Effects of Oxygen Prebreathing on Bubble Formation, Flow-Mediated Dilatation, and Psychomotor Performance during Trimix Dives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Venous Bubble Monitoring during Post-Dive Observation
2.3. Pre- and Post-Dive Endothelial Function Monitoring
2.4. Cognitive and Psychomotor Performance Testing
2.5. Measurement of State and Trait Anxiety
2.6. Statistical Analysis
3. Results
3.1. Participants
3.2. Post-Dive Monitoring and Venous Bubble Detection
3.3. Flow-Mediated Dilatation and Sheer Rate
3.4. Psychomotor Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedersen, D.M. Perceptions of high risk sports. Percept. Mot. Ski. 1997, 85, 756–758. [Google Scholar] [CrossRef] [PubMed]
- Brubakk, A.O.; Duplancic, D.; Valic, Z.; Palada, I.; Obad, A.; Bakovic, D.; Wisløff, U.; Dujic, Z. A single air dive reduces arterial endothelial function in man. J. Physiol. 2005, 566, 901–906. [Google Scholar] [CrossRef] [PubMed]
- Dujic, Z.; Obad, A.; Palada, I.; Valic, Z.; Brubakk, A.O. A single open sea air dive increases pulmonary artery pressure and reduces right ventricular function in professional divers. Eur. J. Appl. Physiol. 2006, 97, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Marabotti, C.; Chiesa, F.; Scalzini, A.; Antonelli, F.; Lari, R.; Franchini, C.; Data, P.G. Cardiac and humoral changes induced by recreational scuba diving. Undersea Hyperb. Med. 1999, 26, 151–158. [Google Scholar] [PubMed]
- Obad, A.; Valic, Z.; Palada, I.; Brubakk, A.O.; Modun, D.; Dujić, Ž. Antioxidant pretreatment and reduced arterial endothelial dysfunction after diving. Aviat. Space Environ. Med. 2007, 78, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Lafère, P.; Hemelryck, W.; Germonpré, P.; Matity, L.; Guerrero, F.; Balestra, C. Early detection of diving-related cognitive impairment of different nitrogen-oxygen gas mixtures using critical flicker fusion frequency. Diving Hyperb. Med. 2019, 49, 119–126. [Google Scholar] [CrossRef]
- Rocco, M.; Pelaia, P.; Benedetto, D.P.; Conte, G.; Maggi, L.; Fiorelli, S.; Mercieri, M.; Balestra, C.; De Blasi, R.A. Inert gas narcosis in scuba diving, different gases different reactions. Eur. J. Appl. Physiol. 2019, 119, 247–255. [Google Scholar] [CrossRef]
- Pourhashemi, S.F.; Sahraei, H.; Meftahi, G.H.; Hatef, B.; Gholipour, B. The effect of 20 minutes scuba diving on cognitive function of professional scuba divers. Asian J. Sports Med. 2016, 7, e38633. [Google Scholar] [CrossRef]
- Segrt Ribicic, I.; Valic, M.; Bozic, J.; Obad, A.; Glavaš, D.; Glavičić, I.; Valić, Z. Influence of oxygen enriched gases during decompression on bubble formation and endothelial function in self-contained underwater breathing apparatus diving: A randomized controlled study. Croat. Med. J. 2019, 60, 265–272. [Google Scholar] [CrossRef]
- Souday, V.; Koning, N.J.; Perez, B.; Grelon, F.; Mercat, A.; Boer, C.; Seegers, V.; Radermacher, P.; Asfar, P. Enriched air nitrox breathing reduces venous gas bubbles after simulated scuba diving: A double-blind cross-over randomizedrial. PLoS ONE 2016, 11, e0154761. [Google Scholar]
