Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (94)

Search Parameters:
Keywords = hematite nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 365 KiB  
Correction
Correction: Alshawwa et al. In Situ Biosynthesis of Reduced Alpha Hematite (α-Fe2O3) Nanoparticles by Stevia Rebaudiana L. Leaf Extract: Insights into Antioxidant, Antimicrobial, and Anticancer Properties. Antibiotics 2022, 11, 1252
by Samar Zuhair Alshawwa, Eman J. Mohammed, Nada Hashim, Mohamed Sharaf, Samy Selim, Hayaa M. Alhuthali, Hind A. Alzahrani, Alsayed E. Mekky and Mohamed G. Elharrif
Antibiotics 2025, 14(7), 690; https://doi.org/10.3390/antibiotics14070690 - 8 Jul 2025
Viewed by 247
Abstract
In the original publication [...] Full article
12 pages, 7037 KiB  
Article
Microwave-Assisted Reduction Technology for Recycling of Hematite Nanoparticles from Ferrous Sulfate Residue
by Genkuan Ren
Materials 2025, 18(14), 3214; https://doi.org/10.3390/ma18143214 - 8 Jul 2025
Viewed by 281
Abstract
Accumulation of ferrous sulfate residue (FSR) not only occupies land but also results in environmental pollution and waste of iron resource; thus, recycling of iron from FSR has attracted widespread concern. To this end, this article shows fabrication and system analysis of hematite [...] Read more.
Accumulation of ferrous sulfate residue (FSR) not only occupies land but also results in environmental pollution and waste of iron resource; thus, recycling of iron from FSR has attracted widespread concern. To this end, this article shows fabrication and system analysis of hematite (HM) nanoparticles from FSR via microwave-assisted reduction technology. Physicochemical properties of HM nanoparticles were investigated by multiple analytical techniques including X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet visible (UV-Vis) spectrum, vibrating sample magnetometer (VSM), and the Brunauer–Emmett–Teller (BET) method. Analytic results indicated that the special surface area, pore volume, and pore size of HM nanoparticles with the average particle size of 45 nm were evaluated to be ca. 20.999 m2/g, 0.111 cm3/g, and 0.892 nm, respectively. Magnetization curve indicated that saturation magnetization Ms for as-synthesized HM nanoparticles was calculated to be approximately 1.71 emu/g and revealed weakly ferromagnetic features at room temperature. In addition, HM nanoparticles exhibited noticeable light absorption performance for potential applications in many fields such as electronics, optics, and catalysis. Hence, synthesis of HM nanoparticles via microwave-assisted reduction technology provides an effective way for utilizing FSR and easing environmental burden. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

18 pages, 3127 KiB  
Article
Influence of the pH Synthesis of Fe3O4 Magnetic Nanoparticles on Their Applicability for Magnetic Hyperthermia: An In Vitro Analysis
by Bárbara Costa, Eurico Pereira, Vital C. Ferreira-Filho, Ana Salomé Pires, Laura C. J. Pereira, Paula I. P. Soares, Maria Filomena Botelho, Fernando Mendes, Manuel P. F. Graça and Sílvia Soreto Teixeira
Pharmaceutics 2025, 17(7), 844; https://doi.org/10.3390/pharmaceutics17070844 - 27 Jun 2025
Viewed by 1216
Abstract
Nanotechnology, specifically magnetic nanoparticles (MNPs), is revolutionizing cancer treatment. Magnetic hyperthermia is a treatment that, using MNPs, can selectively kill cancer cells without causing damage to the surrounding tissues. Background/Objectives: This work aimed to analyze how the synthesis conditions, namely, how the [...] Read more.
Nanotechnology, specifically magnetic nanoparticles (MNPs), is revolutionizing cancer treatment. Magnetic hyperthermia is a treatment that, using MNPs, can selectively kill cancer cells without causing damage to the surrounding tissues. Background/Objectives: This work aimed to analyze how the synthesis conditions, namely, how the pH of the reaction can influence the magnetic properties of Fe3O4 nanoparticles for magnetic hyperthermia, using the hydrothermal synthesis. Methods: For the hydrothermal synthesis, FeCl3·6H2O and FeCl2·4H2O were mixed with different quantities of NaOH to adjust the pH. After obtaining a black precipitate, the samples were placed in an autoclave at 200 °C for 60 h, followed by a washing and drying phase. The obtained MNPs were analyzed using X-Ray Diffraction (XRD), Transmission Electron Microscopy, a Superconducting Quantum Interference Device, Specific Absorption Rate analysis, and cytotoxicity assays. Results: Different MNPs were analyzed (9.06 < pH < 12.75). The XRD results showed the presence of various iron oxide phases (magnetite, maghemite, and hematite), resulting from the oxidization of the iron phases present in the autoclave. In terms of the average particle size, it was verified that, by increasing the pH value, the size decreases (from 53.53 nm to 9.49 nm). Additionally, MNPs possess a superparamagnetic behaviour with high SAR values (above 69.3 W/g). Conclusions: It was found that the pH of the reaction can influence the size, morphology, magnetization, and thermal efficiency of the MNP. The MNP with the highest composition of Fe3O4 was synthesized with a pH of 12.75, with a cubic morphology and a SAR value of 92.7 ± 3.2 W/g. Full article
(This article belongs to the Special Issue Novel Drug Delivery Systems: Magnetic Gels)
Show Figures

