Novel Bi-Functional MoS2/α-Fe2O3 Nanocomposites for High Photocatalytic Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthesis
2.2. Materials Characterization
2.3. Photocatalytic Experiments
3. Results
3.1. Morphology Characterization
3.2. Structural Characterization
3.3. Optoelectronic Properties
3.4. Photocatalytic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; KO’Shea Entezari, M.H.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B 2012, 125, 331–349. [Google Scholar] [CrossRef]
- Theodorakopoulos, G.; Arfanis, M.K.; Pérez, J.S.; Agüera, A.; Aponte, F.X.C.; Markellou, E.; Romanos, G.; Em Falaras, P. Novel pilot-scale photocatalytic nanofiltration reactor for agricultural wastewater treatment. Membranes 2023, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Antoniadou, M.; Falara, P.P.; Likodimos, V. Photocatalytic degradation of pharmaceuticals and organic contaminants of emerging concern using nanotubular structures. Curr. Opin. Green Sustain. Chem. 2021, 29, 100470. [Google Scholar] [CrossRef]
- Wang, D.; Yin, F.X.; Cheng, B.; Xia, Y.; Yu, J.G.; Ho, W.K. Enhanced photocatalytic activity and mechanism of CeO2 hollow spheres for tetracycline degradation. Rare Met. 2021, 40, 2369–2380. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Chen, J.; Che, H.N.; Ao, Y.H.; Liu, B. Ultrafast photocatalytic degradation of nitenpyram by 2D ultrathin Bi2WO6: Mechanism, pathways and environmental factors. Rare Met. 2022, 41, 2439–2452. [Google Scholar] [CrossRef]
- Ibrahim, I.; Athanasekou, C.; Manolis, G.; Kaltzoglou, A.; Nasikas, N.K.; Katsaros, F.; Devlin, E.; Kontos, A.G.; Falaras, P. Photocatalysis as an advanced reduction process (ARP): The reduction of 4-nitrophenol using titania nanotubes-ferrite nanocomposites. J. Hazard. Mater. 2019, 372, 37–44. [Google Scholar] [CrossRef]
- Liu, J.; Wang, S.L.; Xuan, J.L.; Shan, B.F.; Luo, H.; Deng, L.P.; Yang, P.; Qi, C.Z. Preparation of tungsten–iron composite oxides and application in environmental catalysis for volatile organic compounds degradation. Tungsten 2022, 4, 38–51. [Google Scholar] [CrossRef]
- Ibrahim, I.; Kaltzoglou, A.; Athanasekou, C.; Katsaros, F.; Devlin, E.; Kontos, A.G.; Ioannidis, N.; Perraki, M.; Tsakiridis, P.; Sygellou, L.; et al. Magnetically separable TiO2/CoFe2O4/Ag nanocomposites for the photocatalytic reduction of hexavalent chromium pollutant under UV and artificial solar light. Chem. Eng. J. 2020, 381, 122730. [Google Scholar] [CrossRef]
- Zhao, M.; Zhu, X.Y.; Li, Y.Z.; Chang, J.N.; Li, M.X.; Ma, L.H.; Guo, X.Y. A Lindqvist-type [W6O19]2 organic–inorganic compound: Synthesis, characterization, antibacterial activity and preliminary studies on the mechanism of action. Tungsten 2022, 4, 121–129. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, H.; Qu, J.; Li, J. Two-dimensional layered MoS2: Rational design, properties and electrochemical applications. Energy Environ. Sci. 2016, 9, 1190. [Google Scholar] [CrossRef]
- Xu, Z.; Lu, J.; Zheng, X.; Chen, B.; Luo, Y.; Tahir, M.N.; Huang, B.; Xia, X.; Pan, X. A critical review on the applications potential risks of emerging MoS2 nanomaterials. J. Hazard. Mater. 2020, 399, 123057. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, C.L.; Tan, X.L.; Xu, H.; Zhu, K.R. Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI). J. Colloid Interface Sci. 2016, 476, 62–70. [Google Scholar] [CrossRef]
- Deng, X.; Yang, Y.; Mei, Y.; Li, J.; Guo, C.; Yao, T.; Guo, Y.; Xin, B.; Wu, J. Construction of Fe3O4@FeS2@C@MoS2 Z-scheme heterojunction with sandwich-like structure: Enhanced catalytic performance in photo-Fenton reaction and mechanism insight. J. Alloys Compd. 2022, 901, 163437. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, P.; Wen, F.; Meng, Y.; Yuan, B.; Wang, H. Synthesis of S-rich flower-like Fe2O3-MoS2 for Cr(VI) removal. Sep. Sci. Technol. 2016, 11, 1779–1786. [Google Scholar] [CrossRef]