- Hobbs, M.B. Impairment from gas narcosis when breathing air and enriched air nitrox underwater. Aviat. Space Environ. Med. 2014, 85, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, S.J.; Doolette, D.J. Recreational technical diving part 1: An introduction to technical diving methods and activities. Diving Hyperb. Med. 2013, 43, 86–93. [Google Scholar] [PubMed]
- Castagna, O.; Gempp, E.; Blatteau, J.E. Pre-dive normobaric oxygen reduces bubble formation in scuba divers. Eur. J. Appl. Physiol. 2009, 106, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Blatteau, J.E.; Hugon, J.; Gempp, E.; Castagna, O.; Pény, C.; Vallée, N. Oxygen breathing or recompression during decompression from nitrox dives with a rebreather: Effects on intravascular bubble burden and ramifications for decompression profiles. Eur. J. Appl. Physiol. 2012, 112, 2257–2265. [Google Scholar] [CrossRef] [PubMed]
- Attaye, I.; Smulders, Y.M.; de Waard, M.C.; Straaten, H.M.O.-V.; Smit, B.; Van Wijhe, M.H.; Musters, R.J.; Koolwijk, P.; Man, A.M.E.S. The effects of hyperoxia on microvascular endothelial cell proliferation and production of vaso-active substances. Intensive Care Med. Exp. 2017, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Carreño, A.; Gascon, M.; Vert, C.; Lloret, J. The beneficial effects of short-term exposure to scuba diving on human mental health. Int. J. Environ. Res. Public Health 2020, 17, 7238. [Google Scholar] [CrossRef]
- Peters, B.H.; Levin, H.S.; Kelly, P.J. Neurologic and psychologic manifestations of decompression illness in divers. Neurology 1977, 27, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Slosman, D.O.; De Ribaupierre, S.; Chicherio, C.; Ludwig, C.; Montandon, M.; Allaoua, M.; Genton, L.; Pichard, C.; Grousset, A.; Mayer, E.; et al. Negative neurofunctional effects of frequency, depth and environment in recreational scuba diving: The Geneva “memory dive” study. Br. J. Sports Med. 2004, 38, 108–114. [Google Scholar] [CrossRef]
- Moss, M.C.; Scholey, A.B.; Wesnes, K. Oxygen administration selectively enhances cognitive performance in healthy young adults: A placebo-controlled double-blind crossover study. Psychopharmacology 1998, 138, 27–33. [Google Scholar] [CrossRef]
- Karanovic, N.; Carev, M.; Kardum, G.; Pecotic, R.; Valic, M.; Karanovic, S.; Ujevic, A.; Dogas, Z. The impact of a single 24-hour working day on cognitive and psychomotor performance in staff anesthesiologists. Eur. J. Anaesthesiol. 2009, 26, 825–832. [Google Scholar] [CrossRef]
- Pecotic, R.; Pavlinac Dodig, I.; Valic, M.; Galic, T.; Kalcina, L.L.; Ivkovic, N.; Dogas, Z. Effects of CPAP therapy on cognitive and psychomotor performances in patients with severe obstructive sleep apnea: A prospective 1-year study. Sleep Breath. 2019, 23, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Lusic Kalcina, L.; Pavlinac Dodig, I.; Pecotic, R.; Valic, M.; Dogas, Z. Psychomotor performance in patients with obstructive sleep apnea syndrome. Nat. Sci. Sleep 2020, 12, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.H.; Wu, W.L.; Liang, J.M.; Hsu, H.-T.; Chen, T.-Y. Anxiety impact on scuba performance and underwater cognitive processing ability. Diving Hyperb. Med. 2020, 50, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.C.; Mayer, J.L.; Howe, B.L. Effectiveness of a mental training program for novice scuba divers. J. Appl. Sport Psychol. 1998, 10, 251–267. [Google Scholar] [CrossRef]
