error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = helical propensity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2263 KB  
Article
Predicting Antimicrobial Peptide Activity: A Machine Learning-Based Quantitative Structure–Activity Relationship Approach
by Eliezer I. Bonifacio-Velez de Villa, María E. Montoya-Alfaro, Luisa P. Negrón-Ballarte and Christian Solis-Calero
Pharmaceutics 2025, 17(8), 993; https://doi.org/10.3390/pharmaceutics17080993 - 31 Jul 2025
Cited by 3 | Viewed by 2813
Abstract
Background: Peptides are a class of molecules that can be presented as good antimicrobials and with mechanisms that avoid resistance, and the design of peptides with good activity can be complex and laborious. The study of their quantitative structure–activity relationships through machine [...] Read more.
Background: Peptides are a class of molecules that can be presented as good antimicrobials and with mechanisms that avoid resistance, and the design of peptides with good activity can be complex and laborious. The study of their quantitative structure–activity relationships through machine learning algorithms can shed light on a rational and effective design. Methods: Information on the antimicrobial activity of peptides was collected, and their structures were characterized by molecular descriptors generation to design regression and classification models based on machine learning algorithms. The contribution of each descriptor in the generated models was evaluated by determining its relative importance and, finally, the antimicrobial activity of new peptides was estimated. Results: A structured database of antimicrobial peptides and their descriptors was obtained, with which 56 machine learning models were generated. Random Forest-based models showed better performance, and of these, regression models showed variable performance (R2 = 0.339–0.574), while classification models showed good performance (MCC = 0.662–0.755 and ACC = 0.831–0.877). Those models based on bacterial groups showed better performance than those based on the entire dataset. The properties of the new peptides generated are related to important descriptors that encode physicochemical properties such as lower molecular weight, higher charge, propensity to form alpha-helical structures, lower hydrophobicity, and higher frequency of amino acids such as lysine and serine. Conclusions: Machine learning models allowed to establish the structure–activity relationships of antimicrobial peptides. Classification models performed better than regression models. These models allowed us to make predictions and new peptides with high antimicrobial potential were proposed. Full article
Show Figures

Graphical abstract

17 pages, 2981 KB  
Article
Frog Skin Peptides Hylin-a1, AR-23, and RV-23: Promising Tools Against Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae Infections
by Annalisa Chianese, Annalisa Ambrosino, Rosa Giugliano, Francesca Palma, Preetu Parimal, Marina Acunzo, Alessandra Monti, Nunzianna Doti, Carla Zannella, Massimiliano Galdiero and Anna De Filippis
Antibiotics 2025, 14(4), 374; https://doi.org/10.3390/antibiotics14040374 - 3 Apr 2025
Cited by 3 | Viewed by 1483
Abstract
Background/Objectives. One of the pressing challenges in global public health is the rise in infections caused by carbapenem-resistant Enterobacteriaceae. Growing bacterial drug resistance, coupled with the slow development of new antibiotics, highlights the critical need to explore and develop new broad-spectrum antimicrobial agents [...] Read more.
Background/Objectives. One of the pressing challenges in global public health is the rise in infections caused by carbapenem-resistant Enterobacteriaceae. Growing bacterial drug resistance, coupled with the slow development of new antibiotics, highlights the critical need to explore and develop new broad-spectrum antimicrobial agents able to inhibit bacterial growth efficiently. In recent years, antimicrobial peptides (AMPs) have gained significant attention as a promising alternative to conventional drugs, owing to their antimicrobial potency, low toxicity, and reduced propensity for fostering resistance. Our research aims to investigate the antibacterial ability of three amphibian AMPs, namely Hylin-a1, AR-23, and RV-23, against both antibiotic-sensitive and carbapenem-resistant strains of Escherichia coli and Klebsiella pneumoniae. Methods. A 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) was performed to identify non-cytotoxic concentrations of peptides. A microdilution assay evaluated the antibacterial effect, determining the peptides’ minimum inhibitory concentration (MIC). In addition, the checkerboard test analyzed the compounds’ synergistic effect with meropenem. Results. We demonstrated that peptides with low toxicity profile and resistance to proteolytic activity exhibited strong antibacterial activity, with MIC ranging from 6.25 to 25 μM. The antibiofilm mechanism of action of peptides was also investigated, suggesting that they had a crucial role during the biofilm formation step by inhibiting it. Finally, we highlighted the synergistic effects of peptides with meropenem. Conclusions. Our study identifies Hylin-a1, AR-23, and RV-23 as promising candidates against Gram-negative bacterial infections with a favorable therapeutic profile. This effect could be related to their great flexibility, as evidenced by circular dichroism data, confirming that the peptides could assume an α-helical conformation interacting with bacterial membranes. Full article
Show Figures

