera, F.M.; Torabi-Pour, N.; Renaut, J.; Hausman, J.-F.; Berni, R.; Pennington, H.C.; Welsh, M.; Dehsorkhi, A.; Zancan, L.R.; et al. Phyto-Courier, a Silicon Particle-Based Nano-Biostimulant: Evidence from Cannabis sativa Exposed to Salinity. ACS Nano 2021, 15, 3061–3069. [Google Scholar] [CrossRef]
- Guerriero, G.; Sutera, F.M.; Hoffmann, J.; Leclercq, C.C.; Planchon, S.; Berni, R.; Hausman, J.-F.; Renaut, J.; Torabi-Pour, N.; Pennington, H.C.; et al. Nanoporous Quercetin-Loaded Silicon-Stabilized Hybrid Lipid Nanoparticles Alleviate Salt Stress in Tomato Plants. ACS Appl. Nano Mater. 2023, 6, 3647–3660. [Google Scholar] [CrossRef]
- Sayed, E.G.; Mahmoud, A.W.M.; El-Mogy, M.M.; Ali, M.A.A.; Fahmy, M.A.M.; Tawfic, G.A. The Effective Role of Nano-Silicon Application in Improving the Productivity and Quality of Grafted Tomato Grown under Salinity Stress. Horticulturae 2022, 8, 293. [Google Scholar] [CrossRef]
- Rai-Kalal, P.; Tomar, R.S.; Jajoo, A.; Rai-Kalal, P.; Tomar, R.S.; Jajoo, A. Seed Nanopriming by Silicon Oxide Improves Drought Stress Alleviation Potential in Wheat Plants. Funct. Plant Biol. 2021, 48, 905–915. [Google Scholar] [CrossRef]
- Babaei, M.; Ajdanian, L. Screening of Different Iranian Ecotypes of Cannabis under Water Deficit Stress. Sci. Hortic. 2020, 260, 108904. [Google Scholar] [CrossRef]
- Blandinières, H.; Leoni, M.; Ferrarini, A.; Amaducci, S. Ranking 26 European Hemp (Cannabis sativa L.) Cultivars for Osmotic Stress Tolerance and Transpiration Efficiency. Ind. Crops Prod. 2021, 170, 113774. [Google Scholar] [CrossRef]
- Duong, H.; Pearson, B.; Anderson, S.; Berthold, E.; Kjelgren, R. Variation in Hydric Response of Two Industrial Hemp Varieties (Cannabis sativa) to Induced Water Stress. Horticulturae 2023, 9, 431. [Google Scholar] [CrossRef]
- Jiang, Y.; Feng, N.; Sun, Y.; Zheng, D.; Han, C.; Wang, X.; Cao, K.; Xu, L.; Liu, S. Uniconazole Mitigates Disadvantageous Effects of Drought Stress on Cannabis sativa L. Seedlings. Pak. J. Bot. 2022, 54, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Sun, Y.; Zheng, D.; Han, C.; Cao, K.; Xu, L.; Liu, S.; Cao, Y.; Feng, N. Physiological and Transcriptome Analyses for Assessing the Effects of Exogenous Uniconazole on Drought Tolerance in Hemp (Cannabis sativa L.). Sci. Rep. 2021, 11, 14476. [Google Scholar] [CrossRef] [PubMed]
- Gill, A.R.; Loveys, B.R.; Cowley, J.M.; Hall, T.; Cavagnaro, T.R.; Burton, R.A. Physiological and Morphological Responses of Industrial Hemp (Cannabis sativa L.) to Water Deficit. Ind. Crops Prod. 2022, 187, 115331. [Google Scholar] [CrossRef]
- Caplan, D.; Dixon, M.; Zheng, Y. Increasing Inflorescence Dry Weight and Cannabinoid Content in Medical Cannabis Using Controlled Drought Stress. HortScience 2019, 54, 964–969. [Google Scholar] [CrossRef]
- Dixit, N. Salinity Induced Antioxidant Defense in Roots of Industrial Hemp (IH: Cannabis sativa L.) for Fiber during Seed Germination. Antioxidants 2022, 11, 244. [Google Scholar] [CrossRef] [PubMed]