- Groeneveld, O.N.; van den Berg, E.; Johansen, O.E.; Schnaidt, S.; Hermansson, K.; Zinman, B.; A Espeland, M.; Biessels, G.J. Oxidative stress and endothelial dysfunction are associated with reduced cognition in type 2 diabetes. Diabetes Vasc. Dis. Res. 2019, 16, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Heringa, S.M.; van den Berg, E.; Reijmer, Y.D.; Nijpels, G.; Stehouwer, C.; Schalkwijk, C.; Teerlink, T.; Scheffer, P.; van den Hurk, K.; Kappelle, L.; et al. Markers of low-grade inflammation and endothelial dysfunction are related to reduced information processing speed and executive functioning in an older population—The Hoorn Study. Psychoneuroendocrinology 2014, 40, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Eftedal, O.; Brubakk, A.O. Agreement between trained and untrained observers in grading intravascular bubble signals in ultrasonic images. Undersea Hyperb. Med. 1997, 24, 293–299. [Google Scholar] [PubMed]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated asodilation of the brachial artery: A report of the International Brachial Artery Reactivity Task Force. J. Am. Coll. Cardiol. 2002, 39, 257–265. [Google Scholar] [CrossRef]
- Bosco, G.; Paoli, A.; Camporesi, E. Aerobic demand and scuba diving: Concerns about medical evaluation. Diving Hyperb. Med. 2014, 44, 61–63. [Google Scholar]
- Drenovac, M. An analysis of some attributes of the dynamics of mental processing. Rev. Psychol. 2001, 8, 61–67. [Google Scholar]
- Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.; Vagg, P.; Jacobs, G. Manual for the State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Morgan, W.P.; Raglin, J.S.; O’Connor, P.J. Trait anxiety predicts panic behavior in beginning scuba students. Int. J. Sports Med. 2004, 25, 314–322. [Google Scholar] [PubMed]
- Steinberg, F.; Doppelmayr, M. A brief note on the relationship between anxiety and performance in scuba diving in adolescents: A field study. Percept. Mot. Ski. 2015, 120, 960–970. [Google Scholar] [CrossRef] [PubMed]
- Imbert, J.P.; Egi, S.M.; Germonpré, P.; Balestra, C. Static metabolic bubbles as precursors of vascular gas emboli during divers’ decompression: A hypothesis explaining bubbling variability. Front. Physiol. 2019, 10, 807. [Google Scholar] [CrossRef] [PubMed]
- Marinovic, J.; Ljubkovic, M.; Breskovic, T.; Gunjaca, G.; Obad, A.; Modun, D.; Bilopavlovic, N.; Tsikas, D.; Dujic, Z. Effects of successive air and nitrox dives on human vascular function. Eur. J. Appl. Physiol. 2012, 112, 2131–2137. [Google Scholar] [CrossRef]
- Arieli, Y.; Arieli, R.; Marx, A. Hyperbaric oxygen may reduce gas bubbles in decompressed prawns by eliminating gas nuclei. J. Appl. Physiol. 2002, 92, 2596–2599. [Google Scholar] [CrossRef] [PubMed]
- Bosco, G.; Yang, Z.J.; Di Tano, G.; Camporesi, E.M.; Faralli, F.; Savini, F.; Landolfi, A.; Doria, C.; Fanò, G. Effect of in-water oxygen prebreathing at different depths on decompression-induced bubble formation and platelet activation. J. Appl. Physiol. 2010, 108, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Demchenko, I.T.; Boso, A.E.; O’Neill, T.J.; Bennett, P.B.; Piantadosi, C.A.; Barak, O.F.; Caljkusic, K.; Hoiland, R.L.; Ainslie, P.N.; Thom, S.R.; et al. Nitric oxide and cerebral blood flow responses to hyperbaric oxygen. J. Appl. Physiol. 2000, 88, 1381–1389. [Google Scholar] [CrossRef]