- Tao, Q.; Bi, J.; Huang, X.; Wei, R.; Wang, T.; Zhou, Y.; Hao, H. Fabrication, application, optimization and working mechanism of Fe2O3 and its composites for contaminants elimination from wastewater. Chemosphere 2021, 263, 127889. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Chun, D.M. α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A Gen. 2015, 498, 126–141. [Google Scholar] [CrossRef]
- Li, J.; You, J.; Wang, Z.; Zhao, Y.; Xu, J.; Li, X.; Zhang, H. Application of α-F1-x2O3-based heterogeneous photo-Fenton catalyst in wastewater treatment: A review of recent advances. J. Environ. Chem. Eng. 2022, 10, 108329. [Google Scholar] [CrossRef]
- Yang, X.; Sun, H.; Zhang, L.; Zhao, L.; Lian, J.; Jiang, Q.; Cong, Y. High Efficient Photo-Fenton Catalyst of α-Fe2O3/MoS2 Hierarchical Nanoheterostructures: Reutilization for Supercapacitors. Sci. Rep. 2016, 6, 31591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, H.; Ji, Y.; Chi, N.; Cong, Y. Preparation of a novel Fe2O3-MoS2-CdS ternary composite film and its photoelectrocatalytic performance. Electrochim. Acta 2018, 285, 230–240. [Google Scholar] [CrossRef]
- Cong, Y.; Ding, W.; Zhang, W.; Zhang, T.; Wang, Q.; Zhang, Y. Fabrication of a novel 3D E-Fe2O3-Pi-MoS2 film with highly enhanced carrier mobility and photoelectrocatalytic activity. Electrochim. Acta 2020, 337, 135748. [Google Scholar] [CrossRef]
- Li, A.; Liu, Y.; Xu, X.; Zhang, Y.; Si, Z.; Wu, X.; Ran, R.; Weng, D. MOF-derived (MoS2, g-Fe2O3)/graphene Z-scheme photocatalysts with excellent activity for oxygen evolution under visible light irradiation. RSC Adv. 2020, 10, 17154. [Google Scholar] [CrossRef]
- Tama, A.M.; Das, S.; Dutta, S.; Bhuyan, M.D.I.; Islam, M.N.; Basith, M.A. MoS2 nanosheet incorporated α-Fe2O3/ZnO nanocomposite with enhanced photocatalytic dye degradation and hydrogen production ability. RSC Adv. 2019, 9, 40357–40367. [Google Scholar] [CrossRef]
- Zhao, Y.; Cai, W.; Shi, Y.; Tang, J.; Gong, Y.; Chen, M.; Zhong, Q. Construction of Nano-Fe2O3-Decorated Flower-Like MoS2 with Fe–S Bonds for Efficient Photoreduction of CO2 under Visible-Light Irradiation. ACS Sustain. Chem. Eng. 2020, 8, 12603–12611. [Google Scholar] [CrossRef]
- Khabiri, G.; Aboraia, A.M.; Soliman, M.; Guda, A.A.; Butova, V.V.; Yahia, I.S.; Soldatov, A.V. A novel α-Fe2O3@MoS2 QDs heterostructure for enhanced visible-light photocatalytic performance using ultrasonication approach. Ceram. Int. 2020, 46, 19600–19608. [Google Scholar] [CrossRef]
- Mu, D.; Chen, Z.; Shi, H.; Tan, N. Construction of flower-like MoS2/Fe3O4/rGO composite with enhanced photo-Fenton like catalyst performance. RSC Adv. 2018, 8, 36625–36631. [Google Scholar] [CrossRef]
- Wang, H.; Li, X.; Ge, Q.; Chong, Y.; Zhang, Y. A multifunctional Fe2O3@MoS2@SDS Z-scheme nanocomposite: NIR enhanced bacterial inactivation, degradation antibiotics and inhibiting ARGs dissemination. Colloids Surf. B 2022, 219, 112833. [Google Scholar] [CrossRef]
- Ibrahim, I.; Ali, I.O.; Salama, T.M.; Bahgat, A.A.; Mohamed, M.M. Synthesis of magnetically recyclable spinel ferrite (MFe2O4, M = Zn, Co, Mn) nanocrystals engineered by sol gel-hydrothermal technology: High catalytic performances for nitroarenes reduction. Appl. Catal. B-Environ. 2016, 181, 389–402. [Google Scholar] [CrossRef]
- Mohammadpour, E.; Asadpour-Zeynali, K. α-Fe2O3@MoS2 nanostructure as an efficient electrochemical catalyst for water oxidation. Microchem. J. 2020, 157, 104939. [Google Scholar] [CrossRef]
- Falara, P.P.; Ibrahim, I.; Zourou, A.; Sygellou, L.; Sanchez, D.E.; Romanos, G.; Em Givalou, L.; Antoniadou, M.; Arfanis, M.K.; Han, C.; et al. Bi-functional photocatalytic heterostructures combining titania thin films with carbon quantum dots (C-QDs/TiO2) for effective elimination of water pollutants. Environ. Sci. Pollut. Res. 2023, 30, 124976–124991. [Google Scholar] [CrossRef]