Graphical abstract

17 pages, 4080 KiB  
Article
Green Synthesis and Characterization of Iron Oxide Nanoparticles Using Egeria densa Plant Extract
by Maruf Olaide Yekeen, Mubarak Ibrahim, James Wachira and Saroj Pramanik
Appl. Biosci. 2025, 4(2), 27; https://doi.org/10.3390/applbiosci4020027 - 2 Jun 2025
Viewed by 1213
Abstract
An aqueous leaf extract of Egeria densa was used to green-synthesize iron (II) and iron (III) oxide nanoparticles from ferrous sulphate and ferric chloride, respectively. The successful green synthesis of the nanoparticles was confirmed through UV–visible spectroscopy, and the colour of the mixtures [...] Read more.
An aqueous leaf extract of Egeria densa was used to green-synthesize iron (II) and iron (III) oxide nanoparticles from ferrous sulphate and ferric chloride, respectively. The successful green synthesis of the nanoparticles was confirmed through UV–visible spectroscopy, and the colour of the mixtures changed from light-yellow to green-black and reddish-brown for FeO–NPs and Fe2O3–NPs, respectively. The morphological characteristics of the nanoparticles were determined using an X-ray diffractometer (XRD), a Fourier transform infrared spectrophotometer (FTIR), a transmission electron microscope (TEM), and energy-dispersive X-ray spectroscopy (EDX). The UV–Vis spectrum of the FeO–NPs showed a sharp peak at 290 nm due to the surface plasmon resonance, while that of the Fe2O3–NPs showed a sharp peak at 300 nm. TEM analysis revealed that the FeO–NPs were oval to hexagonal in shape and were clustered together with an average size of 18.49 nm, while the Fe2O3-NPs were also oval to hexagonal in shape, but some were irregularly shaped, and they clustered together with an average size of 27.96 nm. EDX analysis showed the presence of elemental iron and oxygen in both types of nanoparticles, indicating that these nanoparticles were essentially present in oxide form. The XRD patterns of both the FeO–NPs and Fe2O3–NPs depicted that the nanoparticles produced were crystalline in nature and exhibited the rhombohedral crystal structure of hematite. The FT-IR spectra revealed that phenolic compounds were present on the surface of the nanoparticles and were responsible for reducing the iron salts into FeO–NPs and Fe2O3–NPs. Conclusively, this work demonstrated for the first time the ability of Elodea aqueous extract to synthesize iron-based nanoparticles from both iron (II) and iron (III) salts, highlighting its versatility as a green reducing and stabilizing agent. The dual-path synthesis approach provides new insights into the influence of the precursor oxidation state on nanoparticle formation, thereby expanding our understanding of plant-mediated nanoparticle production and offering a sustainable route for the fabrication of diverse iron oxide nanostructures. Furthermore, it provides a simple, cost-effective, and environmentally friendly method for the synthesis of the FeO–NPs and Fe2O3–NPs using Egeria densa. Full article
Show Figures

