Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = helium bubbling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3786 KiB  
Article
Atomistic Mechanisms and Temperature-Dependent Criteria of Trap Mutation in Vacancy–Helium Clusters in Tungsten
by Xiang-Shan Kong, Fang-Fang Ran and Chi Song
Materials 2025, 18(15), 3518; https://doi.org/10.3390/ma18153518 - 27 Jul 2025
Viewed by 295
Abstract
Helium (He) accumulation in tungsten—widely used as a plasma-facing material in fusion reactors—can lead to clustering, trap mutation, and eventual formation of helium bubbles, critically impacting material performance. To clarify the atomic-scale mechanisms governing this process, we conducted systematic molecular statics and molecular [...] Read more.
Helium (He) accumulation in tungsten—widely used as a plasma-facing material in fusion reactors—can lead to clustering, trap mutation, and eventual formation of helium bubbles, critically impacting material performance. To clarify the atomic-scale mechanisms governing this process, we conducted systematic molecular statics and molecular dynamics simulations across a wide range of vacancy cluster sizes (n = 1–27) and temperatures (500–2000 K). We identified the onset of trap mutation through abrupt increases in tungsten atomic displacement. At 0 K, the critical helium-to-vacancy (He/V) ratio required to trigger mutation was found to scale inversely with cluster size, converging to ~5.6 for large clusters. At elevated temperatures, thermal activation lowered the mutation threshold and introduced a distinct He/V stability window. Below this window, clusters tend to dissociate; above it, trap mutation occurs with near certainty. This critical He/V ratio exhibits a linear dependence on temperature and can be described by a size- and temperature-dependent empirical relation. Our results provide a quantitative framework for predicting trap mutation behavior in tungsten, offering key input for multiscale models and informing the design of radiation-resistant materials for fusion applications. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

9 pages, 2619 KiB  
Communication
Irradiation Effects of As-Fabricated and Recrystallized 12Cr ODS Steel Under Dual-Ion Beam at 973 K
by Jingjie Shen and Kiyohiro Yabuuchi
Materials 2025, 18(14), 3246; https://doi.org/10.3390/ma18143246 - 10 Jul 2025
Viewed by 295
Abstract
The microstructure evolution and hardness variations of as-fabricated and recrystallized 12Cr oxide dispersion strengthened (ODS) steel after dual-ion (6.4 MeV Fe3+ and energy-degraded 1 MeV He+) irradiation at 973 K up to 10.6 displacements per atom (dpa) at peak damage [...] Read more.
The microstructure evolution and hardness variations of as-fabricated and recrystallized 12Cr oxide dispersion strengthened (ODS) steel after dual-ion (6.4 MeV Fe3+ and energy-degraded 1 MeV He+) irradiation at 973 K up to 10.6 displacements per atom (dpa) at peak damage and 8900 appm He are investigated. Results show that the oxide particles slightly shrink in the as-fabricated specimen, while they are stable in the recrystallized specimen. Furthermore, larger helium bubbles are trapped at the grain boundaries in the as-fabricated specimen, and the size of helium bubbles in the grains is almost the same for both as-fabricated and recrystallized specimens, indicating that reduction of grain boundaries would reduce the potential nucleation sites and suppress the helium segregation. Moreover, no obvious hardening occurs in the as-fabricated specimen, whereas the hardness increases a little in the recrystallized specimen. Based on the barrier model, the barrier strength factor of helium bubbles is calculated. The value is 0.077, which is much smaller and suggests that helium bubbles seem not to significantly induce irradiation hardening. Full article
(This article belongs to the Special Issue Key Materials in Nuclear Reactors)
Show Figures