Figure 1

21 pages, 4433 KB  
Article
Comparative Structural and Biophysical Investigation of Lycosa erythrognatha Toxin I (LyeTx I) and Its Analog LyeTx I-b
by Amanda Neves de Souza, Gabriele de Azevedo Cardoso, Lúcio Otávio Nunes, Christopher Aisenbrey, Evgeniy Salnikov, Kelton Rodrigues de Souza, Ahmad Saad, Maria Elena de Lima, Jarbas Magalhães Resende, Burkhard Bechinger and Rodrigo Moreira Verly
Antibiotics 2025, 14(1), 66; https://doi.org/10.3390/antibiotics14010066 - 10 Jan 2025
Cited by 3 | Viewed by 1823
Abstract
Background/Objectives: This study investigates the structural and biophysical properties of the wild-type antimicrobial peptide LyeTx I, isolated from the venom of the spider Lycosa erythrognatha, and its analog LyeTx I-b, designed to enhance antibacterial activity, selectivity, and membrane interactions by the acetylation [...] Read more.
Background/Objectives: This study investigates the structural and biophysical properties of the wild-type antimicrobial peptide LyeTx I, isolated from the venom of the spider Lycosa erythrognatha, and its analog LyeTx I-b, designed to enhance antibacterial activity, selectivity, and membrane interactions by the acetylation and increased amphipathicty. Methods: To understand the mechanisms behind these enhanced properties, comparative analyses of the structural, topological, biophysical, and thermodynamic aspects of the interactions between each peptide and phospholipid bilayers were evaluated. Both peptides were isotopically labeled with 2H3-Ala and 15N-Leu to facilitate structural studies via NMR spectroscopy. Results: Circular dichroism and solid-state NMR analyses revealed that, while both peptides adopt α-helical conformations in membrane mimetic environments, LyeTx I-b exhibits a more amphipathic and extended helical structure, which correlates with its enhanced membrane interaction. The thermodynamic properties of the peptide–membrane interactions were quantitatively evaluated in the presence of phospholipid bilayers using ITC and DSC, highlighting a greater propensity of LyeTx I-b to disrupt lipid vesicles. Calcein release studies reveal that both peptides cause vesicle disruption, although DLS measurements and TEM imaging indicate distinct effects on phospholipid vesicle organization. While LyeTx I-b permeabilizes anionic membrane retaining the vesicle integrity, LyeTx I promotes significant vesicle agglutination. Furthermore, DSC and calcein release assays indicate that LyeTx I-b exhibits significantly lower cytotoxicity toward eukaryotic membranes compared to LyeTx I, suggesting greater selectivity for bacterial membranes. Conclusions: Our findings provide insights into the structural and functional modifications that enhance the antimicrobial and therapeutic potential of LyeTx I-b, offering valuable guidance for the design of novel peptides targeting resistant bacterial infections and cancer. Full article
(This article belongs to the Special Issue Mechanisms of Antimicrobial Peptides on Pathogens, 2nd Edition)
Show Figures