Figure 1

16 pages, 4695 KiB  
Article
Hematite Nanoparticles Synthesized by Green Route: Characterization, Anticancer and Antioxidant Activities
by Safa Ezzine, Hela Ferjani, Oluwasayo E. Ogunjinmi and Damian C. Onwudiwe
Inorganics 2025, 13(5), 167; https://doi.org/10.3390/inorganics13050167 - 15 May 2025
Viewed by 744
Abstract
Recently, attention has shifted towards the green synthesis of nanoparticles using plant extracts rich in phytochemicals like phenols and flavonoids, offering an alternative method that avoids harmful chemicals and enables large-scale, low-cost production. This study introduces a straightforward and eco-friendly approach to synthesizing [...] Read more.
Recently, attention has shifted towards the green synthesis of nanoparticles using plant extracts rich in phytochemicals like phenols and flavonoids, offering an alternative method that avoids harmful chemicals and enables large-scale, low-cost production. This study introduces a straightforward and eco-friendly approach to synthesizing hematite α-Fe2O3 nanoparticles utilizing an aqueous extract of Musa paradisiaca. The variation in the calcination temperature resulted in the formation of nanoparticles presented as Fe2O3 (1), Fe2O3 (2), and Fe2O3 (3), obtained at 650, 750, and 900 °C for 4 h, respectively. This variation allowed for an investigation into the impact of different reaction temperatures on the structural and optical properties of the nanoparticles. Structural analysis was conducted using X-ray diffraction (XRD), while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to examine morphology. Optical properties were assessed via UV-vis spectroscopy, revealing a reduction in the energy band gap (from 2.5 to 1.87 eV), attributed to an increase in crystallite size resulting from longer calcination temperatures (650–900 °C). A biological assay was carried out to evaluate the antioxidant and anticancer potentials of the nanoparticles. Both Fe2O3 (1) and Fe2O3 (2) with IC50 values of 46.84 and 46.14 µg/mL, respectively, showed similar antioxidant potentials, while peel extract exhibited the least activity with an IC50 of 79.26 µg/mL. The nanoparticles, peels, and 5-FU (used as standard) showed a stronger inhibitory effect on the Human Embryonic Kidney (HEK) 293 cells compared to the HeLa cells. This implies that the HEK 293 cells might be more susceptible to the drug samples and a lower concentration might even be sufficient to achieve the inhibition of normal cell proliferation. These results indicate a better therapeutic window with a lesser inhibitory effect compared to standard drugs used as controls. Full article
Show Figures

Figure 1

30 pages, 7611 KiB  
Article
Synthesis of Iron Oxide Nanoparticles via Atmospheric Pressure Microplasma for High-Performance Energy Storage and Environmental Applications
by Nafeesa Tabasum, Adnan Saeed, Rizwana Shafiq, Babar Shahzad Khan, Mahwish Bashir, Muhammad Yousaf, Shahid Rafiq, Mohammed Rafi Shaik, Mujeeb Khan, Abdulrahman Alwarthan and Mohammed Rafiq H. Siddiqui
Catalysts 2025, 15(5), 444; https://doi.org/10.3390/catal15050444 - 1 May 2025
Viewed by 651
Abstract
Energy and environmental challenges are driving researchers to explore cost-effective and eco-friendly nanomaterial fabrication methods. In this study, Atmospheric Pressure Microplasma (AMP) was used to synthesize iron oxide nanoparticles at varying molar concentrations of ferrous sulfate (0.5 M, 1 M, and 1.5 M) [...] Read more.
Energy and environmental challenges are driving researchers to explore cost-effective and eco-friendly nanomaterial fabrication methods. In this study, Atmospheric Pressure Microplasma (AMP) was used to synthesize iron oxide nanoparticles at varying molar concentrations of ferrous sulfate (0.5 M, 1 M, and 1.5 M) under a 15 kV discharge voltage for 90 min. The X-ray diffraction (XRD) results confirmed the formation of mixed cubic and hexagonal phases of magnetite and hematite nanoparticles. The particle size, calculated using the Debye–Scherrer formula, ranged from 9 to 11 nm, depending on the precursor concentration. Scanning electron microscopy (SEM) images revealed spherical nanoparticles at 0.5 M, while agglomeration occurred at 1.5 M. The energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the presence of iron and oxygen in the synthesized nanoparticles. Fourier-transform infrared (FTIR) and UV spectroscopy showed characteristic absorption bands of iron oxide. The impact of the particle size and lattice strain on the optical properties of the nanoparticles was also studied. Smaller nanoparticles exhibited an excellent specific capacitance (627) and a strong charge–discharge performance in a 3 M KOH solution, with a high energy density (67.72) and power density (2227). As photocatalysts, the nanoparticles demonstrated a 97.5% and 96.8% degradation efficiency against methylene blue (MB) and methyl orange (MO), respectively, with high rate constants. These results surpass previous reports. The enhanced electrochemical performance and photocatalytic activity are attributed to the high-quality iron oxide nanoparticles, showing an excellent cyclic stability, making them promising for supercapacitors and environmental remediation. Full article
Show Figures

