Influence of Mutations on Physicochemical Properties of Spike Proteins from Prototypical SARS-CoV-2 Variants of Concern Detected in Amazonian Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Retrieval of Sequences
2.2. Multiple Sequence Alignment
2.3. Sequence Statistics Assessment
2.4. Prediction of Secondary Structures
2.5. Identification of Post-Translational Modification Sites
2.6. Determination of Antigenicity
2.7. Hypothesis Testing
3. Results
3.1. SARS-CoV-2 VOCs Prototypically Detected in Amazonian Countries
3.2. Sequence Identities of S Proteins
3.3. Lengths, Molecular Weights, and Isoelectric Points of S Proteins
3.4. Side-Chain Polarities of S Proteins
3.5. Secondary Structures of S Proteins
3.6. Post-Translational Modifications of S Proteins
3.7. Antigenicity of S Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rabi, F.A.; Al Zoubi, M.S.; Kasasbeh, G.A.; Salameh, D.M.; Al-Nasser, A.D. SARS-CoV-2 and coronavirus disease 2019: What we know so far. Pathogens 2020, 9, 231. [Google Scholar] [CrossRef] [PubMed]
- Ceraolo, C.; Giorgi, F.M. Genomic variance of the 2019-nCoV coronavirus. J. Med. Virol. 2020, 92, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020, 181, 281–292. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, T.; Cai, Y.; Chen, B. Structure of SARS-CoV-2 spike protein. Curr. Opin. Virol. 2021, 50, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Flores-Vega, V.R.; Monroy-Molina, J.V.; Jiménez-Hernández, L.E.; Torres, A.G.; Santos-Preciado, J.I.; Rosales-Reyes, R. SARS-CoV-2: Evolution and emergence of new viral variants. Viruses 2022, 14, 653. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, M.; Madabhavi, I. SARS-CoV-2 variants of concern: A review. Monaldi Arch. Chest Dis. 2023, 93, 2337. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, M.; Sharma, A.; Priyanka; Thakur, N.; Rajkhowa, T.K.; Choudhary, O.P. Delta variant (B.1.617.2) of SARS-CoV-2: Mutations, impact, challenges and possible solutions. Hum. Vaccines Immunother. 2022, 18, 2068883. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Nainu, F.; Frediansyah, A.; Yatoo, M.I.; Mohapatra, R.K.; Chakraborty, S.; Zhou, H.; Islam, M.R.; Mamada, S.S.; Kusuma, H.I.; et al. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J. Infect. Public Health 2023, 16, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Carabelli, A.M.; Peacock, T.P.; Thorne, L.G.; Harvey, W.T.; Hughes, J.; COVID-19 Genomics UK Consortium; Peacock, S.J.; Barclay, W.S.; de Silva, T.I.; Towers, G.J.; et al. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat. Rev. Microbiol. 2023, 21, 162–177. [Google Scholar] [CrossRef]
- LaRotta, J.; Escobar, O.; Ávila-Aguero, M.L.; Torres, J.P.; Sini de Almeida, R.; Morales, G.D.C.; Srivastava, A. COVID-19 in Latin America: A snapshot in time and the road ahead. Infect. Dis. Ther. 2023, 12, 389–410. [Google Scholar] [CrossRef]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef] [PubMed]
- Frishman, D.; Argos, P. Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng. 1996, 9, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Combet, C.; Blanchet, C.; Geourjon, C.; Deléage, G. NPS@: Network protein sequence analysis. Trends Biochem. Sci. 2000, 25, 147–150. [Google Scholar] [CrossRef]
- Parker, J.M.; Guo, D.; Hodges, R.S. New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: Correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 1986, 25, 5425–5432. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, M.; Papakyriakou, A.; Chlichlia, K.; Markoulatos, P.; Oliver, S.G.; Amoutzias, G.D. Comparative analysis of SARS-CoV-2 variants of concern, including omicron, highlights their common and distinctive amino acid substitution patterns, especially at the spike ORF. Viruses 2022, 14, 707. [Google Scholar] [CrossRef] [PubMed]
- Flores, B.M.; Montoya, E.; Sakschewski, B.; Nascimento, N.; Staal, A.; Betts, R.A.; Levis, C.; Lapola, D.M.; Esquível-Muelbert, A.; Jakovac, C.; et al. Critical transitions in the Amazon forest system. Nature 2024, 626, 555–564. [Google Scholar] [CrossRef] [PubMed]
- Peisahovics, F.; Rohaim, M.A.; Munir, M. Structural topological analysis of spike proteins of SARS-CoV-2 variants of concern highlight distinctive amino acid substitution patterns. Eur. J. Cell Biol. 2022, 101, 151275. [Google Scholar] [CrossRef] [PubMed]
- Broni, E.; Miller, W.A., 3rd. Computational analysis predicts correlations among amino acids in SARS-CoV-2 proteomes. Biomedicines 2023, 11, 512. [Google Scholar] [CrossRef]
- Matyášek, R.; Řehůřková, K.; Berta Marošiová, K.; Kovařík, A. Mutational asymmetries in the SARS-CoV-2 genome may lead to increased hydrophobicity of virus proteins. Genes 2021, 12, 826. [Google Scholar] [CrossRef]