Figure 1

30 pages, 2252 KB  
Article
Assessing the Interplay of Financial Development, Human Capital, Democracy, and Industry 5.0 in Environmental Dynamics
by Mahvish Muzaffar, Ghulam Ghouse and Fahad Abdulrahman Alahmad
Sustainability 2024, 16(16), 6846; https://doi.org/10.3390/su16166846 - 9 Aug 2024
Cited by 4 | Viewed by 2672
Abstract
The anthropogenically induced ecological resource exploitation surpasses the Earth’s regenerative capacity and has resulted in ecological bankruptcy. Conceding that, the United Nations mandates environmental restoration by 2030. Against this backdrop, this study seeks to orchestrate a hybrid framework by modulating the Quintuple Helix [...] Read more.
The anthropogenically induced ecological resource exploitation surpasses the Earth’s regenerative capacity and has resulted in ecological bankruptcy. Conceding that, the United Nations mandates environmental restoration by 2030. Against this backdrop, this study seeks to orchestrate a hybrid framework by modulating the Quintuple Helix Model into an Anthropomorphized Stochastic Quintuple Helix Model (ASQHM). This model introduces human behavior and allows for hypothesis testing. ASQHM stipulates that the propensity of espoused eco-innovation aimed at environmental restoration is contingent upon five composite helices: human capital, democracy, Industry 5.0, media, and pro-environmental human behavior. In addition, financial development has been deemed imperative to facilitate these variables, which were considered stakeholders in this study. To fill gaps in the literature, three variables, namely democracy, Industry 5.0, and pro-environmental human behavior (PEHB), are formed through principal component analysis. This panel data study employs the Generalized Methods of Moments model to compute the ASQHM for developed and less developed countries from 1995 to 2022. The results imply that the first helix (human capital) levitates environmental restoration in developed countries (DCs) but yields the opposite in less developed countries (LDCs). Democracy, Industry 5.0, and information and communication technology helices demonstrate a solicited negative relationship with ecological footprints in both panels, thus supplementing environmental restoration. The fifth helix, PEHB, escalates ecological footprints in DCs; however, it abets environmental restoration in LDCs. The postulated ASQHM “partially” works in DCs and LDCs, rejecting its hypothesized role in the former group while confirming it in the latter group. Astonishingly, DCs fall short of the requisite PEHB (fifth helix), and LDCs do not have the at-par human capital (first helix) to reduce ecological footprints, catalyze eco-innovation, and partake in the environmental restoration process. Despite slight discrepancies in both panels, these findings validate the effectiveness of this hybrid ASQHM as a decisive determinant of environmental restoration. Based on the findings, this study also suggests practical policies. Full article
(This article belongs to the Special Issue Recent Development in Financial Sustainability)
Show Figures

Figure 1

12 pages, 3965 KB  
Article
Influence of Mutations on Physicochemical Properties of Spike Proteins from Prototypical SARS-CoV-2 Variants of Concern Detected in Amazonian Countries
by Adriana Conceição B. Silva and Carlos Alberto M. Carvalho
Microbiol. Res. 2024, 15(3), 1334-1345; https://doi.org/10.3390/microbiolres15030090 - 27 Jul 2024
Cited by 1 | Viewed by 1598
Abstract
Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral spike protein (S) has become a target to describe appropriate epitopes for vaccine development and to carry out epidemiological surveillance, especially regarding the variants of concern (VOCs). This study aimed [...] Read more.
Since the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral spike protein (S) has become a target to describe appropriate epitopes for vaccine development and to carry out epidemiological surveillance, especially regarding the variants of concern (VOCs). This study aimed to evaluate the influence of mutations on physicochemical properties of S proteins from prototypical SARS-CoV-2 VOCs detected in Amazonian countries. Using multiple computational tools, seven VOCs (B.1.1.7/P.1/B.1.617.2/BA.1/BA.2/BA.4/BA.5) were identified and compared to the ancestral lineage of the virus (B). In all variants, most amino acids were nonpolar; among the polar amino acids, B.1.617.2/BA.1/BA.2/BA.4/BA.5 presented a slightly higher proportion of basic residues and a lower proportion of neutral residues. Unlike B.1.1.7/P.1/B.1.617.2, BA.1/BA.2 had a greater content of secondary structures, such as α-helices and β-sheets. Regarding post-translational modifications, BA.2/BA.4/BA.5 presented fewer glycosylations and phosphorylations. Finally, a more prominent antigenic propensity in the N-terminal domain of BA.2/BA.4/BA.5 and in the receptor-binding domain of B.1.617.2/BA.4/BA.5 was observed. In conclusion, the omicron variants of SARS-CoV-2 presented greater sequence variability in S proteins compared to the other VOCs, influencing structural aspects that can potentially modulate its interaction with cellular receptors and recognition by the immune system. Full article
Show Figures