Figure 1

18 pages, 8277 KiB  
Article
Synthesis and Characterization of Ni-Doped Iron Oxide/GO Nanoparticles by Co-Precipitation Method for Electrocatalytic Oxygen Reduction Reaction in Microbial Fuel Cells
by Sandra E. Benito-Santiago, Brigitte Vigolo, Jaafar Ghanbaja, Dominique Bégin, Sathish-Kumar Kamaraj and Felipe Caballero-Briones
Ceramics 2025, 8(2), 40; https://doi.org/10.3390/ceramics8020040 - 21 Apr 2025
Viewed by 1116
Abstract
Nickel-doped iron oxide/graphene oxide powders were synthesized by the co-precipitation method varying the Ni/Fe ratio, and the activity of the materials towards the oxygen reduction reaction in a microbial fuel cell (MFC) was studied. The samples presented X-ray diffraction peaks associated with magnetite, [...] Read more.
Nickel-doped iron oxide/graphene oxide powders were synthesized by the co-precipitation method varying the Ni/Fe ratio, and the activity of the materials towards the oxygen reduction reaction in a microbial fuel cell (MFC) was studied. The samples presented X-ray diffraction peaks associated with magnetite, maghemite and Ni ferrite, as well as evidence of hematite. Raman spectra confirmed the presence of maghemite (γ-Fe2O3) and NiFe2O4. Scanning electron micrographs showed exfoliated sheets decorated with nanoparticles, and transmission electron micrographs showed spherical nanoparticles about 10 nm in diameter well distributed on the individual graphene sheet. The electrocatalytic activity for the oxygen reduction reaction (ORR) was studied by cyclic voltammetry in an air-saturated electrolyte, finding that the best catalyst was the sample with a 1:2 Ni/Fe ratio, using a catalyst concentration of 15 mg·cm−2 on graphite felt. The 1:2 Ni/Fe catalyst provided an oxygen reduction potential of 397 mV and a maximum oxygen reduction current of −0.13 mA; for comparison, an electrode prepared with GO/γ-Fe2O3 showed a maximum ORR of 369 mV and a maximum current of −0.03 mA. Microbial fuel cells with a vertical proton membrane were prepared with Ni-doped Fe3O4 and Fe3O4/graphene oxide and tested for 24 h; they reached a stable OCV of +400 mV and +300 mV OCV, and an efficiency of 508 mW·m−2 and 139 mW·m−2, respectively. The better performance of Ni-doped material was attributed to the combined presence of catalytic activity between γ-Fe2O3 and NiFe2O4, coupled with lower wettability, which led to better dispersion onto the electrode. Full article
Show Figures

