Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = hedgerow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2831 KiB  
Article
Structural Diversity and Biodiversity of Forest and Hedgerow in Areas Managed for Pheasant Shooting Across the UK
by Peter R. Long, Leo Petrokofsky, William J. Harvey, Paul Orsi, Matthew W. Jordon and Gillian Petrokofsky
Forests 2025, 16(8), 1249; https://doi.org/10.3390/f16081249 - 1 Aug 2025
Abstract
Management for pheasant shooting is a widespread land use in the UK, with potential implications for forest and hedgerow habitats. This study evaluates whether sites managed for pheasant shooting differ ecologically from similar sites not used for shooting. A systematic evidence evaluation of [...] Read more.
Management for pheasant shooting is a widespread land use in the UK, with potential implications for forest and hedgerow habitats. This study evaluates whether sites managed for pheasant shooting differ ecologically from similar sites not used for shooting. A systematic evidence evaluation of comparative studies was combined with a spatial analysis using remote sensing data (2010–2024). The literature review identified only 32 studies meeting strict criteria for comparability, revealing inconsistent and often weak evidence, with few studies reporting detailed forest management or statistically robust outcomes. While some studies noted increased or decreased biodiversity associated with pheasant shooting, the evidence base was generally of low quality. Remote sensing assessed forest structural and spectral diversity, intactness, and hedgerow density across 1131 pheasant-managed and 1131 matched control sites. Biodiversity data for birds, plants, and butterflies were sourced from GBIF records. Structural diversity and hedgerow density were significantly higher on pheasant-managed sites, while no significant differences were found in forest spectral diversity, intactness, or biodiversity indicators. Pheasant management may shape certain habitat features but has limited demonstrable effects on overall biodiversity. Further field-based, controlled studies are required to understand causal mechanisms and inform ecologically sustainable shooting practices. Full article
(This article belongs to the Special Issue Biodiversity and Ecosystem Functions in Forests)
Show Figures

Figure 1

14 pages, 3332 KiB  
Article
Physiological Responses of Olive Cultivars Under Water Deficit
by Lorenzo León, Willem Goossens, Helena Clauw, Olivier Leroux and Kathy Steppe
Horticulturae 2025, 11(7), 745; https://doi.org/10.3390/horticulturae11070745 - 27 Jun 2025
Viewed by 280
Abstract
Olive trees are generally considered a species well-adapted to drought, but the impact of water shortage is of critical importance on olive production. For this reason, developing tolerant cultivars could be an effective strategy to mitigate the impact of drought in the future. [...] Read more.
Olive trees are generally considered a species well-adapted to drought, but the impact of water shortage is of critical importance on olive production. For this reason, developing tolerant cultivars could be an effective strategy to mitigate the impact of drought in the future. Characterizing drought stress tolerance in olive is a complex task due to the numerous traits involved in this response. In this study, plant growth, pressure–volume curves, gas-exchange and chlorophyll fluorescence traits, and stomata characteristics were monitored in nine cultivars to assess the effects of mild and severe drought stress conditions induced by withholding water for 7 and 21 days, respectively, and were compared to a well-watered control treatment. The plant materials evaluated included traditional cultivars, as well as new developed cultivars suited for high-density hedgerow olive orchards or resistant to verticillium wilt. Significant differences between cultivars were observed for most evaluated traits, with more pronounced differences under severe drought conditions. A multivariate analysis of the complete dataset recorded throughout the evaluation period allowed for the identification of promising cultivars under stress conditions (‘Sikitita’, ‘Sikitita-2’, and ‘Martina’) as well as highly discriminative traits that could serve as key selection parameters in future breeding programs. Full article
(This article belongs to the Special Issue Strategies of Producing Horticultural Crops Under Climate Change)
Show Figures