Figure 1

22 pages, 11601 KB  
Article
Structure and Function of Canine SP-C Mimic Proteins in Synthetic Surfactant Lipid Dispersions
by Frans J. Walther and Alan J. Waring
Biomedicines 2024, 12(1), 163; https://doi.org/10.3390/biomedicines12010163 - 12 Jan 2024
Cited by 2 | Viewed by 2856
Abstract
Lung surfactant is a mixture of lipids and proteins and is essential for air breathing in mammals. The hydrophobic surfactant proteins B and C (SP-B and SP-C) assist in reducing surface tension in the lung alveoli by organizing the surfactant lipids. SP-B deficiency [...] Read more.
Lung surfactant is a mixture of lipids and proteins and is essential for air breathing in mammals. The hydrophobic surfactant proteins B and C (SP-B and SP-C) assist in reducing surface tension in the lung alveoli by organizing the surfactant lipids. SP-B deficiency is life-threatening, and a lack of SP-C can lead to progressive interstitial lung disease. B-YL (41 amino acids) is a highly surface-active, sulfur-free peptide mimic of SP-B (79 amino acids) in which the four cysteine residues are replaced by tyrosine. Mammalian SP-C (35 amino acids) contains two cysteine-linked palmitoyl groups at positions 5 and 6 in the N-terminal region that override the β-sheet propensities of the native sequence. Canine SP-C (34 amino acids) is exceptional because it has only one palmitoylated cysteine residue at position 4 and a phenylalanine at position 5. We developed canine SP-C constructs in which the palmitoylated cysteine residue at position 4 is replaced by phenylalanine (SP-Cff) or serine (SP-Csf) and a glutamic acid-lysine ion-lock was placed at sequence positions 20–24 of the hydrophobic helical domain to enhance its alpha helical propensity. AI modeling, molecular dynamics, circular dichroism spectroscopy, Fourier Transform InfraRed spectroscopy, and electron spin resonance studies showed that the secondary structure of canine SP-Cff ion-lock peptide was like that of native SP-C, suggesting that substitution of phenylalanine for cysteine has no apparent effect on the secondary structure of the peptide. Captive bubble surfactometry demonstrated higher surface activity for canine SP-Cff ion-lock peptide in combination with B-YL in surfactant lipids than with canine SP-Csf ion-lock peptide. These studies demonstrate the potential of canine SP-Cff ion-lock peptide to enhance the functionality of the SP-B peptide mimic B-YL in synthetic surfactant lipids. Full article
Show Figures

Figure 1

17 pages, 2984 KB  
Article
Interaction of Tau with Kinesin-1: Effect of Kinesin-1 Heavy Chain Elimination on Autophagy-Mediated Mutant Tau Degradation
by Karthikeyan Selvarasu, Abhay Kumar Singh, Avinash Dakshinamoorthy, Sravan Gopalkrishnashetty Sreenivasmurthy, Ashok Iyaswamy, Moorthi Radhakrishnan, Supriti Patnaik, Jian-Dong Huang, Leonard L. Williams, Sanjib Senapati and Siva Sundara Kumar Durairajan
Biomedicines 2024, 12(1), 5; https://doi.org/10.3390/biomedicines12010005 - 19 Dec 2023
Cited by 8 | Viewed by 3420
Abstract
Natively unfolded tau has a low propensity to form aggregates, but in tauopathies, such as Alzheimer’s disease (AD), tau aggregates into paired helical filaments (PHFs) and neurofibrillary tangles (NFTs). Multiple intracellular transport pathways utilize kinesin-1, a plus-end-directed microtubule-based motor. Kinesin-1 is crucial in [...] Read more.
Natively unfolded tau has a low propensity to form aggregates, but in tauopathies, such as Alzheimer’s disease (AD), tau aggregates into paired helical filaments (PHFs) and neurofibrillary tangles (NFTs). Multiple intracellular transport pathways utilize kinesin-1, a plus-end-directed microtubule-based motor. Kinesin-1 is crucial in various neurodegenerative diseases as it transports multiple cargoes along the microtubules (MT). Kinesin-1 proteins cannot progress along MTs due to an accumulation of tau on their surfaces. Although kinesin-1-mediated neuronal transport dysfunction is well-documented in other neurodegenerative diseases, its role in AD has received less attention. Very recently, we have shown that knocking down and knocking out of kinesin-1 heavy chain (KIF5B KO) expression significantly reduced the level and stability of tau in cells and tau transgenic mice, respectively. Here, we report that tau interacts with the motor domain of KIF5B in vivo and in vitro, possibly through its microtubule-binding repeat domain. This interaction leads to the inhibition of the ATPase activity of the motor domain. In addition, the KIF5B KO results in autophagy initiation, which subsequently assists in tau degradation. The mechanisms behind KIF5B KO-mediated tau degradation seem to involve its interaction with tau, promoting the trafficking of tau through retrograde transport into autophagosomes for subsequent lysosomal degradation of tau. Our results suggest how KIF5B removal facilitates the movement of autophagosomes toward lysosomes for efficient tau degradation. This mechanism can be enabled through the downregulation of kinesin-1 or the disruption of the association between kinesin-1 and tau, particularly in cases when neurons perceive disturbances in intercellular axonal transport. Full article
Show Figures