Figure 1

14 pages, 7580 KiB  
Article
Siderite Decomposition Kinetics—Influence of Time, Temperature, and Isomorphous Impurities
by Mariola Kądziołka-Gaweł, Zdzisław Adamczyk, Dariusz Łukowiec, Joanna Klimontko, Marcin Wojtyniak and Jacek Nowak
Minerals 2025, 15(4), 428; https://doi.org/10.3390/min15040428 - 19 Apr 2025
Viewed by 438
Abstract
Siderite (FeCO3) is an iron-bearing carbonate mineral that is the most abundant sedimentary iron formation on Earth. The influence of time, temperature, and isomorphous impurities on the kinetics of siderite decomposition in air was studied using Mössbauer spectroscopy, X-ray diffraction, X-ray [...] Read more.
Siderite (FeCO3) is an iron-bearing carbonate mineral that is the most abundant sedimentary iron formation on Earth. The influence of time, temperature, and isomorphous impurities on the kinetics of siderite decomposition in air was studied using Mössbauer spectroscopy, X-ray diffraction, X-ray fluorescence spectroscopy, and the Transmission Electron Microscopy method. Two rock siderite samples were used for investigations, one containing a significant amount of magnesium. The siderite decomposition process begins at a temperature of 300 °C. In a sample containing practically no magnesium, complete decomposition occurs at a temperature of 450 °C, and in a sample with magnesium at a temperature of 500 °C. The annealing time does not affect the width of the temperature range where siderite decomposition occurs. Still, it affects the degree of siderite decomposition: the longer the annealing time, the greater the amount of siderite decomposition. The decomposition products of siderite annealed in air are iron oxides. In the sample containing practically no Mg, this oxide was mainly hematite, and in the sample containing magnesium, it was magnesioferrite. Iron oxides formed directly in siderite decomposition are poorly crystalline, and we can treat them as iron oxide nanoparticles. They maintain this form in a wide temperature range, especially in a magnesium-containing sample. The presence of this element significantly slows down the process of magnesioferrite crystallization. Full article
Show Figures

Figure 1

17 pages, 2785 KiB  
Article
Zn-Ferrite and Hematite Dispersed by SBA-15 Silica Grains: Visible Light-Driven Photocatalytic Activity for Advanced Oxidation Process on Amoxicillin
by Aya Jezzini, Anne Davidson, Gilles Wallez, Jean-Marc Grenèche, Tayssir Hamieh and Joumana Toufaily
J. Compos. Sci. 2025, 9(2), 73; https://doi.org/10.3390/jcs9020073 - 5 Feb 2025
Viewed by 828
Abstract
Nanoparticles of ZnFe2O4 and hematite with varied sizes and distributions were synthesized using the two-solvent method (cyclohexane, water) on SBA-15 silica batches. Calcination is performed in air at 700 °C (2 °C/min) with rapid quenching produced catalysts with distinct nanoparticle [...] Read more.
Nanoparticles of ZnFe2O4 and hematite with varied sizes and distributions were synthesized using the two-solvent method (cyclohexane, water) on SBA-15 silica batches. Calcination is performed in air at 700 °C (2 °C/min) with rapid quenching produced catalysts with distinct nanoparticle configurations, namely, internal zinc ferrite and external hematite. The choice of precursor was critical, and nitrate salts yielded only zinc ferrite nanoparticles, while chloride salts produced a mixture of hematite and zinc ferrite. The photocatalytic activity of these materials was evaluated under visible light irradiation from an LED lamp, using O2 from air as an oxidizing agent without the addition of H2O2. Samples enriched with external hematite nanoparticles from chloride precursors achieved the highest activity, decomposing 30% of AMX in 225 min. In contrast, nitrate-derived samples with predominantly internal zinc ferrite nanoparticles exhibited lower catalytic activity. Characterization via TEM, XRD, N2 sorption, and Mössbauer spectroscopy confirmed the structural and magnetic properties of the nanoparticles. Mössbauer spectra, particularly at 12K and under a magnetic field, demonstrated the presence of hematite nanoparticles, distinguishing them from isolated Fe (III) cations. Zinc ferrite nanoparticles exhibited specific magnetic ordering, with Fe ions occupying tetrahedral and octahedral sites. The results demonstrate the critical role of nanoparticle, composition, and positioning in optimizing photocatalytic efficiency for water decomposition. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Graphical abstract