Figure 1

15 pages, 6396 KiB  
Article
Evolution Mechanism and Mechanical Response of Tungsten Surface Damage Under Pulsed Heat Load and Helium Plasma Irradiation
by Xiaoxuan Huang, Jianjun Wei, Zongbiao Ye and Fujun Gou
Processes 2025, 13(6), 1711; https://doi.org/10.3390/pr13061711 - 30 May 2025
Viewed by 457
Abstract
This study investigates the synergistic effects of pulsed heat load and helium plasma irradiation on the surface damage evolution of high-purity tungsten, a candidate plasma-facing material (PFM) for future fusion reactors. Using a self-developed linear plasma device, tungsten samples were exposed to controlled [...] Read more.
This study investigates the synergistic effects of pulsed heat load and helium plasma irradiation on the surface damage evolution of high-purity tungsten, a candidate plasma-facing material (PFM) for future fusion reactors. Using a self-developed linear plasma device, tungsten samples were exposed to controlled single-pulse heat loads (32–124 MW·m−2) and helium plasma fluxes (7.76 × 1022–2.40 × 1023 ions·m−2·s−1). SEM and XRD analyses revealed a progressive damage mechanism involving helium bubble formation, pit collapse, coral-like nanostructure evolution, and melting-induced restructuring. These surface changes were accompanied by grain refinement, lattice contraction, and peak shifts in the (110) diffraction plane. Mechanical testing showed a flux-dependent variation in hardness, with initial hardening followed by softening due to crack propagation. Surface reflectivity significantly declined with increasing load, indicating severe optical degradation. This work demonstrates the nonlinear coupling between thermal and irradiation effects in tungsten, offering new insights into damage accumulation under realistic reactor conditions. The findings highlight the dominant role of transient heat loads in driving structural and property changes and emphasize the importance of accounting for synergistic effects in material design. These results provide essential experimental data for optimizing PFMs in divertor and first-wall applications and suggest directions for future research into cyclic loading, long-term exposure, and microstructural recovery mechanisms. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

12 pages, 6312 KiB  
Article
Nanocrystalline–Amorphous Transition in ZrN Nanofilms Induced by Helium Accumulation at Grain Boundaries
by Xin Xiao, Sen Sun, Wei Jiang, Xiaoling Qin, Qinxin Liu and Yuanxia Lao
Inorganics 2025, 13(5), 158; https://doi.org/10.3390/inorganics13050158 - 9 May 2025
Viewed by 592
Abstract
Helium (He) accumulation, a byproduct of nuclear transmutation, poses a significant reliability challenge for the materials used in nuclear reactors. Nanomaterials, with their high density of interfaces, offer superior He tolerance by absorbing He atoms and suppressing bubble growth. However, the long-term stability [...] Read more.
Helium (He) accumulation, a byproduct of nuclear transmutation, poses a significant reliability challenge for the materials used in nuclear reactors. Nanomaterials, with their high density of interfaces, offer superior He tolerance by absorbing He atoms and suppressing bubble growth. However, the long-term stability of these materials under continuous He accumulation remains a concern. This study investigated the microstructural and mechanical property responses of ZrN nanofilms to excessive He accumulation. Different doses of He atoms were introduced via magnetron sputtering. The results indicate that increasing the He dose induced a nanocrystalline-to-amorphous transition and instability in the mechanical properties. The structural and mechanical instability, characterized by surface blistering, softening, abnormal lattice shrinkage, and amorphization, was primarily triggered by the degradation of the grain boundaries with He accumulation, and an amorphization model of nanomaterials is proposed. Full article
(This article belongs to the Special Issue Recent Research and Application of Amorphous Materials)
Show Figures

Figure 1

28 pages, 72675 KiB  
Article
Geochemical and Isotopic Features of Geothermal Fluids Around the Sea of Marmara, NW Turkey
by Francesco Italiano, Heiko Woith, Luca Pizzino, Alessandra Sciarra and Cemil Seyis
Geosciences 2025, 15(3), 83; https://doi.org/10.3390/geosciences15030083 - 1 Mar 2025
Viewed by 891
Abstract
Investigations carried out on 72 fluid samples from 59 sites spread over the area surrounding the Sea of Marmara show that their geochemical and isotopic features are related to different segment settings of the North Anatolian Fault Zone (NAFZ). We collected fluids from [...] Read more.
Investigations carried out on 72 fluid samples from 59 sites spread over the area surrounding the Sea of Marmara show that their geochemical and isotopic features are related to different segment settings of the North Anatolian Fault Zone (NAFZ). We collected fluids from thermal and mineral waters including bubbling and dissolved gases. The outlet temperatures of the collected waters ranged from 14 to 97 °C with no temperature-related geochemical features. The free and dissolved gases are a mixture of shallow and mantle-derived components. The large variety of geochemical features comes from intense gas–water (GWI) and water–rock (WRI) interactions besides other processes occurring at relatively shallow depths. CO2 contents ranging from 0 to 98.1% and helium isotopic ratios from 0.11 to 4.43 Ra indicate contributions, variable from site to site, of mantle-derived volatiles in full agreement with former studies on the NAFZ. We propose that the widespread presence of mantle-derived volatiles cannot be related only to the lithospheric character of the NAFZ branches and magma intrusions have to be considered. Changes in the vertical permeability induced by fault movements and stress accumulation during seismogenesis, however, modify the shallow/deep ratio of the released fluids accordingly, laying the foundations for future monitoring activities. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