- Reddy, D.A.; Park, H.; Hong, S.; Kumar, D.P.; Kim, T.K. Hydrazine-assisted formation of ultrathin MoS2 nanosheets for enhancing their co-catalytic activity in photocatalytic hydrogen evolution. J. Mater. Chem. A 2017, 5, 6981–6991. [Google Scholar] [CrossRef]
- Luo, R.; Xu, W.W.; Zhang, Y.; Wang, Z.; Wang, X.; Gao, Y.; Liu, P.; Chen, M. Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions. Nat. Commun. 2020, 11, 1011. [Google Scholar] [CrossRef] [PubMed]
- Blanco, E.; Afanasiev, P.; Berhault, G.; Uzio, D.; Loridan, S. Resonance Raman spectroscopy as a probe of the crystallite size of MoS2 nanoparticles. Comptes Rendus Chim. 2016, 19, 1310–1314. [Google Scholar] [CrossRef]
- Yao, Y.; Ao, K.; Lv, P.; Wei, Q. MoS2 Coexisting in 1T and 2H Phases Synthesized by Common Hydrothermal Method for Hydrogen Evolution Reaction. Nanomaterials 2019, 9, 844. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.P.; Dufresne, W.J.B.; Rufledt, C.J. Polarized Raman spectra of hematite assignment of external modes. J. Raman Spectrosc. 2020, 51, 1522–1529. [Google Scholar] [CrossRef]
- Wei, F.; Cui, X.; Wang, Z.; Dong, C.; Li, J.; Han, X. Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability. Chem. Eng. J. 2021, 408, 127240. [Google Scholar] [CrossRef] [PubMed]
- Khawula, T.N.Y.; Raju, K.; Franklyn, P.J.; Sigalas, I.; Ozoemena, K.I. Symmetric pseudocapacitors based on molybdenum disulfide (MoS2)-modified carbon nanospheres: Correlating physicochemistry synergistic interaction on energy storage. J. Mater. Chem. A 2016, 4, 6411. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, R.A.; Priya, A.; Madhavan, J.; Michael, R.J.V.; Ashokkumar, M. Photocatalytic and photoelectrochemical studies of visible-light active α-Fe2O3–g-C3N4 nanocomposites. RSC Adv. 2014, 4, 38222–38229. [Google Scholar] [CrossRef]
- Saha, N.; Sarkar, A.; Ghosh, A.B.; Dutta, A.K.; Bhadu, G.R.; Parimal, P.; Adhikary, B. Highly active spherical amorphous MoS2: Facile synthesis and application in photocatalytic degradation of rose bengal dye and hydrogenation of nitroarenes. RSC Adv. 2015, 5, 88848–88856. [Google Scholar] [CrossRef]
- Cai, J.; Li, S.; Pan, H.; Liu, Y.; Qin, G. c-In2O3/α-Fe2O3 heterojunction photoanodes for water oxidation. J. Mater. Sci. 2016, 51, 8148–8155. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Q.; Zhang, X.; Deng, X.; Guan, Y.; Wu, M.; Liu, L.; Wu, J.; Yao, T.; Yin, Y. Photocatalytic generation of H2O2 over a Z-scheme Fe2O3@C@1T/2H-MoS2 heterostructured catalyst for high-performance Fenton reaction. J. Mater. Chem. A 2023, 11, 1991. [Google Scholar] [CrossRef]
α-Fe2O3 | MoS2 | MoFe (1:2) | MoFe (1:1) | MoFe (2:1) | |
---|---|---|---|---|---|
BET surface area (m2/g) | 70.0 | 39.5 | 27.5 | 37.8 | 28.8 |
Total pore volume (cm3/g) | 0.185 | 0.120 | 0.104 | 0.134 | 0.093 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, I.; Falara, P.P.; Sakellis, E.; Antoniadou, M.; Athanasekou, C.; Arfanis, M.K. Novel Bi-Functional MoS2/α-Fe2O3 Nanocomposites for High Photocatalytic Performance. ChemEngineering 2024, 8, 20. https://doi.org/10.3390/chemengineering8010020
Ibrahim I, Falara PP, Sakellis E, Antoniadou M, Athanasekou C, Arfanis MK. Novel Bi-Functional MoS2/α-Fe2O3 Nanocomposites for High Photocatalytic Performance. ChemEngineering. 2024; 8(1):20. https://doi.org/10.3390/chemengineering8010020
Chicago/Turabian StyleIbrahim, Islam, Pinelopi P. Falara, Elias Sakellis, Maria Antoniadou, Chrysoula Athanasekou, and Michalis K. Arfanis. 2024. "Novel Bi-Functional MoS2/α-Fe2O3 Nanocomposites for High Photocatalytic Performance" ChemEngineering 8, no. 1: 20. https://doi.org/10.3390/chemengineering8010020
APA StyleIbrahim, I., Falara, P. P., Sakellis, E., Antoniadou, M., Athanasekou, C., & Arfanis, M. K. (2024). Novel Bi-Functional MoS2/α-Fe2O3 Nanocomposites for High Photocatalytic Performance. ChemEngineering, 8(1), 20. https://doi.org/10.3390/chemengineering8010020