1 pages, 139 KiB  
Retraction
RETRACTED: Saied et al. Mycosynthesis of Hematite (α-Fe2O3) Nanoparticles Using Aspergillus niger and Their Antimicrobial and Photocatalytic Activities. Bioengineering 2022, 9, 397
by Ebrahim Saied, Salem S. Salem, Abdulaziz A. Al-Askar, Fathy M. Elkady, Amr A. Arishi and Amr H. Hashem
Bioengineering 2025, 12(2), 100; https://doi.org/10.3390/bioengineering12020100 - 22 Jan 2025
Viewed by 771
Abstract
The Bioengineering Editorial Office retracts the article “Mycosynthesis of Hematite (α-Fe2O3) Nanoparticles Using Aspergillus niger and Their Antimicrobial and Photocatalytic Activities” [...] Full article
13 pages, 2878 KiB  
Article
A Novel Fabrication of Hematite Nanoparticles via Recycling of Titanium Slag by Pyrite Reduction Technology
by Genkuan Ren, Yinwen Deng and Xiushan Yang
Nanomaterials 2024, 14(16), 1330; https://doi.org/10.3390/nano14161330 - 8 Aug 2024
Cited by 1 | Viewed by 1611
Abstract
An enormous quantity of titanium slag has caused not merely serious environment pollution, but also a huge waste of iron and sulfur resources. Hence, recycling iron and sulfur resources from titanium slag has recently been an urgent problem. Herein, hematite nanoparticles were fabricated [...] Read more.
An enormous quantity of titanium slag has caused not merely serious environment pollution, but also a huge waste of iron and sulfur resources. Hence, recycling iron and sulfur resources from titanium slag has recently been an urgent problem. Herein, hematite nanoparticles were fabricated through a pyrite reduction approach using as-received titanium slag as the iron source and pyrite as the reducing agent in an nitrogen atmosphere. The physicochemical properties of the hematite nanoparticles were analyzed using multiple techniques such as X-ray diffraction pattern, ultraviolet–visible spectrophotometry, and scanning electron microscopy. The best synthesis conditions for hematite nanoparticles were found at 550 °C for 30 min with the mass ratio of 14:1 for titanium slag and pyrite. The results demonstrated that hematite nanoparticles with an average particle diameter of 45 nm were nearly spherical in shape. The specific surface area, pore volume, and pore size estimated according to the BET method were 19.6 m2/g, 0.117 cm3/g, and 0.89 nm, respectively. Meanwhile, the fabricated hematite nanoparticles possessed weak ferromagnetic behavior and good absorbance in the wavelength range of 200 nm-600 nm, applied as a visible light responsive catalyst. Consequently, these results show that hematite nanoparticles formed by the pyrite reduction technique have a promising application prospect for magnetic material and photocatalysis. Full article
Show Figures

Figure 1

19 pages, 9153 KiB  
Article
Selective Separation of Rare Earth Ions from Mine Wastewater Using Synthetic Hematite Nanoparticles from Natural Pyrite
by Chunxiao Zhao, Jun Wang, Baojun Yang, Yang Liu and Guanzhou Qiu
Minerals 2024, 14(5), 464; https://doi.org/10.3390/min14050464 - 28 Apr 2024
Cited by 1 | Viewed by 1679
Abstract
The separation of rare earth ions (RE3+) from aqueous solutions poses a significant challenge due to their similar chemical and physical characteristics. This study presents a method for synthesizing hematite nanoparticles (Fe2O3 NPs) through the high-temperature phase transition [...] Read more.
The separation of rare earth ions (RE3+) from aqueous solutions poses a significant challenge due to their similar chemical and physical characteristics. This study presents a method for synthesizing hematite nanoparticles (Fe2O3 NPs) through the high-temperature phase transition of natural pyrite for adsorbing RE3+ from mine wastewater. The characteristics of Fe2O3 NPs were studied using XRD, SEM, BET, XPS, FTIR, and Zeta potential. The optimal condition for RE3+ adsorption by Fe2O3 NPs was determined to be at pH 6.0 with an adsorption time of 60 min. The maximum adsorption capacities of Fe2O3 NPs for La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Dy3+, and Y3+ were 12.80, 14.02, 14.67, 15.52, 17.66, 19.16, 19.94, and 11.82 mg·g−1, respectively. The experimental data fitted well with the Langmuir isotherm and pseudo-second-order models, suggesting that the adsorption process was dominated by monolayer chemisorption. Thermodynamic analysis revealed the endothermic nature of the adsorption process. At room temperature, the adsorption of RE3+ in most cases (La3+, Ce3+, Pr3+, Nd3+, Sm3+, and Y3+) onto Fe2O3 NPs was non-spontaneous, except for the adsorption of Gd3+ and Dy3+, which was spontaneous. The higher separation selectivity of Fe2O3 NPs for Gd3+ and Dy3+ was confirmed by the separation factor. Moreover, Fe2O3 NPs exhibited excellent stability, with an RE3+ removal efficiency exceeding 94.70% after five adsorption–desorption cycles, demonstrating its potential for the recovery of RE3+ from mine wastewater. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