Figure 1

22 pages, 2804 KiB  
Article
Semi-Automatic Extraction of Hedgerows from High-Resolution Satellite Imagery
by Anna Lilian Gardossi, Antonio Tomao, MD Abdul Mueed Choudhury, Ernesto Marcheggiani and Maurizia Sigura
Remote Sens. 2025, 17(9), 1506; https://doi.org/10.3390/rs17091506 - 24 Apr 2025
Cited by 1 | Viewed by 679
Abstract
Small landscape elements are critical in ecological systems, encompassing vegetated and non-vegetated features. As vegetated elements, hedgerows contribute significantly to biodiversity conservation, erosion protection, and wind speed reduction within agroecosystems. This study focuses on the semi-automatic extraction of hedgerows by applying the Object-Based [...] Read more.
Small landscape elements are critical in ecological systems, encompassing vegetated and non-vegetated features. As vegetated elements, hedgerows contribute significantly to biodiversity conservation, erosion protection, and wind speed reduction within agroecosystems. This study focuses on the semi-automatic extraction of hedgerows by applying the Object-Based Image Analysis (OBIA) approach to two multispectral satellite datasets. Multitemporal image data from PlanetScope and Copernicus Sentinel-2 have been used to test the applicability of the proposed approach for detailed land cover mapping, with an emphasis on extracting Small Woody Elements. This study demonstrates significant results in classifying and extracting hedgerows, a smaller landscape element, from both Sentinel-2 and PlanetScope images. A good overall accuracy (OA) was obtained using PlanetScope data (OA = 95%) and Sentinel-2 data (OA = 85%), despite the coarser resolution of the latter. This will undoubtedly demonstrate the effectiveness of the OBIA approach in leveraging freely available image data for detailed land cover mapping, particularly in identifying and classifying hedgerows, thus supporting biodiversity conservation and ecological infrastructure enhancement. Full article
Show Figures

Graphical abstract

16 pages, 2762 KiB  
Article
Global and Specific NIR Models for Oxidative Stability Prediction and Cultivar Discrimination in Extra Virgin Olive Oil
by Hande Yılmaz-Düzyaman, Raúl de la Rosa, Nieves Núñez-Sánchez and Lorenzo León
Horticulturae 2025, 11(2), 177; https://doi.org/10.3390/horticulturae11020177 - 6 Feb 2025
Cited by 2 | Viewed by 1190
Abstract
The Oxidative Stability Index (OSI) is crucial for evaluating the commercial, nutritional, and sensory properties of extra virgin olive oils (EVOO). Near-infrared spectroscopy (NIRS) offers a rapid and cost-effective alternative to evaluate OSI with respect to traditional methods like Rancimat. This study aimed [...] Read more.
The Oxidative Stability Index (OSI) is crucial for evaluating the commercial, nutritional, and sensory properties of extra virgin olive oils (EVOO). Near-infrared spectroscopy (NIRS) offers a rapid and cost-effective alternative to evaluate OSI with respect to traditional methods like Rancimat. This study aimed to develop a robust global NIRS model for predicting OSI in EVOO and compare it with specific models for key Spanish cultivars such as ‘Picual’, ‘Arbequina’, and ‘Sikitita’ (a new, recently released cultivar for commercial hedgerow planting systems). Using NIRS spectra from 1100 to 2500 nm, we analyzed 939 samples globally and developed cultivar-specific models based on 59 ‘Picual’, 84 ‘Arbequina’, and 48 ‘Sikitita’ samples. Partial Least Squares (PLS) regression models demonstrated promising results in all sample sets tested, with the global model outperforming individual yearly models, highlighting the importance of incorporating variability to enhance predictive performance. Log-transformed OSI data improved accuracy across all models. Additionally, discriminant analysis (LDA) was performed on NIRS spectra from five cultivars (‘Arbequina,’ ‘Picual,’ ‘Koroneiki,’ ‘Sikitita,’ and ‘Arbosana’), a total of 254 samples, achieving 96% accuracy in differentiating monovarietal EVOO samples. These findings demonstrate the versatility of NIRS for OSI modeling and cultivar discrimination, making it a valuable tool for breeding programs and quality assessment. Full article
(This article belongs to the Special Issue Advances in Genetics, Breeding, and Quality Improvement of Olive)
Show Figures