29 pages, 11222 KiB  
Article
Computational Study on Flow Characteristics of Shocked Light Backward-Triangular Bubbles in Polyatomic Gas
by Salman Saud Alsaeed and Satyvir Singh
Axioms 2024, 13(12), 843; https://doi.org/10.3390/axioms13120843 - 1 Dec 2024
Cited by 1 | Viewed by 712
Abstract
This study computationally examined the Richtmyer–Meshkov instability (RMI) evolution in a helium backward-triangular bubble immersed in monatomic argon, diatomic nitrogen, and polyatomic methane under planar shock wave interactions. Using high-fidelity numerical simulations based on the compressible Navier–Fourier equations based on the Boltzmann–Curtiss kinetic [...] Read more.
This study computationally examined the Richtmyer–Meshkov instability (RMI) evolution in a helium backward-triangular bubble immersed in monatomic argon, diatomic nitrogen, and polyatomic methane under planar shock wave interactions. Using high-fidelity numerical simulations based on the compressible Navier–Fourier equations based on the Boltzmann–Curtiss kinetic framework and simulated via a modal discontinuous Galerkin scheme, we analyze the complex interplay of shock-bubble dynamics. Key findings reveal distinct thermal non-equilibrium effects, vorticity generation, enstrophy evolution, kinetic energy dissipation, and interface deformation across gases. Methane, with its molecular complexity and higher viscosity, exhibits the highest levels of vorticity production, enstrophy, and kinetic energy, leading to pronounced Kelvin–Helmholtz instabilities and enhanced mixing. Conversely, argon, due to its simpler atomic structure, shows weaker deformation and mixing. Thermal non-equilibrium effects, quantified by the Rayleigh–Onsager dissipation function, are most significant in methane, indicating delayed energy relaxation and intense turbulence. This study highlights the pivotal role of molecular properties, specific heat ratio, and bulk viscosity in shaping RMI dynamics in polyatomic gases, offering insights on uses such as high-speed aerodynamics, inertial confinement fusion, and supersonic mixing. Full article
Show Figures

Figure 1

9 pages, 2124 KiB  
Article
Friedel Oscillations and He-He Interactions in Mo
by Xuepeng Shen, Enzhi Liang, Qian Zhan, Wei Wang and Wen Tong Geng
Crystals 2024, 14(10), 834; https://doi.org/10.3390/cryst14100834 - 25 Sep 2024
Viewed by 983
Abstract
Helium ions implanted into metals can form ordered bubbles that are isomorphic to the host lattice. While long-range elastic interactions are generally believed to drive bubble superlattice formation, the interactions between individual helium solutes are not yet fully understood. Our first-principles calculations reveal [...] Read more.
Helium ions implanted into metals can form ordered bubbles that are isomorphic to the host lattice. While long-range elastic interactions are generally believed to drive bubble superlattice formation, the interactions between individual helium solutes are not yet fully understood. Our first-principles calculations reveal that in molybdenum, Friedel oscillations induced by individual helium atoms generate potential barriers and wells that influence helium pairing and clustering at short He-He distances. These repulsive and attractive interactions at high concentrations provide thermodynamic driving forces that align randomly distributed helium atoms into Mo-He superlattices. Friedel oscillations may have broad impacts on solute–solute interactions in alloys. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