10 pages, 2033 KiB  
Article
Goethite and Hematite Nanoparticles Show Promising Anti-Toxoplasma Properties
by Kosei Ishii, Eiji Akahoshi, Oluyomi Stephen Adeyemi, Hironori Bando, Yasuhiro Fukuda, Tomoyuki Ogawa and Kentaro Kato
Pharmaceutics 2024, 16(3), 413; https://doi.org/10.3390/pharmaceutics16030413 - 18 Mar 2024
Viewed by 2046
Abstract
Toxoplasma gondii is an intracellular parasitic protozoan with a high infection rate in mammals, including humans, and birds. There is no effective vaccine, and treatment relies on antiparasitic drugs. However, existing antiprotozoal drugs have strong side effects and other problems; therefore, new treatment [...] Read more.
Toxoplasma gondii is an intracellular parasitic protozoan with a high infection rate in mammals, including humans, and birds. There is no effective vaccine, and treatment relies on antiparasitic drugs. However, existing antiprotozoal drugs have strong side effects and other problems; therefore, new treatment approaches are needed. Metal nanoparticles have attracted increased interest in the biomedical community in recent years because of their extremely high surface area to volume ratio and their unique reactivity that could be exploited for medicinal purposes. Previously, we confirmed the anti-Toxoplasma effects of gold, silver, and platinum nanoparticles, in a growth inhibition test. Here, we asked whether the anti-Toxoplasma effect could be confirmed with less expensive metal nanoparticles, specifically iron oxide nanoparticles (goethite and hematite). To improve the selective action of the nanoparticles, we modified the surface with l-tryptophan as our previous findings showed that the bio-modification of nanoparticles enhances their selectivity against T. gondii. Fourier-Transform Infrared Spectroscopy (FTIR) analysis confirmed the successful coating of the iron oxide nanoparticles with l-tryptophan. Subsequently, cytotoxicity and growth inhibition assays were performed. L-tryptophan-modified nanoparticles showed superior anti-Toxoplasma action compared to their naked nanoparticle counterparts. L-tryptophan enhanced the selective toxicity of the iron oxide nanoparticles toward T. gondii. The bio-modified nanoparticles did not exhibit detectable host cell toxicity in the effective anti-Toxoplasma doses. To elucidate whether reactive oxygen species contribute to the anti-Toxoplasma action of the bio-modified nanoparticles, we added Trolox antioxidant to the assay medium and found that Trolox appreciably reduced the nanoparticle-induced growth inhibition. Full article
(This article belongs to the Special Issue Anti-parasitic Applications of Nanoparticles)
Show Figures