Graphical abstract

14 pages, 2732 KB  
Article
Novel Covalent Modifier-Induced Local Conformational Changes within the Intrinsically Disordered Region of the Androgen Receptor
by Michael T. Harnish, Daniel Lopez, Corbin T. Morrison, Ramesh Narayanan, Elias J. Fernandez and Tongye Shen
Biology 2023, 12(11), 1442; https://doi.org/10.3390/biology12111442 - 17 Nov 2023
Cited by 3 | Viewed by 2813
Abstract
Intrinsically disordered regions (IDRs) of transcription factors play an important biological role in liquid condensate formation and gene regulation. It is thus desirable to investigate the druggability of IDRs and how small-molecule binders can alter their conformational stability. For the androgen receptor (AR), [...] Read more.
Intrinsically disordered regions (IDRs) of transcription factors play an important biological role in liquid condensate formation and gene regulation. It is thus desirable to investigate the druggability of IDRs and how small-molecule binders can alter their conformational stability. For the androgen receptor (AR), certain covalent ligands induce important changes, such as the neutralization of the condensate. To understand the specificity of ligand–IDR interaction and potential implications for the mechanism of neutralizing liquid–liquid phase separation (LLPS), we modeled and performed computer simulations of ligand-bound peptide segments obtained from the human AR. We analyzed how different covalent ligands affect local secondary structure, protein contact map, and protein–ligand contacts for these protein systems. We find that effective neutralizers make specific interactions (such as those between cyanopyrazole and tryptophan) that alter the helical propensity of the peptide segments. These findings on the mechanism of action can be useful for designing molecules that influence IDR structure and condensate of the AR in the future. Full article
Show Figures

Graphical abstract

18 pages, 5301 KB  
Article
One Step Closer to the Understanding of the Relationship IDR-LCR-Structure
by Mariane Gonçalves-Kulik, Friederike Schmid and Miguel A. Andrade-Navarro
Genes 2023, 14(9), 1711; https://doi.org/10.3390/genes14091711 - 28 Aug 2023
Cited by 9 | Viewed by 2471
Abstract
Intrinsically disordered regions (IDRs) in protein sequences are emerging as functionally important elements for interaction and regulation. While being generally flexible, we previously showed, by observation of experimentally obtained structures, that they contain regions of reduced sequence complexity that have an increased propensity [...] Read more.
Intrinsically disordered regions (IDRs) in protein sequences are emerging as functionally important elements for interaction and regulation. While being generally flexible, we previously showed, by observation of experimentally obtained structures, that they contain regions of reduced sequence complexity that have an increased propensity to form structure. Here we expand the universe of cases taking advantage of structural predictions by AlphaFold. Our studies focus on low complexity regions (LCRs) found within IDRs, where these LCRs have only one or two residue types (polyX and polyXY, respectively). In addition to confirming previous observations that polyE and polyEK have a tendency towards helical structure, we find a similar tendency for other LCRs such as polyQ and polyER, most of them including charged residues. We analyzed the position of polyXY containing IDRs within proteins, which allowed us to show that polyAG and polyAK accumulate at the N-terminal, with the latter showing increased helical propensity at that location. Functional enrichment analysis of polyXY with helical propensity indicated functions requiring interaction with RNA and DNA. Our work adds evidence of the function of LCRs in interaction-dependent structuring of disordered regions, encouraging the development of tools for the prediction of their dynamic structural properties. Full article
(This article belongs to the Special Issue Feature Papers in Technologies and Resources for Genetics 2023)
Show Figures