- Berni, R.; Mandlik, R.; Hausman, J.-F.; Guerriero, G. Silicon-Induced Mitigatory Effects in Salt-Stressed Hemp Leaves. Physiol. Plant. 2020, 171, 476–482. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, L.; Wang, G.; Huang, X.; Guo, Z. Comprehensive Transcriptome and Metabolome Analysis of Hemp (Cannabis sativa L.) in Soil Under NaCl Stress. J. Nat. Fibers 2023, 20, 2170948. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Huang, S.; Chang, L.; Li, J.; Tang, H.; Dey, S.; Biswas, A.; Du, D.; Li, D.; et al. Key Cannabis Salt-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Varieties. Agronomy 2021, 11, 2338. [Google Scholar] [CrossRef]
- Yep, B.; Gale, N.V.; Zheng, Y. Aquaponic and Hydroponic Solutions Modulate NaCl-Induced Stress in Drug-Type Cannabis sativa L. Front. Plant Sci. 2020, 11, 1169. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Liu, H.; Du, G.; Fei, Y.; Deng, G.; Yang, Y.; Feihu, L. Fiber and Seed Type of Hemp (Cannabis sativa L.) Responded Differently to Salt-Alkali Stress in Seedling Growth and Physiological Indices. Ind. Crops Prod. 2019, 129, 624–630. [Google Scholar] [CrossRef]
- Cao, K.; Sun, Y.; Han, C.; Zhang, X.; Zhao, Y.; Jiang, Y.; Jiang, Y.; Sun, X.; Guo, Y.; Wang, X. The Transcriptome of Saline-Alkaline Resistant Industrial Hemp (Cannabis sativa L.) Exposed to NaHCO3 Stress. Ind. Crops Prod. 2021, 170, 113766. [Google Scholar] [CrossRef]
- Galic, A.; Grab, H.; Kaczmar, N.; Maser, K.; Miller, W.B.; Smart, L.B. Effects of Cold Temperature and Acclimation on Cold Tolerance and Cannabinoid Profiles of Cannabis sativa L. (Hemp). Horticulturae 2022, 8, 531. [Google Scholar] [CrossRef]
- Yan, B.; Chang, C.; Gu, Y.; Zheng, N.; Fang, Y.; Zhang, M.; Wang, G.; Zhang, L. Genome-Wide Identification, Classification, and Expression Analyses of the CsDGAT Gene Family in Cannabis sativa L. and Their Response to Cold Treatment. Int. J. Mol. Sci. 2023, 24, 4078. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Li, D.; Zhao, L.; Chen, A.; Li, J.; Tang, H.; Pan, G.; Chang, L.; Deng, Y.; Huang, S. Comparative Transcriptome Combined with Physiological Analyses Revealed Key Factors for Differential Cadmium Tolerance in Two Contrasting Hemp (Cannabis sativa L.) Cultivars. Ind. Crops Prod. 2019, 140, 111638. [Google Scholar] [CrossRef]
- Yin, M.; Pan, G.; Tao, J.; Doblin, M.S.; Zeng, W.; Pan, L.; Zhao, L.; Li, Z.; Jiang, H.; Chang, L.; et al. Identification of MYB Genes Reveals Their Potential Functions in Cadmium Stress Response and the Regulation of Cannabinoid Biosynthesis in Hemp. Ind. Crops Prod. 2022, 180, 114607. [Google Scholar] [CrossRef]
- Islam, M.J.; Ryu, B.R.; Azad, M.O.K.; Rahman, M.H.; Cheong, E.J.; Lim, J.-D.; Lim, Y.-S. Cannabinoids Accumulation in Hemp (Cannabis sativa L.) Plants under LED Light Spectra and Their Discrete Role as a Stress Marker. Biology 2021, 10, 710. [Google Scholar] [CrossRef]
- Rodriguez-Morrison, V.; Llewellyn, D.; Zheng, Y. Cannabis Yield, Potency, and Leaf Photosynthesis Respond Differently to Increasing Light Levels in an Indoor Environment. Front. Plant Sci. 2021, 12, 646020. [Google Scholar] [CrossRef]
- Rodriguez-Morrison, V.; Llewellyn, D.; Zheng, Y. Cannabis Inflorescence Yield and Cannabinoid Concentration Are Not Increased with Exposure to Short-Wavelength Ultraviolet-B Radiation. Front. Plant Sci. 2021, 12, 725078. [Google Scholar] [CrossRef]
- Llewellyn, D.; Golem, S.; Foley, E.; Dinka, S.; Jones, A.M.P.; Zheng, Y. Indoor Grown Cannabis Yield Increased Proportionally with Light Intensity, but Ultraviolet Radiation Did Not Affect Yield or Cannabinoid Content. Front. Plant Sci. 2022, 13, 974018. [Google Scholar] [CrossRef] [PubMed]