Figure 1

15 pages, 6177 KiB  
Article
Agro-Waste Sweet Pepper Extract-Magnetic Iron Oxide Nanoparticles for Antioxidant Enrichment and Sustainable Nanopackaging
by Elisia María López-Alcántara, Grecia Marcela Colindres-Vásquez, Nouzha Fodil, Marlon Sánchez-Barahona, Octavio Rivera-Flores, Alberto Romero and Johar Amin Ahmed Abdullah
Polymers 2024, 16(4), 564; https://doi.org/10.3390/polym16040564 - 19 Feb 2024
Cited by 5 | Viewed by 2372
Abstract
This study synthesizes magnetic iron oxide nanoparticles from agro-waste sweet pepper extract, exploring their potential as antioxidant additives and in food preservation. Iron (III) chloride hexahydrate is the precursor, with sweet pepper extract as both a reducing and capping agent at pH 7.5. [...] Read more.
This study synthesizes magnetic iron oxide nanoparticles from agro-waste sweet pepper extract, exploring their potential as antioxidant additives and in food preservation. Iron (III) chloride hexahydrate is the precursor, with sweet pepper extract as both a reducing and capping agent at pH 7.5. Characterization techniques, including microscopy and spectroscopy, analyze the sweet pepper extract-magnetic iron oxide nanoparticles. Antioxidant capacities against 2,2-diphenyl-1-picrylhydrazyl are assessed, incorporating nanoparticles into banana-based bioplastic for grape preservation. Microscopy reveals cubic and quasi-spherical structures, and spectroscopy confirms functional groups, including Fe–O bonds. X-ray diffraction identifies cubic and monoclinic magnetite with a monoclinic hematite presence. Sweet pepper extract exhibits 100% inhibitory activity in 20 min, while sweet pepper extract-magnetic iron oxide nanoparticles show an IC50 of 128.1 µg/mL. Furthermore, these nanoparticles, stabilized with banana-based bioplastic, effectively preserve grapes, resulting in a 27.4% lower weight loss rate after 144 h compared to the control group (34.6%). This pioneering study encourages institutional research into the natural antioxidant properties of agro-waste sweet pepper combined with magnetic iron and other metal oxide nanoparticles, offering sustainable solutions for nanopackaging and food preservation. Current research focuses on refining experimental parameters and investigating diverse applications for sweet pepper extract-magnetic iron oxide nanoparticles in varied contexts. Full article
(This article belongs to the Special Issue Metal Nanoparticles–Polymers Hybrid Materials III)
Show Figures

Figure 1

12 pages, 3032 KiB  
Article
Novel Bi-Functional MoS2/α-Fe2O3 Nanocomposites for High Photocatalytic Performance
by Islam Ibrahim, Pinelopi P. Falara, Elias Sakellis, Maria Antoniadou, Chrysoula Athanasekou and Michalis K. Arfanis
ChemEngineering 2024, 8(1), 20; https://doi.org/10.3390/chemengineering8010020 - 6 Feb 2024
Cited by 5 | Viewed by 2811
Abstract
In this study, 3-dimensional molybdenum disulfide (MoS2) structures, integrated with hematite (α-Fe2O3) nanoparticles, were fabricated under a convenient two-step hydrothermal route. The fabricated photocatalytic nanocomposites consist of well-arranged MoS2 flakes, resembling spherical flower-like morphology, and the [...] Read more.
In this study, 3-dimensional molybdenum disulfide (MoS2) structures, integrated with hematite (α-Fe2O3) nanoparticles, were fabricated under a convenient two-step hydrothermal route. The fabricated photocatalytic nanocomposites consist of well-arranged MoS2 flakes, resembling spherical flower-like morphology, and the nanoparticulate α-Fe2O3 structures decorate the 3D network. By raising the α-Fe2O3 weight ratio, the composites’ specific surface area and morphology were not affected, regardless of the partial cover of the cavities for higher hematite content. Moreover, the crystallinity examination with XRD, Raman, and FTIR techniques revealed that the precursor reagents were fully transformed to well-crystalized MoS2 and Fe2O3 composites of high purity, as no organic or inorganic residues could be detected. The photocatalytic oxidation and reduction performance of these composites was evaluated against the tetracycline pharmaceutical and the industrial pollutant hexavalent chromium, respectively. The improvement in the removal efficiencies demonstrates that the superior photoactivity originates from the high crystallinity and homogeneity of the composite, in combination with the enhanced charge carriers’ separation in the semiconductors’ interface. Full article
Show Figures

Figure 1

Back to TopTop