- López-Cortés, G.I.; Palacios-Pérez, M.; Veledíaz, H.F.; Hernández-Aguilar, M.; López-Hernández, G.R.; Zamudio, G.S.; José, M.V. The spike protein of SARS-CoV-2 is adapting because of selective pressures. Vaccines 2022, 10, 864. [Google Scholar] [CrossRef] [PubMed]
- Ebrahim-Saraie, H.S.; Dehghani, B.; Mojtahedi, A.; Shenagari, M.; Hasannejad-Bibalan, M. Functional and structural characterization of SARS-Cov-2 spike protein: An in silico study. Ethiop. J. Health Sci. 2021, 31, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gao, K.; Wang, R.; Wei, G.W. Prediction and mitigation of mutation threats to COVID-19 vaccines and antibody therapies. Chem. Sci. 2021, 12, 6929–6948. [Google Scholar] [CrossRef]
- Roy, U. Comparative structural analyses of selected spike protein-RBD mutations in SARS-CoV-2 lineages. Immunol. Res. 2022, 70, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, K.; Chen, T.; Tajkhorshid, E. Posttranslational modifications optimize the ability of SARS-CoV-2 spike for effective interaction with host cell receptors. Proc. Natl. Acad. Sci. USA 2022, 119, e2119761119. [Google Scholar] [CrossRef]
- Davidson, A.D.; Williamson, M.K.; Lewis, S.; Shoemark, D.; Carroll, M.W.; Heesom, K.J.; Zambon, M.; Ellis, J.; Lewis, P.A.; Hiscox, J.A.; et al. Characterisation of the transcriptome and proteome of SARS-CoV-2 reveals a cell passage induced in-frame deletion of the furin-like cleavage site from the spike glycoprotein. Genome Med. 2020, 12, 68. [Google Scholar] [CrossRef]
- Venne, A.S.; Kollipara, L.; Zahedi, R.P. The next level of complexity: Crosstalk of posttranslational modifications. Proteomics 2014, 14, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Majed, S.O.; Jalal, P.J.; Fatah, M.H.; Karim, K.K.; Karim, A.Y.; Miasko, M.; Hasannajad, S.; Mustafa, S.A. Genomic analysis of SARS-CoV-2 omicron sublineage BA.5.2.1 in Erbil/Iraq. Cell. Mol. Biol. 2023, 69, 56–63. [Google Scholar] [CrossRef]
- Kugathasan, R.; Sukhova, K.; Moshe, M.; Kellam, P.; Barclay, W. Deep mutagenesis scanning using whole trimeric SARS-CoV-2 spike highlights the importance of NTD-RBD interactions in determining spike phenotype. PLoS Pathog. 2023, 19, e1011545. [Google Scholar] [CrossRef]
- Stewart-Jones, G.B.E.; Elbashir, S.M.; Wu, K.; Lee, D.; Renzi, I.; Ying, B.; Koch, M.; Sein, C.E.; Choi, A.; Whitener, B.; et al. Domain-based mRNA vaccines encoding spike protein N-terminal and receptor binding domains confer protection against SARS-CoV-2. Sci. Transl. Med. 2023, 15, eadf4100. [Google Scholar] [CrossRef]
Pango Lineage | Accession Number * | Geographic Location | Collection Date |
---|---|---|---|
B | QIG55994.1 | Brazil | 28 February 2020 |
B.1.1.7 | QQV29246.1 | Peru | 31 December 2020 |
P.1 | UHM42580.1 | Brazil | 17 April 2020 |
B.1.617.2 | UIJ16492.1 | Brazil | 1 July 2021 |
BA.1 | URB54916.1 | Brazil | 6 December 2021 |
BA.2 | UVJ69620.1 | Colombia | 5 March 2022 |
BA.4 | UTZ03741.1 | Brazil | 8 June 2022 |
BA.5 | UUC29660.1 | Brazil | 2 July 2022 |
Pango Lineage | Length 1 | Molecular Weight 2 | Isoelectric Point |
---|---|---|---|
B | 1273 | 141.18 | 6.61 |
B.1.1.7 | 1270 | 140.89 | 6.73 |
P.1 | 1273 | 141.31 | 6.67 |
B.1.617.2 | 1273 | 141.25 | 6.97 |
BA.1 | 1270 | 141.33 | 7.27 |
BA.2 | 1270 | 141.19 | 7.28 |
BA.4 | 1268 | 140.88 | 7.18 |
BA.5 | 1268 | 140.92 | 7.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.C.B.; Carvalho, C.A.M. Influence of Mutations on Physicochemical Properties of Spike Proteins from Prototypical SARS-CoV-2 Variants of Concern Detected in Amazonian Countries. Microbiol. Res. 2024, 15, 1334-1345. https://doi.org/10.3390/microbiolres15030090
Silva ACB, Carvalho CAM. Influence of Mutations on Physicochemical Properties of Spike Proteins from Prototypical SARS-CoV-2 Variants of Concern Detected in Amazonian Countries. Microbiology Research. 2024; 15(3):1334-1345. https://doi.org/10.3390/microbiolres15030090
Chicago/Turabian StyleSilva, Adriana Conceição B., and Carlos Alberto M. Carvalho. 2024. "Influence of Mutations on Physicochemical Properties of Spike Proteins from Prototypical SARS-CoV-2 Variants of Concern Detected in Amazonian Countries" Microbiology Research 15, no. 3: 1334-1345. https://doi.org/10.3390/microbiolres15030090
APA StyleSilva, A. C. B., & Carvalho, C. A. M. (2024). Influence of Mutations on Physicochemical Properties of Spike Proteins from Prototypical SARS-CoV-2 Variants of Concern Detected in Amazonian Countries. Microbiology Research, 15(3), 1334-1345. https://doi.org/10.3390/microbiolres15030090