- Danziger, N.; Bernstein, N. Light Matters: Effect of Light Spectra on Cannabinoid Profile and Plant Development of Medical Cannabis (Cannabis sativa L.). Ind. Crops Prod. 2021, 164, 113351. [Google Scholar] [CrossRef]
- Danziger, N.; Bernstein, N. Shape Matters: Plant Architecture Affects Chemical Uniformity in Large-Size Medical Cannabis Plants. Plants 2021, 10, 1834. [Google Scholar] [CrossRef] [PubMed]
- Danziger, N.; Bernstein, N. Plant Architecture Manipulation Increases Cannabinoid Standardization in ‘Drug-Type’ Medical Cannabis. Ind. Crops Prod. 2021, 167, 113528. [Google Scholar] [CrossRef]
- Saloner, A.; Bernstein, N. Nitrogen Supply Affects Cannabinoid and Terpenoid Profile in Medical Cannabis (Cannabis sativa L.). Ind. Crops Prod. 2021, 167, 113516. [Google Scholar] [CrossRef]
- Song, C.; Saloner, A.; Fait, A.; Bernstein, N. Nitrogen Deficiency Stimulates Cannabinoid Biosynthesis in Medical Cannabis Plants by Inducing a Metabolic Shift towards Production of Low-N Metabolites. Ind. Crops Prod. 2023, 202, 116969. [Google Scholar] [CrossRef]
- Shiponi, S.; Bernstein, N. The Highs and Lows of P Supply in Medical Cannabis: Effects on Cannabinoids, the Ionome, and Morpho-Physiology. Front. Plant Sci. 2021, 12, 657323. [Google Scholar] [CrossRef]
- Saloner, A.; Bernstein, N. Effect of Potassium (K) Supply on Cannabinoids, Terpenoids and Plant Function in Medical Cannabis. Agronomy 2022, 12, 1242. [Google Scholar] [CrossRef]
- Morad, D.; Bernstein, N. Response of Medical Cannabis to Magnesium (Mg) Supply at the Vegetative Growth Phase. Plants 2023, 12, 2676. [Google Scholar] [CrossRef]
- Javeed, H.M.R.; Wang, X.; Ali, M.; Nawaz, F.; Qamar, R.; Rehman, A.U.; Shehzad, M.; Mubeen, M.; Shabbir, R.; Javed, T.; et al. Potential Utilization of Diluted Seawater for the Cultivation of Some Summer Vegetable Crops: Physiological and Nutritional Implications. Agronomy 2021, 11, 1826. [Google Scholar] [CrossRef]
- Sgherri, C.; Kadlecová, Z.; Pardossi, A.; Navari-Izzo, F.; Izzo, R. Irrigation with Diluted Seawater Improves the Nutritional Value of Cherry Tomatoes. J. Agric. Food Chem. 2008, 56, 3391–3397. [Google Scholar] [CrossRef] [PubMed]
- Dalle Vacche, S.; Karunakaran, V.; Patrucco, A.; Zoccola, M.; Douard, L.; Ronchetti, S.; Gallo, M.; Schreier, A.; Leterrier, Y.; Bras, J.; et al. Valorization of Byproducts of Hemp Multipurpose Crop: Short Non-Aligned Bast Fibers as a Source of Nanocellulose. Molecules 2021, 26, 4723. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, G.; Deshmukh, R.; Sonah, H.; Sergeant, K.; Hausman, J.-F.; Lentzen, E.; Valle, N.; Siddiqui, K.S.; Exley, C. Identification of the Aquaporin Gene Family in Cannabis sativa and Evidence for the Accumulation of Silicon in Its Tissues. Plant Sci. 2019, 287, 110167. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, M.; Hausman, J.-F.; Blanquet, M.; Guerriero, G.; Lutts, S. Silicon Reduces Cadmium Absorption and Increases Root-to-Shoot Translocation without Impacting Growth in Young Plants of Hemp (Cannabis sativa L.) on a Short-Term Basis. Environ. Sci. Pollut. Res. Int. 2021, 28, 37963–37977. [Google Scholar] [CrossRef] [PubMed]