Figure 1

11 pages, 3081 KB  
Brief Report
In Silico Physicochemical Characterization of Fusion Proteins from Emerging Amazonian Arboviruses
by Crislaine S. Leal and Carlos Alberto M. Carvalho
Life 2023, 13(8), 1687; https://doi.org/10.3390/life13081687 - 4 Aug 2023
Cited by 1 | Viewed by 1842
Abstract
Mayaro (MAYV), Saint Louis encephalitis (SLEV), and Oropouche (OROV) viruses are neglected members of the three main families of arboviruses with medical relevance that circulate in the Amazon region as etiological agents of outbreaks of febrile illnesses in humans. As enveloped viruses, MAYV, [...] Read more.
Mayaro (MAYV), Saint Louis encephalitis (SLEV), and Oropouche (OROV) viruses are neglected members of the three main families of arboviruses with medical relevance that circulate in the Amazon region as etiological agents of outbreaks of febrile illnesses in humans. As enveloped viruses, MAYV, SLEV, and OROV largely depend on their class II fusion proteins (E1, E, and Gc, respectively) for entry into the host cell. Since many aspects of the structural biology of such proteins remain unclear, the present study aimed at physicochemically characterizing them by an in silico approach. The complete amino acid sequences of MAYV E1, SLEV E, and OROV Gc proteins derived by conceptual translation from annotated coding regions in the reference sequence genome of the respective viruses were obtained from the NCBI Protein database in the FASTA format and then submitted to the ClustalO, Protcalc, Pepstats, Predator, Proscan, PCprof, Phyre2, and 3Drefine web servers for the determination of sequence identities, the estimation of residual properties, the prediction of secondary structures, the identification of potential post-translational modifications, the recognition of antigenic propensities, and the modeling/refinement of three-dimensional structures. Sequence identities were 20.44%, 18.82%, and 13.70% between MAYV/SLEV, SLEV/OROV, and MAYV/OROV fusion proteins, respectively. As for the residual properties, MAYV E1 and SLEV E proteins showed a predominance of the non-polar profile (56% and 55% of the residues, respectively), whereas the OROV Gc protein showed a predominance of the polar profile (52% of the residues). Regarding predicted secondary structures, MAYV E1 and SLEV E proteins showed fewer alpha-helices (16.51% and 15.17%, respectively) than beta-sheets (21.79% and 25.15%, respectively), while the opposite was observed in the OROV Gc protein (20.39% alpha-helices and 12.14% beta-sheets). Regarding post-translational modifications, MAYV E1, SLEV E, and OROV Gc proteins showed greater relative potential for protein kinase C phosphorylation, N-myristoylation, and casein kinase II phosphorylation, respectively. Finally, antigenic propensities were higher in the N-terminus half than in the C-terminus half of these three proteins, whose three-dimensional structures revealed three distinctive domains. In conclusion, MAYV E1 and SLEV E proteins were found to share more physicochemical characteristics with each other than the OROV Gc protein, although they are all grouped under the same class of viral fusion proteins. Full article
(This article belongs to the Special Issue Genetic and Antigenic Diversity of Pathogenic Viruses)
Show Figures

Figure 1

19 pages, 3151 KB  
Article
Stem Cell Bioengineering with Bioportides: Inhibition of Planarian Head Regeneration with Peptide Mimetics of Eyes Absent Proteins
by Sarah Jones, Bárbara Matos, Sarah Dennison, Margarida Fardilha and John Howl
Pharmaceutics 2023, 15(8), 2018; https://doi.org/10.3390/pharmaceutics15082018 - 26 Jul 2023
Viewed by 2196
Abstract
Djeya1 (RKLAFRYRRIKELYNSYR) is a very effective cell penetrating peptide (CPP) that mimics the α5 helix of the highly conserved Eya domain (ED) of eyes absent (Eya) proteins. The objective of this study was to bioengineer analogues of Djeya1 that, following effective translocation into [...] Read more.
Djeya1 (RKLAFRYRRIKELYNSYR) is a very effective cell penetrating peptide (CPP) that mimics the α5 helix of the highly conserved Eya domain (ED) of eyes absent (Eya) proteins. The objective of this study was to bioengineer analogues of Djeya1 that, following effective translocation into planarian tissues, would reduce the ability of neoblasts (totipotent stem cells) and their progeny to regenerate the anterior pole in decapitated S. mediterranea. As a strategy to increase the propensity for helix formation, molecular bioengineering of Djeya1 was achieved by the mono-substitution of the helicogenic aminoisobutyric acid (Aib) at three species-variable sites: 10, 13, and 16. CD analyses indicated that Djeya1 is highly helical, and that Aib-substitution had subtle influences upon the secondary structures of bioengineered analogues. Aib-substituted Djeya1 analogues are highly efficient CPPs, devoid of influence upon cell viability or proliferation. All three peptides increase the migration of PC-3 cells, a prostate cancer line that expresses high concentrations of Eya. Two peptides, [Aib13]Djeya1 and [Aib16]Djeya1, are bioportides which delay planarian head regeneration. As neoblasts are the only cell population capable of division in planaria, these data indicate that bioportide technologies could be utilised to directly manipulate other stem cells in situ, thus negating any requirement for genetic manipulation. Full article
Show Figures