Graphical abstract

14 pages, 4671 KiB  
Article
Impact of El Niño–Southern Oscillation and Mechanical Pruning Strategies on the Productivity, Alternate Bearing, and Vegetative Growth of Olive Hedgerows
by Franco E. Calvo, María A. Calahorra and Eduardo R. Trentacoste
Agriculture 2024, 14(12), 2335; https://doi.org/10.3390/agriculture14122335 - 20 Dec 2024
Viewed by 992
Abstract
Mechanical pruning in narrow olive hedgerows is essential for managing alternate bearing and facilitating mechanical harvesting by influencing the number of fruit load points. In olive cv. Arbequina hedgerows (2000 trees ha−1), two pruning times (winter and spring) and two pruning [...] Read more.
Mechanical pruning in narrow olive hedgerows is essential for managing alternate bearing and facilitating mechanical harvesting by influencing the number of fruit load points. In olive cv. Arbequina hedgerows (2000 trees ha−1), two pruning times (winter and spring) and two pruning types (unilateral and bilateral) were applied under contrasting bearing conditions (ON and OFF seasons) over four consecutive seasons in La Rioja, Argentina. A strong El Niño–Southern Oscillation (ENSO) event during the final season had a profound impact, increasing winter temperatures by 2 °C and reducing the average chill accumulation by 23%, significantly reducing productivity and exacerbating alternate bearing. The results demonstrated that pruning timing alone was ineffective in controlling alternate bearing, while bilateral pruning during ON seasons showed promise in regularizing fruit and oil yields and enhancing water use efficiency. However, the severe effects of the ENSO, which disrupted the winter dormancy break of fruiting buds, could not be mitigated by the evaluated pruning strategies. Full article
Show Figures

Figure 1

15 pages, 2323 KiB  
Article
Landscape Composition and Crop Border Vegetation Diversity Effect on Pollinators, Auxiliary Fauna, and Phytophagous Arthropods of Leguminous Cropland in Araba (Basque Country)
by Ainhoa Urkijo, Ibone Ametzaga-Arregi, Eneko Elkano and Isabel Albizu
Land 2024, 13(12), 2128; https://doi.org/10.3390/land13122128 - 8 Dec 2024
Viewed by 871
Abstract
Many strategies and directives are starting to address the importance of an appropriate landscape for agricultural biodiversity, such as pollinators and auxiliary fauna. Therefore, it is necessary to identify which landscape features are more important for agricultural biodiversity conservation and the ecosystem services [...] Read more.
Many strategies and directives are starting to address the importance of an appropriate landscape for agricultural biodiversity, such as pollinators and auxiliary fauna. Therefore, it is necessary to identify which landscape features are more important for agricultural biodiversity conservation and the ecosystem services they offer, like pollination and pest control. Thus, the main objective of this study was to assess the effect of landscape composition, configuration, connectivity, and crop border vegetation on arthropod diversity. The arthropod community was sampled in eight legume crops located across a gradient of landscape complexity. Additionally, the border vegetation of each plot was characterized, and the surrounding landscape was analyzed at a small and a large scale. For the statistical analysis, Generalized Linear Mix Models and redundancy analyses were applied. Pollinators were positively affected mainly by landscape connectivity. Pest control agents were less influenced by the landscape and only before harvest were they positively affected by riparian forests. Finally, phytophagous arthropod richness increased with border vegetation diversity and cropland in the surroundings. In conclusion, in the leguminous crops of Araba landscape connectivity together with cropland extension in the surroundings should be considered to promote ES-offering fauna diversity. Full article
(This article belongs to the Special Issue Ecology of the Landscape Capital and Urban Capital)
Show Figures

Figure 1

16 pages, 3005 KiB  
Article
Long-Term Conservation Agriculture Improves Soil Quality in Sloped Farmland Planting Systems
by Hongying Li, Jun Tang, Jing Wang, Jun Qiao and Ningyuan Zhu
Plants 2024, 13(23), 3420; https://doi.org/10.3390/plants13233420 - 5 Dec 2024
Cited by 1 | Viewed by 1016
Abstract
Conservation agriculture practices (CAs) are important under the increasingly serious soil quality degradation of sloping farmlands worldwide. However, little is known about how the long-term application of CAs influences soil quality at different slope positions. We conducted field experiments for a watershed sloping [...] Read more.
Conservation agriculture practices (CAs) are important under the increasingly serious soil quality degradation of sloping farmlands worldwide. However, little is known about how the long-term application of CAs influences soil quality at different slope positions. We conducted field experiments for a watershed sloping farmland’s mainstream planting systems in the Three Gorges Reservoir area of China. Orchard plots were treated with a conventional citrus planting pattern (C-CK), citrus intercropped with white clover (WC), citrus orchard soil mulched with straw (SM) and citrus intercropped with Hemerocallis flava contour hedgerows (HF). Crop field plots were treated with a conventional wheat–peanut rotation (W-CK), a wheat–peanut rotation intercropped with Toona sinensis contour hedgerows (TS), a wheat–peanut rotation intercropped with alfalfa contour hedgerows (AF) and a ryegrass–sesame rotation (RS). We collected soil samples from the plots at the upper, middle and lower slope positions and measured their soil properties after a nine-year experiment. We found that (1) CAs improved the soil properties at the three slope positions; (2) the effect of the CAs on the soil properties was more significant than that on the slope position; and (3) the soil quality index at the upper, middle and lower slope positions increased by 29.9%, 45.8% and 33.3%, respectively, for WC; 48.7%, 39.5% and 27.1%, respectively, for SM; and 21.7%, 25.5% and 21.6%, respectively, for HF compared to C-CK; as well as 18.7%, 23.7% and 20.4%, respectively, for TS; 16.9%, 18.6% and 16.5%, respectively, for AF; and 16.1%, 13.0% and 13.9%, respectively, for RS compared to W-CK. These findings suggest that long-term CA application enhances the soil quality of the slope position, of which SM and TS applied to orchards and crop fields, respectively, are the most effective. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