- Łaźny, R.; Mirgos, M.; Przybył, J.L.; Niedzińska, M.; Gajc-Wolska, J.; Kowalczyk, W.; Nowak, J.S.; Kalisz, S.; Kowalczyk, K. Lignite Substrate and EC Modulates Positive Eustress in Cucumber at Hydroponic Cultivation. Agronomy 2022, 12, 608. [Google Scholar] [CrossRef]
- van Tol de Castro, T.A.; Berbara, R.L.L.; Tavares, O.C.H.; Mello, D.F.d.G.; Pereira, E.G.; Souza, C.d.C.B.d.; Espinosa, L.M.; García, A.C. Humic Acids Induce a Eustress State via Photosynthesis and Nitrogen Metabolism Leading to a Root Growth Improvement in Rice Plants. Plant Physiol. Biochem. 2021, 162, 171–184. [Google Scholar] [CrossRef]
- Muscolo, A.; Sidari, M.; Francioso, O.; Tugnoli, V.; Nardi, S. The Auxin-like Activity of Humic Substances Is Related to Membrane Interactions in Carrot Cell Cultures. J. Chem. Ecol. 2007, 33, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha Leme Filho, J.F.; Thomason, W.E.; Evanylo, G.K.; Zhang, X.; Strickland, M.S.; Chim, B.K.; Diatta, A.A. Biochemical and Physiological Responses of Cannabis sativa to an Integrated Plant Nutrition System. Agron. J. 2020, 112, 5237–5248. [Google Scholar] [CrossRef]
- Bernstein, N.; Gorelick, J.; Zerahia, R.; Koch, S. Impact of N, P, K, and Humic Acid Supplementation on the Chemical Profile of Medical Cannabis (Cannabis sativa L). Front. Plant Sci. 2019, 10, 736. [Google Scholar] [CrossRef]
- Thiem, B.; Kikowska, M.; Maliński, M.P.; Kruszka, D.; Napierała, M.; Florek, E. Ecdysteroids: Production in Plant In Vitro Cultures. Phytochem. Rev. 2017, 16, 603–622. [Google Scholar] [CrossRef]
- Ghaderi, S.; Nejad Ebrahimi, S.; Ahadi, H.; Eslambolchi Moghadam, S.; Mirjalili, M.H. In Vitro Propagation and Phytochemical Assessment of Perovskia abrotanoides Karel. (Lamiaceae)—A Medicinally Important Source of Phenolic Compounds. Biocatal. Agric. Biotechnol. 2019, 19, 101113. [Google Scholar] [CrossRef]
- Villagómez-Aranda, A.L.; Feregrino-Pérez, A.A.; García-Ortega, L.F.; González-Chavira, M.M.; Torres-Pacheco, I.; Guevara-González, R.G. Activating Stress Memory: Eustressors as Potential Tools for Plant Breeding. Plant Cell Rep. 2022, 41, 1481–1498. [Google Scholar] [CrossRef] [PubMed]
- Hessel, V.; Liang, S.; Tran, N.N.; Escribà-Gelonch, M.; Zeckovic, O.; Knowling, M.; Rebrov, E.; This, H.; Westra, S.; Fisk, I.; et al. Eustress in Space: Opportunities for Plant Stressors Beyond the Earth Ecosystem. Front. Astron. Space Sci. 2022, 9, 841211. [Google Scholar] [CrossRef]
- Rico-Chávez, A.K.; Franco, J.A.; Fernandez-Jaramillo, A.A.; Contreras-Medina, L.M.; Guevara-González, R.G.; Hernandez-Escobedo, Q. Machine Learning for Plant Stress Modeling: A Perspective towards Hormesis Management. Plants 2022, 11, 970. [Google Scholar] [CrossRef] [PubMed]
- Berni, R.; Hausman, J.-F.; Villas-Boas, S.; Guerriero, G. Impact of Pseudomonas Sp. SVB-B33 on Stress- and Cell Wall-Related Genes in Roots and Leaves of Hemp under Salinity. Horticulturae 2022, 8, 336. [Google Scholar] [CrossRef]
- Lyu, D.; Backer, R.; Robinson, W.G.; Smith, D.L. Plant Growth-Promoting Rhizobacteria for Cannabis Production: Yield, Cannabinoid Profile and Disease Resistance. Front. Microbiol. 2019, 10, 1761. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Feng, Y.; Huang, G.; Zhao, X.; Song, F. Rhizophagus irregularis Enhances Tolerance to Cadmium Stress by Altering Host Plant Hemp (Cannabis sativa L.) Photosynthetic Properties. Environ. Pollut. 2022, 314, 120309. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, J.; Bernstein, N. Chapter Five—Elicitation: An Underutilized Tool in the Development of Medicinal Plants as a Source of Therapeutic Secondary Metabolites. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2014; Volume 124, pp. 201–230. [Google Scholar]