25 pages, 5968 KiB  
Article
Analyzing Richtmyer–Meshkov Phenomena Triggered by Forward-Triangular Light Gas Bubbles: A Numerical Perspective
by Satyvir Singh and Ahmed Hussein Msmali
Axioms 2024, 13(6), 365; https://doi.org/10.3390/axioms13060365 - 29 May 2024
Cited by 5 | Viewed by 1072
Abstract
In this paper, we present a numerical investigation into elucidating the complex dynamics of Richtmyer–Meshkov (RM) phenomena initiated by the interaction of shock waves with forward-triangular light gas bubbles. The triangular bubble is filled with neon, helium, or hydrogen gas, and is surrounded [...] Read more.
In this paper, we present a numerical investigation into elucidating the complex dynamics of Richtmyer–Meshkov (RM) phenomena initiated by the interaction of shock waves with forward-triangular light gas bubbles. The triangular bubble is filled with neon, helium, or hydrogen gas, and is surrounded by nitrogen gas. Three different shock Mach numbers are considered: Ms=1.12,1.21, and 1.41. For the numerical simulations, a two-dimensional system of compressible Euler equations for two-component gas flows is solved by utilizing the high-fidelity explicit modal discontinuous Galerkin technique. For validation, the numerical results are compared with the existing experimental results and are found to be in good agreement. The numerical model explores the impact of the Atwood number on the underlying mechanisms of the shock-induced forward-triangle bubble, encompassing aspects such as flow evolution, wave characteristics, jet formation, generation of vorticity, interface features, and integral diagnostics. Furthermore, the impacts of shock strengths and positive Atwood numbers on the flow evolution are also analyzed. Insights gained from this numerical perspective enhance our understanding of RM phenomena triggered by forward-triangular light gas bubbles, with implications for diverse applications in engineering, astrophysics, and fusion research. Full article
(This article belongs to the Special Issue Fluid Dynamics: Mathematics and Numerical Experiment)
Show Figures

Figure 1

21 pages, 5967 KiB  
Article
Studying the Effects of Dissolved Noble Gases and High Hydrostatic Pressure on the Spherical DOPC Bilayer Using Molecular Dynamic Simulations
by Eugeny Pavlyuk, Irena Yungerman, Alice Bliznyuk and Yevgeny Moskovitz
Membranes 2024, 14(4), 89; https://doi.org/10.3390/membranes14040089 - 12 Apr 2024
Viewed by 2068
Abstract
Fine-grained molecular dynamics simulations have been conducted to depict lipid objects enclosed in water and interacting with a series of noble gases dissolved in the medium. The simple point-charge (SPC) water system, featuring a boundary composed of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) molecules, maintained stability throughout [...] Read more.
Fine-grained molecular dynamics simulations have been conducted to depict lipid objects enclosed in water and interacting with a series of noble gases dissolved in the medium. The simple point-charge (SPC) water system, featuring a boundary composed of 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) molecules, maintained stability throughout the simulation under standard conditions. This allowed for the accurate modeling of the effects of hydrostatic pressure at an ambient pressure of 25 bar. The chosen pressure references the 240 m depth of seawater: the horizon frequently used by commercial divers, who comprise the primary patient population of the neurological complication of inert gas narcosis and the consequences of high-pressure neurological syndrome. To quantify and validate the neurological effects of noble gases and discriminate them from high hydrostatic pressure, we reduced the dissolved gas molar concentration to 1.5%, three times smaller than what we previously tested for the planar bilayer (3.5%). The nucleation and growth of xenon, argon and neon nanobubbles proved consistent with the data from the planar bilayer simulations. On the other hand, hyperbaric helium induces only a residual distorting effect on the liposome, with no significant condensed gas fraction observed within the hydrophobic core. The bubbles were distributed over a large volume—both in the bulk solvent and in the lipid phase—thereby causing substantial membrane distortion. This finding serves as evidence of the validity of the multisite distortion hypothesis for the neurological effect of inert gases at high pressure. Full article
(This article belongs to the Section Biological Membrane Dynamics and Computation)
Show Figures