13 pages, 3022 KiB  
Article
Prime Basking Sites and Communal Basking in the Lizard, Lacerta bilineata; High Risk for Juveniles?
by Roger Meek and Luca Luiselli
Diversity 2024, 16(12), 728; https://doi.org/10.3390/d16120728 - 27 Nov 2024
Cited by 1 | Viewed by 1128
Abstract
Sunlight and the heat it provides are important ecological resources for reptiles especially for those species living in temperate zones that bask extensively to maximize heat uptake. Sun basking has both benefits and costs for reptiles, giving heat that provides the energy to [...] Read more.
Sunlight and the heat it provides are important ecological resources for reptiles especially for those species living in temperate zones that bask extensively to maximize heat uptake. Sun basking has both benefits and costs for reptiles, giving heat that provides the energy to drive physiology but basking in open patches increases risk of predation due to higher visibility. Prime basking sites are believed to increase benefits for reptiles that include, in addition to open sunlit areas, facilitate detection of predators and prey and escape to nearby refuges. However, if such sites are limited, both inter and intra-specific interference may occur and this kind of competition may impact on a reptile’s ability to access prime basking sites, and as a consequence, its capacity to thermoregulate to optimum body temperatures. This may be especially important for juveniles, for whom rapid growth is a key factor in survivorship. We studied communal basking and interaction events at prime basking sites in the European green lizard, Lacerta bilineata, in a hedgerow in western France. We compared basking behaviour of adults and juveniles with sympatric adult wall lizards Podarcis muralis using non-invasive photographic-mark-recapture. Adult L. bilineata were more evenly distributed across basking sights compared to juveniles but significant differences were only detected between males and juveniles. Juvenile L. bilineata abandoned basking sites at the approach of both adult males and females and were aggressively removed by adult male L. bilineata. We found inter-specific communal basking between both adult and juvenile L. bilineata with adult wall lizards P. muralis. Communal basking was observed between male and female L. bilineata but not between adult males or between adult female L. bilineata. Communal basking was in proportionally greater frequency in juveniles compared to adult L. bilineata. Full article
(This article belongs to the Special Issue Biogeography, Ecology and Conservation of Reptiles)
Show Figures

Figure 1

15 pages, 2306 KiB  
Article
The Influence of Habitat Diversity on Bat Species Richness and Feeding Behavior in Chilean Vineyards: Implications for Agroecological Practices
by Benjamín Puelles-Escobar and Andrés Muñoz-Sáez
Agriculture 2024, 14(11), 1896; https://doi.org/10.3390/agriculture14111896 - 25 Oct 2024
Viewed by 1495
Abstract
Agriculture is a leading cause of biodiversity loss, making the transition to sustainable agroecological practices crucial. Insectivorous bats play a crucial role as biological controllers in regard to agricultural crops, serving as important insect predators. The purpose of this study is to assess [...] Read more.
Agriculture is a leading cause of biodiversity loss, making the transition to sustainable agroecological practices crucial. Insectivorous bats play a crucial role as biological controllers in regard to agricultural crops, serving as important insect predators. The purpose of this study is to assess bat communities in three distinct habitats, namely the interior of a vineyard, native vegetation, and the transitional edge between them, by analyzing the echolocation patterns of different species. Generalized linear mixed models were used to evaluate the influence of landscape characteristics on bat communities and at the species level, allowing the incorporation of variables at different scales (at 10 m, 100 m, and 1000 m radius) from each sampling site. Our results show that edges enhance bat richness, their general activity, and feeding patterns, and are of particular benefit to certain species: Tadarida brasiliensis, Myotis chiloensis, and Lasiurus varius. Implementing agroecological practices, such as the maintenance of tree hedgerows at the landscape scale, along with native vegetation at the landscape scale, can amplify feeding activity in vineyards, thereby enhancing the provision of ecosystem services in agroecosystems. The edges of vineyards and natural vegetation are crucial for providing habitats for bats and increasing their foraging activity, as well as providing a way to enhance agroecological practices in vineyards to bolster ecosystem services. Full article
Show Figures