- Obad, A.; Marinovic, J.; Ljubkovic, M.; Breskovic, T.; Modun, D.; Boban, M.; Dujic, Z. Successive deep dives impair endothelial function and enhance oxidative stress in man. Clin. Physiol. Funct. Imaging 2010, 30, 432–438. [Google Scholar] [CrossRef]
- Brebeck, A.K.; Deussen, A.; Schmitz-Peiffer, H.; Range, U.; Balestra, C.; Cleveland, S.; Schipke, J.D. Effects of oxygen-enriched air on cognitive performance during scuba-diving—An open-water study. Res. Sports Med. 2017, 25, 345–356. [Google Scholar] [CrossRef]
- Möller, F.; Hoffmann, U.; Dalecki, M.; Dräger, T.; Doppelmayr, M.; Steinberg, F. Physical Exercise Intensity During Submersion Selectively Affects Executive Functions. Hum. Factors 2021, 63, 227–239. [Google Scholar] [CrossRef]
- Morgan, W.P. Anxiety and panic in recreational scuba divers. Sports Med. 1995, 20, 398–421. [Google Scholar] [CrossRef] [PubMed]
- Walton, L. The panic triangle: Onset of panic in scuba divers. Undersea Hyperb. Med. 2018, 45, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Zec, M.; Antičević, V.; Lušić Kalcina, L.; Valić, Z.; Božić, J. Psychophysiological stress response in SCUBA divers: The contribution of negative automatic thoughts and negative emotions. Curr. Psychol. 2022, 42, 16751–16765. [Google Scholar] [CrossRef]
- Kowalski, J.T.; Varn, A.; Röttger, S.; Seidack, S.; Kähler, W.; Gerber, W.-D.; Andrasik, F.; Koch, A. Neuropsychological deficits in scuba divers: An exploratory investigation. Undersea Hyperb Med. 2011, 38, 197–204. [Google Scholar]
Parameter (Mean ± SD) | |
---|---|
Number | 12 |
Gender (male/female) | 11/1 |
Age (years) | 37 ± 8 |
Body mass (kg) | 84.6 ± 16.2 |
Height (cm) | 179 ± 7 |
Body mass index (kg/m2) | 26.2 ± 3.4 |
Blood pressure (mmHg) | |
Systolic | 131 ± 14 |
Diastolic | 84 ± 8 |
Brachial Artery Blood Flow (mL/min) | |||||||
---|---|---|---|---|---|---|---|
Air Prebreathing | O2 Prebreathing | ||||||
Pre-Dive * | Post-Dive † | p | Pre-Dive ‡ | Post-Dive ‖ | p | ||
Time after deflation | Pre-cuff | 356 (312–414) | 436 (345–516) | 0.424 | 373 (297–463) | 411 (304–499) | 0.657 |
0″ | 1013 (888–1197) | 1072 (825–1333) | 0.530 | 1050 (835–1334) | 1244 (784–1462) | 0.814 | |
30″ | 714 (571–902) | 822 (720–894) | 0.050 | 918 (590–1068) | 851 (737–1053) | 0.937 | |
60″ | 560 (467–780) | 680 (523–830) | 0.158 | 656 (526–832) | 706 (602–873) | 0.239 | |
90″ | 495 (420–585) | 569 (507–691) | 0.015 | 610 (437–738) | 671 (488–736) | 0.272 | |
120″ | 402 (382–598) | 607 (426–686) | 0.060 | 521 (424–585) | 606 (504–706) | 0.136 | |
150″ | 444 (378–602) | 544 (470–677) | 0.347 | 557 (434–638) | 641 (503–697) | 0.155 | |
180″ | 437 (363–603) | 512 (427–701) | 0.480 | 554 (366–653) | 589 (511–662) | 0.347 | |
240″ | 438 (335–572) | 453 (406–590) | 0.480 | 469 (355–687) | 554 (464–613) | 0.937 |
Brachial Artery Shear Rate (mL/min) | |||||||
---|---|---|---|---|---|---|---|
Air Prebreathing | O2 Prebreathing | ||||||
Pre-Dive * | Post-Dive † | p | Pre-Dive ‡ | Post-Dive ‖ | p | ||
Time after deflation | Pre-cuff | 90 (78–114) | 107 (86–121) | 0.286 | 91 (74–112) | 86 (75–105) | 0.722 |
0″ | 227 (214–271) | 227 (180–285) | 0.695 | 223 (197–258) | 229 (197–269) | 0.480 | |