Figure 1

14 pages, 1403 KiB  
Article
Effects of Oxygen Prebreathing on Bubble Formation, Flow-Mediated Dilatation, and Psychomotor Performance during Trimix Dives
by Ivana Šegrt Ribičić, Maja Valić, Linda Lušić Kalcina, Joško Božić, Ante Obad, Duška Glavaš, Igor Glavičić and Zoran Valić
Sports 2024, 12(1), 35; https://doi.org/10.3390/sports12010035 - 22 Jan 2024
Cited by 1 | Viewed by 2058
Abstract
Introduction: This research was performed to examine the effects of air and oxygen prebreathing on bubble formation, flow-mediated dilatation, and psychomotor performance after scuba dives. Methods: Twelve scuba divers performed two dives using a gas mixture of oxygen, nitrogen, and helium (trimix). In [...] Read more.
Introduction: This research was performed to examine the effects of air and oxygen prebreathing on bubble formation, flow-mediated dilatation, and psychomotor performance after scuba dives. Methods: Twelve scuba divers performed two dives using a gas mixture of oxygen, nitrogen, and helium (trimix). In a randomized protocol, they breathed air or oxygen 30 min before the trimix dives. Venous bubble formation, flow-mediated dilatation, and psychomotor performance were evaluated. The participants solved three psychomotor tests: determining the position of a light signal, coordination of complex psychomotor activity, and simple arithmetic operations. The total test solving time, minimum single-task solving time, and median solving time were analyzed. Results: The bubble grade was decreased in the oxygen prebreathing protocol in comparison to the air prebreathing protocol (1.5 vs. 2, p < 0.001). The total test solving times after the dives, in tests of complex psychomotor coordination and simple arithmetic operations, were shorter in the oxygen prebreathing protocol (25 (21–28) vs. 31 (26–35) and 87 (82–108) vs. 106 (90–122) s, p = 0.028). Conclusions: In the oxygen prebreathing protocol, the bubble grade was significantly reduced with no change in flow-mediated dilatation after the dives, indicating a beneficial role for endothelial function. The post-dive psychomotor speed was faster in the oxygen prebreathing protocol. Full article
Show Figures

Figure 1

16 pages, 1849 KiB  
Article
Study of the Resistance of Lithium-Containing Ceramics to Helium Swelling
by Artem L. Kozlovskiy, Dmitriy I. Shlimas, Daryn B. Borgekov and Maxim V. Zdorovets
Ceramics 2024, 7(1), 39-54; https://doi.org/10.3390/ceramics7010004 - 8 Jan 2024
Cited by 2 | Viewed by 2130
Abstract
The paper presents the results of studies of the resistance of lithium ceramics to helium swelling during its accumulation in the structure of the near-surface layer, and the identification of the three types of lithium ceramics most resistant to radiation degradation: Li4 [...] Read more.
The paper presents the results of studies of the resistance of lithium ceramics to helium swelling during its accumulation in the structure of the near-surface layer, and the identification of the three types of lithium ceramics most resistant to radiation degradation: Li4SiO4, Li2TiO3, and Li2ZrO3. The simulation of helium swelling under high-dose irradiation was carried out by irradiation with He2+ ions with fluences of 1 × 1016 ion/cm2–5 × 1017 ion/cm2, which allows for simulating the implanted helium accumulation with a high concentration in the damaged surface layer (about 500 nm thick). The samples were irradiated at a temperature of 1000 K, the choice of which was determined by the possibility of simulating radiation damage as close as possible to real operating conditions. Such accumulation can result in the formation of gas-filled bubbles. Through the application of X-ray phase analysis, indentation testing, and thermophysical parameter assessments, it was ascertained that among the three ceramic types, Li4SiO4 ceramics exhibit the highest resistance to helium-induced swelling. These ceramics experienced less significant alterations in their properties compared to the other two types. An analysis of the correlation between the structural and strength parameters of lithium-containing ceramics revealed that the most significant changes occur when the volumetric swelling of the crystal lattice becomes the dominant factor in structural alterations. This phenomenon is manifested as an accelerated degradation of strength characteristics, exceeding 10%. At the same time, analysis of these alterations in the stability of thermophysical parameters to the accumulation of structural distortions revealed that, regardless of the type of ceramics, the degradation of thermophysical properties is most pronounced under high-dose irradiation (above 1017 ion/cm2). Full article
Show Figures