Graphical abstract

7 pages, 1934 KB  
Brief Report
Solution NMR Backbone Assignment of the C-Terminal Region of Human Dynein Light Intermediate Chain 2 (LIC2-C) Unveils Structural Resemblance with Its Homologue LIC1-C
by Morkos A. Henen, Natasia Paukovich, Rytis Prekeris and Beat Vögeli
Magnetochemistry 2023, 9(7), 166; https://doi.org/10.3390/magnetochemistry9070166 - 28 Jun 2023
Cited by 2 | Viewed by 1632
Abstract
Dynein, a homodimeric protein complex, plays a pivotal role in retrograde transportation along microtubules within cells. It consists of various subunits, among which the light intermediate chain (LIC) performs diverse functions, including cargo adaptor binding. In contrast to the vertebrate LIC homolog LIC1, [...] Read more.
Dynein, a homodimeric protein complex, plays a pivotal role in retrograde transportation along microtubules within cells. It consists of various subunits, among which the light intermediate chain (LIC) performs diverse functions, including cargo adaptor binding. In contrast to the vertebrate LIC homolog LIC1, LIC2 has received relatively limited characterization thus far, despite partially orthogonal functional roles. In this study, we present a near-to-complete backbone NMR chemical shift assignment of the C-terminal region of the light intermediate chain 2 of human dynein 1 (LIC2-C). We perform a comparative analysis of the secondary structure propensity of LIC2-C with the one previously reported for LIC1-C and show that the two transient helices in LIC1 that interact with motor adaptors are also present in LIC2. Full article
(This article belongs to the Special Issue NMR Spectroscopy and Imaging in Biological Chemistry and Medicine)
Show Figures

Figure 1

10 pages, 1201 KB  
Article
BioMimics 3D Stent in Femoropopliteal Lesions: 3-Year Outcomes with Propensity Matching for Drug-Coated Balloons
by Michael Piorkowski, Thomas Zeller, Christos Rammos, Koen Deloose, Klaus Hertting, Volker Sesselmann, Gunnar Tepe, Peter Gaines and Michael Lichtenberg
J. Cardiovasc. Dev. Dis. 2023, 10(3), 126; https://doi.org/10.3390/jcdd10030126 - 16 Mar 2023
Cited by 5 | Viewed by 2797
Abstract
Background: Through its helical centreline geometry, the BioMimics 3D vascular stent system is designed for the mobile femoropopliteal region, aiming to improve long-term patency and the risk of stent fractures. Methods: MIMICS 3D is a prospective, European, multi-centre, observational registry to evaluate the [...] Read more.
Background: Through its helical centreline geometry, the BioMimics 3D vascular stent system is designed for the mobile femoropopliteal region, aiming to improve long-term patency and the risk of stent fractures. Methods: MIMICS 3D is a prospective, European, multi-centre, observational registry to evaluate the BioMimics 3D stent in a real-world population through 3 years. A propensity-matched comparison was performed to investigate the effect of the additional use of drug-coated balloons (DCB). Results: The MIMICS 3D registry enrolled 507 patients (518 lesion, length 125.9 ± 91.0 mm). At 3 years, the overall survival was 85.2%, freedom from major amputation 98.5%, freedom from clinically driven target lesion revascularisation 78.0%, and primary patency 70.2%. The propensity-matched cohort included 195 patients in each cohort. At 3-year follow-up, there was no statistically significant difference in clinical outcomes, such as overall survival (87.9% in the DCB vs. 85.1% in the no DCB group), freedom from major amputation (99.4% vs. 97.2%), clinically driven TLR (76.4% vs. 80.3%), and primary patency (68.5% vs. 74.4%). Conclusion: The MIMICS 3D registry showed good 3-year outcomes of the BioMimics 3D stent in femoropopliteal lesions, demonstrating the safety and performance of this device under real-world conditions, whether used alone or in combination with a DCB. Full article
(This article belongs to the Special Issue Management and Challenges in Peripheral Arterial Disease)
Show Figures