Figure 1

19 pages, 8890 KiB  
Article
Forgotten Ecological Corridors: A GIS Analysis of the Ditches and Hedges in the Roman Centuriation Northeast of Padua
by Tanja Kremenić, Mauro Varotto and Francesco Ferrarese
Sustainability 2024, 16(20), 8962; https://doi.org/10.3390/su16208962 - 16 Oct 2024
Cited by 1 | Viewed by 1567
Abstract
Studying historical rural landscapes beyond their archaeological and cultural significance, as has typically been addressed in previous research, is important in the context of current environmental challenges. Some historical rural landscapes, such as Roman land divisions, have persisted for more than 2000 years [...] Read more.
Studying historical rural landscapes beyond their archaeological and cultural significance, as has typically been addressed in previous research, is important in the context of current environmental challenges. Some historical rural landscapes, such as Roman land divisions, have persisted for more than 2000 years and may still contribute to sustainability goals. To assess this topic, the hydraulic and vegetation network of the centuriation northeast of Padua were studied, emphasising their multiple benefits. Their length, distribution, and evolution over time (2008–2022) were vectorised and measured using available digital terrain models and orthophotographs in a geographic information system (GIS). The results revealed a significant decline in the length of water ditches and hedgerows across almost all examined areas, despite their preservation being highlighted in regional and local spatial planning documents. These findings indicate the need for a better understanding of the local dynamics driving such trends and highlight the importance of adopting a more tailored approach to their planning. This study discusses the GIS metrics utilised and, in this way, contributes to landscape monitoring and restoration actions. Finally, a multifunctional approach to the sustainable planning of this area is proposed here—one that integrates the cultural archaeological heritage in question with environmental preservation and contemporary climate adaptation and mitigation strategies. Full article
Show Figures

Figure 1

11 pages, 4213 KiB  
Article
Evaluation of Canopy Growth in Rainfed Olive Hedgerows Using UAV-LiDAR
by Susana Cantón-Martínez, Francisco Javier Mesas-Carrascosa, Raúl de la Rosa, Francisca López-Granados, Lorenzo León, Fernando Pérez-Porras, Francisco C. Páez and Jorge Torres-Sánchez
Horticulturae 2024, 10(9), 952; https://doi.org/10.3390/horticulturae10090952 - 6 Sep 2024
Cited by 2 | Viewed by 1224
Abstract
Hedgerow cultivation systems have revolutionized olive growing in recent years because of the mechanization of harvesting. Initially applied under irrigated conditions, its use has now extended to rainfed cultivation. However, there is limited information on the behavior of olive cultivars in hedgerow growing [...] Read more.
Hedgerow cultivation systems have revolutionized olive growing in recent years because of the mechanization of harvesting. Initially applied under irrigated conditions, its use has now extended to rainfed cultivation. However, there is limited information on the behavior of olive cultivars in hedgerow growing systems under rainfed conditions, which is a crucial issue in the context of climate change. To fill this knowledge gap, a rainfed cultivar trial was planted in 2020 in Southern Spain to compare ‘Arbequina’, ‘Arbosana’, ‘Koroneiki’, and ‘Sikitita’, under such growing conditions. One of the most important traits in low-water environments is the canopy growth. Because traditional canopy measurements are costly in terms of time and effort, the use of light detection and ranging (LiDAR) sensor onboard an uncrewed aerial vehicle (UAV) was tested. Statistical analyses of data collected in November 2022 and January 2023 revealed high correlations between UAV-LiDAR metrics and field measurements for height, projected area, and crown volume, based on validation with measurements from 36 trees. These results provide a solid basis for future research and practical applications in rainfed olive growing, while highlighting the potential of UAV-LiDAR technology to characterize tree canopy structure efficiently. Full article
Show Figures