- Jalali, S.; Salami, S.A.; Sharifi, M.; Sohrabi, S. Signaling Compounds Elicit Expression of Key Genes in Cannabinoid Pathway and Related Metabolites in Cannabis. Ind. Crops Prod. 2019, 133, 105–110. [Google Scholar] [CrossRef]
- Garrido, J.; Rico, S.; Corral, C.; Sánchez, C.; Vidal, N.; Martínez-Quesada, J.J.; Ferreiro-Vera, C. Exogenous Application of Stress-Related Signaling Molecules Affect Growth and Cannabinoid Accumulation in Medical Cannabis (Cannabis sativa L.). Front. Plant Sci. 2022, 13, 1082554. [Google Scholar] [CrossRef]
- Kostanda, E.; Khatib, S. Biotic Stress Caused by Tetranychus Urticae Mites Elevates the Quantity of Secondary Metabolites, Cannabinoids and Terpenes, in Cannabis sativa L. Ind. Crops Prod. 2022, 176, 114331. [Google Scholar] [CrossRef]
- Gorelick, J.; Bernstein, N. Chemical and Physical Elicitation for Enhanced Cannabinoid Production in Cannabis. In Cannabis sativa L.—Botany and Biotechnology; Chandra, S., Lata, H., ElSohly, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 439–456. ISBN 978-3-319-54564-6. [Google Scholar]
- Flores-Sanchez, I.J.; Pec, J.; Fei, J.; Choi, Y.H.; Dusek, J.; Verpoorte, R. Elicitation Studies in Cell Suspension Cultures of Cannabis sativa L. J. Biotechnol. 2009, 143, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Gabotti, D.; Locatelli, F.; Cusano, E.; Baldoni, E.; Genga, A.; Pucci, L.; Consonni, R.; Mattana, M. Cell Suspensions of Cannabis sativa (Var. Futura): Effect of Elicitation on Metabolite Content and Antioxidant Activity. Molecules 2019, 24, 4056. [Google Scholar] [CrossRef] [PubMed]
- Gubser, G.; Vollenweider, S.; Eibl, D.; Eibl, R. Food Ingredients and Food Made with Plant Cell and Tissue Cultures: State-of-the Art and Future Trends. Eng. Life Sci. 2021, 21, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Krasteva, G.; Georgiev, V.; Pavlov, A. Recent Applications of Plant Cell Culture Technology in Cosmetics and Foods. Eng. Life Sci. 2021, 21, 68–76. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berni, R.; Thiry, M.; Hausman, J.-F.; Lutts, S.; Guerriero, G. Eustress and Plants: A Synthesis with Prospects for Cannabis sativa Cultivation. Horticulturae 2024, 10, 127. https://doi.org/10.3390/horticulturae10020127
Berni R, Thiry M, Hausman J-F, Lutts S, Guerriero G. Eustress and Plants: A Synthesis with Prospects for Cannabis sativa Cultivation. Horticulturae. 2024; 10(2):127. https://doi.org/10.3390/horticulturae10020127
Chicago/Turabian StyleBerni, Roberto, Margaux Thiry, Jean-Francois Hausman, Stanley Lutts, and Gea Guerriero. 2024. "Eustress and Plants: A Synthesis with Prospects for Cannabis sativa Cultivation" Horticulturae 10, no. 2: 127. https://doi.org/10.3390/horticulturae10020127
APA StyleBerni, R., Thiry, M., Hausman, J. -F., Lutts, S., & Guerriero, G. (2024). Eustress and Plants: A Synthesis with Prospects for Cannabis sativa Cultivation. Horticulturae, 10(2), 127. https://doi.org/10.3390/horticulturae10020127