Figure 1

15 pages, 1796 KB  
Article
Transforming Cross-Linked Cyclic Dimers of KR-12 into Stable and Potent Antimicrobial Drug Leads
by Taj Muhammad, Adam A. Strömstedt, Sunithi Gunasekera and Ulf Göransson
Biomedicines 2023, 11(2), 504; https://doi.org/10.3390/biomedicines11020504 - 9 Feb 2023
Cited by 13 | Viewed by 3251
Abstract
Is it possible to enhance structural stability and biological activity of KR-12, a truncated antimicrobial peptide derived from the human host defense peptide LL-37? Based on the mapping of essential residues in KR-12, we have designed backbone-cyclized dimers, cross-linked via a disulfide bond [...] Read more.
Is it possible to enhance structural stability and biological activity of KR-12, a truncated antimicrobial peptide derived from the human host defense peptide LL-37? Based on the mapping of essential residues in KR-12, we have designed backbone-cyclized dimers, cross-linked via a disulfide bond to improve peptide stability, while at the same time improving on-target activity. Circular dichroism showed that each of the dimers adopts a primarily alpha-helical conformation (55% helical content) when bound to lyso-phosphatidylglycerol micelles, indicating that the helical propensity of the parent peptide is maintained in the new cross-linked cyclic form. Compared to KR-12, one of the cross-linked dimers showed 16-fold more potent antimicrobial activity against human pathogens Pseudomonas aeruginosa, Staphylococcus aureus, and Candida albicans and 8-fold increased activity against Escherichia coli. Furthermore, these peptides retained antimicrobial activity at physiologically relevant conditions, including in the presence of salts and in human serum, and with selective Gram-negative antibacterial activity in rich growth media. In addition to giving further insight into the structure–activity relationship of KR-12, the current work demonstrates that by combining peptide stabilization strategies (dimerization, backbone cyclization, and cross-linking via a disulfide bond), KR-12 can be engineered into a potent antimicrobial peptide drug lead with potential utility in a therapeutic context. Full article
Show Figures

Figure 1

8 pages, 1566 KB  
Article
Comparison of Helical Blade Systems for Osteoporotic Intertrochanteric Fractures Using Biomechanical Analysis and Clinical Assessments
by Hyeonjoon Lee, Sang Hong Lee, Wonbong Lim, Seongmin Jo and Suenghwan Jo
Medicina 2022, 58(12), 1699; https://doi.org/10.3390/medicina58121699 - 22 Nov 2022
Cited by 4 | Viewed by 2786
Abstract
Background and Objectives: This study aimed to compare the biomechanical properties and outcomes of osteoporotic intertrochanteric fractures treated with two different helical blade systems, the trochanteric fixation nail-advanced (TFNA) and proximal femoral nail antirotation II (PFNA), to evaluate the efficacy and safety [...] Read more.
Background and Objectives: This study aimed to compare the biomechanical properties and outcomes of osteoporotic intertrochanteric fractures treated with two different helical blade systems, the trochanteric fixation nail-advanced (TFNA) and proximal femoral nail antirotation II (PFNA), to evaluate the efficacy and safety of the newly introduced TFNA system. Materials and Methods: A biomechanical comparison of the two helical blades was performed using uniaxial compression tests on polyurethane foam blocks of different densities. The peak resistance (PR) and accumulated resistance (AR) were measured during the 20 mm advancement through the test block. For clinical comparison, 63 osteoporotic intertrochanteric fractures treated with TFNA were identified and compared with the same number of fractures treated with PFNA using propensity score matching. Ambulatory status, medial migration, lateral sliding, fixation failure, and patient-reported outcomes were compared between the two groups over a minimum of 1 year’s follow up. Results: The uniaxial compression test showed that a slightly, but significantly lower resistance was required to advance the TFNA through the test block compared with the PFNA (20 PCF, p = 0.017 and p = 0.026; 30 PCF, p = 0.007 and p = 0.001 for PR and AR, respectively). Clinically, the two groups showed no significant differences in post-operative ambulatory status and patient-reported outcomes. However, in TFNA groups, significantly more medial migration (TFNA, 0.75 mm; PFNA, 0.40 mm; p = 0.0028) and also, lateral sliding was noted (TFNA, 3.99 mm; PFNA, 1.80 mm; p = 0.004). Surgical failure occurred in four and two fractures treated with the TFNA and PFNA, respectively. Conclusions: The results of our study suggest that the newly introduced TFNA provides clinical outcomes comparable with those of the PFNA. However, inferior resistance to medial migration in the TFNA raises concerns regarding potential fixation failures. Full article
Show Figures

Figure 1

Back to TopTop