Figure 1

25 pages, 7083 KiB  
Article
The Contribution of the Management of Landscape Features to Soil Organic Carbon Turnover among Farmlands
by Gemma Chiaffarelli, Fulvia Tambone and Ilda Vagge
Soil Syst. 2024, 8(3), 95; https://doi.org/10.3390/soilsystems8030095 - 30 Aug 2024
Cited by 3 | Viewed by 1521
Abstract
Background: Landscape features (LF—i.e., the natural and semi-natural areas in agricultural landscapes) positively contribute to soil organic carbon (SOC) sequestration and storage among farmlands. LF-related SOC partitioning still needs context-specific investigation to properly address climate change mitigation goals. Not many studies address LF [...] Read more.
Background: Landscape features (LF—i.e., the natural and semi-natural areas in agricultural landscapes) positively contribute to soil organic carbon (SOC) sequestration and storage among farmlands. LF-related SOC partitioning still needs context-specific investigation to properly address climate change mitigation goals. Not many studies address LF phytocoenoses traits relation with SOC partitioning. Our study investigates SOC partitioning (total organic carbon [TOC]; labile dissolved organic carbon [DOC]; stable recalcitrant organic carbon [ROC]) between arable fields (AGR) and semi-natural/natural components (NAT: herbaceous field margins, young/mature hedgerows, young/mature woods) in a temperate alluvial pedoclimatic context (Po Plain, Northwestern Italy). Methods: We compared topsoil SOC and its fractions (0–20 cm depth) between: AGR-NAT sites; hedgerows (HED)-AGR sites; and different ecological quality degrees (phytocoenoses were classified by Biological Territorial Capacity [BTC] values and Index of Vegetation Naturalness categories [IVN]--). Results: Our results confirmed a significantly different SOC partitioning behaviour between AGR and NAT sites (NAT: +79% TOC; +409% ROC); AGR sites were negatively correlated with ROC. TOC was a robust ROC predictor. HED had significantly higher TOC (+71%) and ROC (+395%) compared to arable fields, with the highest values in mature hedgerows. DOC showed contrasted behaviours. A linear regression model on BTC and IVN (predictors) and TOC and ROC showed significant positive relationships, especially for ROC. Conclusions: Our study confirmed the LF role in long-term SOC storage among farmlands, which should be coupled with AGR management (with prevalent short-term SOC fractions). LF ecological quality was a determining factor in total and long-term SOC. Proper LF management is pivotal to aligning climate change mitigation goals with other ecological benefits. Full article
Show Figures

Figure 1

11 pages, 2489 KiB  
Article
Productivity and Vigor Dynamics in a Comparative Trial of Hedgerow Olive Cultivars
by Juan Manuel Pérez-Rodríguez, Raúl De la Rosa, Lorenzo León, Encarnación Lara and Henar Prieto
Agriculture 2024, 14(8), 1362; https://doi.org/10.3390/agriculture14081362 - 14 Aug 2024
Cited by 1 | Viewed by 2018
Abstract
The hedgerow growing system is prevalent in new olive orchards worldwide due to its fully mechanized harvesting. Several works have been published to compare cultivars planted in this system, focusing on productivity and oil composition. However, little research has been conducted on the [...] Read more.
The hedgerow growing system is prevalent in new olive orchards worldwide due to its fully mechanized harvesting. Several works have been published to compare cultivars planted in this system, focusing on productivity and oil composition. However, little research has been conducted on the long-term evaluation of cultivars’ growth habits when trained in hedgerow systems and on how it affects their interannual productivity. In this work, we report the canopy growth habit, productivity, and their correlation for the ‘Arbequina’, ‘Arbosana’, ‘Koroneiki’, ‘Lecciana’, ‘Oliana’, and ‘Sikitita’ cultivars grown in a hedgerow system in Extremadura, central-western Spain, for 9 years. ‘Koroneiki’, ‘Arbequina’, and ‘Lecciana’ were the cultivars with the highest canopy growth, both in young and adult trees, and the ones with the highest pruning needs from 5 to 10 years after planting. The yield behavior in each of the years evaluated was stable in all cultivars except ‘Lecciana’. This alternate bearing was associated with the distribution of total yearly produced biomass between fruits and vegetative growth. ‘Oliana’, ‘Arbosana’, and ‘Sikitita’ were the cultivars with the highest proportion of fruit of the total biomass, and ‘Lecciana’ showed the lowest. This study indicates that cultivars with higher fruit proportions of total biomass might have better suitability for long-term growing in hedgerow formation, fewer pruning needs, and more stable productivity across the years. In this sense, in the climatic conditions considered here, ‘Arbosana’, ‘Sikitita’, and ‘Oliana’ could be the most suitable cultivars for this growing system. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