Figure 1

16 pages, 6055 KiB  
Article
Study of The Gas-Swelling Mechanisms in Silicon Carbide Ceramics under High-Temperature Irradiation with Helium Ions
by Kymbat M. Tynyshbayeva, Artem L. Kozlovskiy, Ruslan V. Rakhimov, Vladimir V. Uglov and Maxim V. Zdorovets
Materials 2023, 16(17), 5750; https://doi.org/10.3390/ma16175750 - 22 Aug 2023
Cited by 4 | Viewed by 1465
Abstract
The purpose of this work is to simulate the processes of gaseous swelling in SiC ceramics as well as the associated changes in strength and thermophysical properties under high-temperature irradiation with helium ions. The choices of irradiation conditions (irradiation temperatures of 700 and [...] Read more.
The purpose of this work is to simulate the processes of gaseous swelling in SiC ceramics as well as the associated changes in strength and thermophysical properties under high-temperature irradiation with helium ions. The choices of irradiation conditions (irradiation temperatures of 700 and 1000 K) and irradiation fluences (1015–1018 ion/cm2) are based on the possibilities of modeling the processes of destructive changes in the near-surface layer as a result of the accumulation of gas-filled inclusions during high-dose irradiation. During this study, it was found that an increase in the irradiation temperature of the samples from 700 to 1000 K leads to a decrease in the resistance to gas swelling, since with the temperature increase, the mobility of implanted helium in the near-surface layer grows, which results in an increase in the size of gas-filled bubbles and, as a result, accelerated destruction of the damaged layer. It has been established that in the case of irradiation at 700 K, the critical fluence for swelling associated with the formation of visible gas-filled bubbles on the surface is 5 × 1017 ion/cm2, while for samples irradiated at a temperature of 1000 K, the formation of gas-filled bubbles is observed at a fluence of 1017 ion/cm2. Measurements of the thermal conductivity coefficient showed that the formation of gas-filled bubbles leads to a sharp deterioration in heat transfer processes, which indicates that the created defective inclusions prevent phonon heat transfer. Changes in the strength characteristics showed that a decrease in hardness occurs throughout the entire depth of the damaged ceramic layer. However, with a rise in the irradiation fluence above 1017 ion/cm2, a slight damaged layer thickness growth associated with diffusion processes of helium implantation into the near-surface layer is observed. The relevance of this study consists in obtaining new data on the stability of the strength and thermophysical parameters of SiC ceramics in the case of helium accumulation and its subsequent radiation-induced evolution in the case of irradiation at temperatures of 700 and 1000 K. The data obtained during the experimental work on changes in the properties of ceramics will make it possible to determine the potential limits of their applicability in the case of operation under extreme conditions at elevated temperatures in the future. Full article
Show Figures

Figure 1

14 pages, 11603 KiB  
Article
The Shock-Induced Deformation and Spallation Failure of Bicrystal Copper with a Nanoscale Helium Bubble via Molecular Dynamics Simulations
by Qi Zhu, Jianli Shao and Pei Wang
Nanomaterials 2023, 13(16), 2308; https://doi.org/10.3390/nano13162308 - 11 Aug 2023
Cited by 4 | Viewed by 1660
Abstract
Both the nanoscale helium (He) bubble and grain boundaries (GBs) play important roles in the dynamic mechanical behavior of irradiated nanocrystalline materials. Using molecular dynamics simulations, we study the shock-induced deformation and spallation failure of bicrystal copper with a nanoscale He bubble. Two [...] Read more.
Both the nanoscale helium (He) bubble and grain boundaries (GBs) play important roles in the dynamic mechanical behavior of irradiated nanocrystalline materials. Using molecular dynamics simulations, we study the shock-induced deformation and spallation failure of bicrystal copper with a nanoscale He bubble. Two extreme loading directions (perpendicular or parallel to the GB plane) and various impact velocities (0.5–2.5 km/s) are considered. Our results reveal that the He bubble shows hindrance to the propagation of shock waves at lower impact velocities but will accelerate shock wave propagation at higher impact velocities due to the local compression wave generated by the collapse of the He bubble. The parallel loading direction is found to have a greater effect on He bubble deformation during shock compression. The He bubble will slightly reduce the spall strength of the material at lower impact velocities but has a limited effect on the spallation process, which is dominated by the evolution of the GB. At lower impact velocities, the mechanism of spall damage is dominated by the cleavage fracture along the GB plane for the perpendicular loading condition but dominated by the He bubble expansion and void growth for the parallel loading condition. At higher impact velocities, micro-spallation occurs for both loading conditions, and the effects of GBs and He bubbles can be ignored. Full article
(This article belongs to the Special Issue Nanomechanics, Plasticity and Fracture)
Show Figures