30″ | 150 (132–181) | 170 (137–207) | 0.213 | 174 (153–201) | 165 (137–201) | 0.937 | |
60″ | 111 (104–143) | 142 (97–163) | 0.239 | 128 (106–147) | 132 (96–146) | 0.209 | |
90″ | 102 (83–119) | 121 (93–133) | 0.071 | 106 (98–130) | 114 (96–130) | 0.308 | |
120″ | 96 (84–108) | 118 (90–136) | 0.099 | 92 (86–111) | 108 (89–121) | 0.272 | |
150″ | 96 (85–115) | 105 (94–138) | 0.388 | 101 (89–117) | 109 (92–121) | 0.424 | |
180″ | 98 (85–114) | 104 (87–138) | 0.638 | 97 (89–111) | 105 (92–128) | 0.530 | |
240″ | 93 (75–121) | 94 (81–132) | 0.875 | 96 (84–125) | 101 (85–111) | 0.754 |
Air Prebreathing | O2 Prebreathing | ||||||
---|---|---|---|---|---|---|---|
Pre-Dive | Post-Dive | p | Pre-Dive | Post-Dive | p | ||
Light signal position discrimination test (CRD311) | TTST | 33 (30–35) | 31 (29–33) | 0.273 | 28 (25–30) | 25 (24–29) | 0.249 |
MinT | 0.3 (0.3–0.4) | 0.4 (0.3–0.4) | 0.465 | 0.3 (0.2–0.3) | 0.3 (0.2–0.3) | 0.249 | |
MedT | 0.5 (0.5–0.6) | 0.5 (0.4–0.5) | 0.273 | 0.5 (0.4–0.5) | 0.4 (0.4–0.5) | 0.345 | |
Complex psychomotor coordination test (CRD411) | TTST | 28 (28–30) | 31 (26–35) | 0.715 | 31 (24–34) | 25 (21–28) | 0.028 * |
MinT | 0.4 (0.4–0.5) | 0.4 (0.4–0.5) | 0.465 | 0.4 (0.4–0.5) | 0.3 (0.3–0.4) | 0.046 * | |
MedT | 0.6 (0.6–0.7) | 0.7 (0.6–0.7) | 0.715 | 0.7 (0.6–0.7) | 0.6 (0.5–0.6) | 0.046 * | |
Simple arithmetic operations test (CRD11) | TTST | 118 (107–127) | 106 (90–122) | 0.028 * | 102 (92–115) | 87 (82–108) | 0.028 * |
MinT | 2 (2–2) | 2 (2–2) | 0.753 | 2 (1–2) | 2 (1–2) | 0.075 | |
MedT | 3 (3–3) | 3 (3–3) | 0.028 * | 3 (2–3) | 2 (2–3) | 0.028 * |
Air Prebreathing | O2 Prebreathing | |||||
---|---|---|---|---|---|---|
Before the Dive | After the Dive | p | Before the Dive | After the Dive | p | |
Anxiety as a state (STAI-S) | 26 (23–27) | 25 (21–30) | 0.753 | 30 (25–33) | 25 (22–31) | 0.207 |
Anxiety as a trait (STAI-T) | 31 (27–33) | 27 (25–29) | 0.112 | 29 (27–38) | 31 (26–36) | 0.339 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šegrt Ribičić, I.; Valić, M.; Lušić Kalcina, L.; Božić, J.; Obad, A.; Glavaš, D.; Glavičić, I.; Valić, Z. Effects of Oxygen Prebreathing on Bubble Formation, Flow-Mediated Dilatation, and Psychomotor Performance during Trimix Dives. Sports 2024, 12, 35. https://doi.org/10.3390/sports12010035
Šegrt Ribičić I, Valić M, Lušić Kalcina L, Božić J, Obad A, Glavaš D, Glavičić I, Valić Z. Effects of Oxygen Prebreathing on Bubble Formation, Flow-Mediated Dilatation, and Psychomotor Performance during Trimix Dives. Sports. 2024; 12(1):35. https://doi.org/10.3390/sports12010035
Chicago/Turabian StyleŠegrt Ribičić, Ivana, Maja Valić, Linda Lušić Kalcina, Joško Božić, Ante Obad, Duška Glavaš, Igor Glavičić, and Zoran Valić. 2024. "Effects of Oxygen Prebreathing on Bubble Formation, Flow-Mediated Dilatation, and Psychomotor Performance during Trimix Dives" Sports 12, no. 1: 35. https://doi.org/10.3390/sports12010035
APA StyleŠegrt Ribičić, I., Valić, M., Lušić Kalcina, L., Božić, J., Obad, A., Glavaš, D., Glavičić, I., & Valić, Z. (2024). Effects of Oxygen Prebreathing on Bubble Formation, Flow-Mediated Dilatation, and Psychomotor Performance during Trimix Dives. Sports, 12(1), 35. https://doi.org/10.3390/sports12010035