14 pages, 4435 KiB  
Article
Characteristics of Runoff and Sediment Yield in a Simulated Hedgerow–Grass Ditch System in Sloping Lands with Regosols
by Lan Song, Yunfei Bi, Qingsong Bo, Tianyang Li, Yonghao Li, Binghui He and Xinmei Zhao
Land 2024, 13(8), 1231; https://doi.org/10.3390/land13081231 - 8 Aug 2024
Cited by 1 | Viewed by 881
Abstract
The independent effects of hedgerow or grass ditches on the migration of runoff, sediment and nutrients are well known; however, the effects of combined hedgerow–grass ditch systems have rarely been assessed. Vegetation stem diameter (VSD) is an essential variable that changes the effectiveness [...] Read more.
The independent effects of hedgerow or grass ditches on the migration of runoff, sediment and nutrients are well known; however, the effects of combined hedgerow–grass ditch systems have rarely been assessed. Vegetation stem diameter (VSD) is an essential variable that changes the effectiveness of a hedgerow–grass ditch system in reducing runoff and sediment yield on sloping lands. A hedgerow–grass ditch system was simulated to interpret the effects of varied VSDs [i.e., 0 (control), 0.1, 0.2, 0.4 and 0.8 cm] in hedgerow on runoff and sediment yield by laboratory rainfall simulation. Compared to the control, the time to runoff initiation presented a 43.3% delay in 0.8 cm VSD (p < 0.05), and the runoff rate was significantly reduced by 16.6% in the 0.2 cm VSD and by 17.0% in the 0.8 cm VSD, respectively (p < 0.05). The sediment yield rate decreased by 74.2% and 85.8% relative to that of the control, respectively (p < 0.05). The reduction was 5.3–17.0% for the runoff rate and 3.5–85.8% for the sediment yield rate with varied VSDs relative to the control. The sediment yield rate decreased remarkably as an exponential function with increased stem diameter (p < 0.05). Our results have great significance for creating strategies for soil and water conservation on sloping lands. Full article
Show Figures

Figure 1

20 pages, 2320 KiB  
Article
Wide-Scale Identification of Small Woody Features of Landscape from Remote Sensing
by Alessio Patriarca, Eros Caputi, Lorenzo Gatti, Ernesto Marcheggiani, Fabio Recanatesi, Carlo Maria Rossi and Maria Nicolina Ripa
Land 2024, 13(8), 1128; https://doi.org/10.3390/land13081128 - 24 Jul 2024
Cited by 3 | Viewed by 1270
Abstract
Small landscape features (i.e., trees outside forest, small woody features) and linear vegetation such as hedgerows, riparian vegetation, and green lanes are vital ecological structures in agroecosystems, enhancing the biodiversity, landscape diversity, and protecting water bodies. Therefore, their monitoring is fundamental to assessing [...] Read more.
Small landscape features (i.e., trees outside forest, small woody features) and linear vegetation such as hedgerows, riparian vegetation, and green lanes are vital ecological structures in agroecosystems, enhancing the biodiversity, landscape diversity, and protecting water bodies. Therefore, their monitoring is fundamental to assessing a specific territory’s arrangement and verifying the effectiveness of strategies and financial measures activated at the local or European scale. The size of these elements and territorial distribution make their identification extremely complex without specific survey campaigns; in particular, remote monitoring requires data of considerable resolution and, therefore, is very costly. This paper proposes a methodology to map these features using a combination of open-source or low-cost high-resolution orthophotos (RGB), which are typically available to local administrators and are object-oriented classification methods. Additionally, multispectral satellite images from the Sentinel-2 platform were utilized to further characterize the identified elements. The produced map, compared with the other existing layers, provided better results than other maps at the European scale. Therefore, the developed method is highly effective for the remote and wide-scale assessment of SWFs, making it a crucial tool for defining and monitoring development policies in rural environments. Full article
Show Figures

Figure 1

Back to TopTop