Figure 1

17 pages, 10956 KiB  
Article
He-ion Irradiation Effects on the Microstructures and Mechanical Properties of the Ti-Zr-Hf-V-Ta Low-Activation High-Entropy Alloys
by Huanzhi Zhang, Qianqian Wang, Chunhui Li, Zhenbo Zhu, Hefei Huang and Yiping Lu
Materials 2023, 16(16), 5530; https://doi.org/10.3390/ma16165530 - 9 Aug 2023
Cited by 8 | Viewed by 2339
Abstract
High-entropy alloys (HEAs) have shown promising potential applications in advanced reactors due to the outstanding mechanical properties and irradiation tolerance at elevated temperatures. In this work, the novel low-activation Ti2ZrHfxV0.5Ta0.2 HEAs were designed and prepared to [...] Read more.
High-entropy alloys (HEAs) have shown promising potential applications in advanced reactors due to the outstanding mechanical properties and irradiation tolerance at elevated temperatures. In this work, the novel low-activation Ti2ZrHfxV0.5Ta0.2 HEAs were designed and prepared to explore high-performance HEAs under irradiation. The microstructures and mechanical properties of the Ti2ZrHfxV0.5Ta0.2 HEAs before and after irradiation were investigated. The results showed that the unirradiated Ti2ZrHfxV0.5Ta0.2 HEAs displayed a single-phase BCC structure. The yield strength of the Ti2ZrHfxV0.5Ta0.2 HEAs increased gradually with the increase of Hf content without decreasing the plasticity at room and elevated temperatures. After irradiation, no obvious radiation-induced segregations or precipitations were found in the transmission electron microscope results of the representative Ti2ZrHfV0.5Ta0.2 HEA. The size and number density of the He bubbles in the Ti2ZrHfV0.5Ta0.2 HEA increased with the improvement of fluence at 1023 K. At the fluences of 1 × 1016 and 3 × 1016 ions/cm2, the irradiation hardening fractions of the Ti2ZrHfV0.5Ta0.2 HEA were 17.7% and 34.1%, respectively, which were lower than those of most reported conventional low-activation materials at similar He ion irradiation fluences. The Ti2ZrHfV0.5Ta0.2 HEA showed good comprehensive mechanical properties, structural stability, and irradiation hardening resistance at elevated temperatures, making it a promising structural material candidate for advanced nuclear energy systems. Full article
(This article belongs to the Special Issue Heat Treatments and Performance of Alloy and Metal)
Show Figures

Figure 1

13 pages, 26343 KiB  
Article
Tritium Desorption Behavior and Microstructure Evolution of Beryllium Irradiated at Low Temperature Up to High Neutron Dose in BR2 Reactor
by Vladimir Chakin, Rolf Rolli, Ramil Gaisin and Wouter van Renterghem
J. Nucl. Eng. 2023, 4(3), 552-564; https://doi.org/10.3390/jne4030036 - 2 Aug 2023
Cited by 1 | Viewed by 1681 | Correction
Abstract
The present study investigated the release of tritium from beryllium irradiated at 323 K to a neutron fluence of 4.67 × 1026 m−2 (E > 1 MeV), corresponding up to 22,000 appm helium and 2000 appm tritium productions. The TPD tests [...] Read more.
The present study investigated the release of tritium from beryllium irradiated at 323 K to a neutron fluence of 4.67 × 1026 m−2 (E > 1 MeV), corresponding up to 22,000 appm helium and 2000 appm tritium productions. The TPD tests revealed a single tritium release peak during thermal desorption tests, irrespective of the heating mode employed. The tritium release peaks occurred at temperatures ranging from 1031–1136 K, depending on the heating mode, with a desorption energy of 1.6 eV. Additionally, the effective tritium diffusion coefficient was found to vary from 1.2 × 10−12 m2/s at 873 K to 1.8 × 10−10 m2/s at 1073 K. The evolution of beryllium microstructure was found to be dependent on the annealing temperature. No discernible differences were observed between the as-received state and after annealing at 473–773 K for 5 h, with a corresponding porosity range of 1–2%. The annealing at temperatures of 873–1373 K for 5 h resulted in the formation of large bubbles, with porosity increasing sharply above 873 K and reaching 30–60%. Full article
Show Figures

Figure 1

Back to TopTop