Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (171)

Search Parameters:
Keywords = heat-borne

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2639 KiB  
Article
Functional and Safety Profile of Limosilactobacillus vaginalis and Development of Oral Fast-Disintegrating Tablets for Gut Microbiota Modulation
by Barbara Giordani, Federica Monti, Elisa Corazza, Sofia Gasperini, Carola Parolin, Angela Abruzzo, Claudio Foschi, Antonella Marangoni, Monia Lenzi, Barbara Luppi and Beatrice Vitali
Pharmaceutics 2025, 17(8), 1011; https://doi.org/10.3390/pharmaceutics17081011 - 1 Aug 2025
Viewed by 282
Abstract
Background/Objectives: Early gut colonization by bifidobacteria, occurring more favorably in vaginally born infants than in those delivered via C-section, is crucial for maintaining overall health. The study investigated the health-promoting properties of Limosilactobacillus vaginalis BC17 both as viable cells and as postbiotics [...] Read more.
Background/Objectives: Early gut colonization by bifidobacteria, occurring more favorably in vaginally born infants than in those delivered via C-section, is crucial for maintaining overall health. The study investigated the health-promoting properties of Limosilactobacillus vaginalis BC17 both as viable cells and as postbiotics (i.e., cell-free supernatant and heat-killed cells), with the purpose of developing oral formulations to support intestinal health. Methods: The safety, effects on the adhesion of bifidobacteria and enteropathogens to intestinal cells, and anti-inflammatory properties of L. vaginalis BC17 viable cells and postbiotics were evaluated. Fast-disintegrating tablets were formulated by freeze-drying cell-free supernatant in combination with heat-killed or viable cells alongside maltodextrins. Results: The formulations were shown to be non-genotoxic and compatible with intestinal cell lines (Caco-2 and HT-29). BC17 viable cells survived in co-culture with intestinal cells up to 48 h and exhibited moderate adhesion to the cell lines. Notably, both BC17 viable cells and postbiotics enhanced the adhesion of beneficial bifidobacteria to Caco-2 cells by up to 250%, while reducing enteropathogens adhesion by 40–70%. Moreover, they exerted significant anti-inflammatory effects, reducing nitric oxide production in macrophages by 40–50% and protecting intestinal cells from SDS-induced damage. The formulations allowed administration of at least 109 BC17 cells in infants and adults through easy and rapid dispersion in milk or water, or directly in the oral cavity without chewing, and preserved their functional properties for up to 3 months of storage. Conclusions: L. vaginalis BC17 viable cells and postbiotics, as well as fast-disintegrating tablets, showed promising functional and safety profiles. Although further in vivo validation is needed, this approach represents a compelling strategy for promoting gut health. Full article
Show Figures

Graphical abstract

13 pages, 935 KiB  
Article
The Physiological Response of the Fiddler Crab Austruca lactea to Anthropogenic Low-Frequency Substrate-Borne Vibrations
by Soobin Joo, Jaemin Cho and Taewon Kim
Biology 2025, 14(8), 962; https://doi.org/10.3390/biology14080962 (registering DOI) - 31 Jul 2025
Viewed by 146
Abstract
Anthropogenic vibrational disturbances in the marine environment can affect benthic organisms, but these effects on marine animals remain poorly understood. To examine whether anthropogenic substrate-borne vibrations induce physiological stress in the white-clawed fiddler crab (Austruca lactea), individuals were exposed to vibrations [...] Read more.
Anthropogenic vibrational disturbances in the marine environment can affect benthic organisms, but these effects on marine animals remain poorly understood. To examine whether anthropogenic substrate-borne vibrations induce physiological stress in the white-clawed fiddler crab (Austruca lactea), individuals were exposed to vibrations at 120 Hz and 250 Hz (~100 dB re 1 µm/s2), and physiological indicators were measured. Lactate and ATP concentrations in the leg muscle were measured, and heat shock protein 70 kDa (HSP70) gene expression in the hepatopancreas was analyzed using RT-PCR with newly designed primers. At 120 Hz, ATP and lactate levels in the leg muscle did not differ significantly between the exposure and control groups. However, at 250 Hz, ATP levels were lower and lactate levels were higher in the exposure group compared to the control. HSP70 gene expression in the hepatopancreas did not differ significantly between the exposure and control groups at either frequency, although one individual exposed to 250 Hz exhibited markedly elevated expression, inducing higher expression variability in the exposed group. These results suggest that anthropogenic vibrational pollution may induce physiological stress in A. lactea, and that such physiological indices could serve as biomarkers for assessing vibroacoustic pollution on marine animals. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

16 pages, 2387 KiB  
Article
The Impacts of Feeding a Reduced Energy and Lysine Balance in Lactation on Sow Body Composition, Litter Growth, and Markers of Subsequent Reproductive Performance
by Tracy L. Muller, Kate J. Plush, John R. Pluske, Darryl N. D’Souza, David W. Miller and Robert J. Van Barneveld
Agriculture 2025, 15(14), 1559; https://doi.org/10.3390/agriculture15141559 - 21 Jul 2025
Viewed by 272
Abstract
This experiment examined whether multiparous sows fed a diet lower in energy and lysine at a reduced feed allowance would still mobilise fat and (or) protein to support piglet growth and negatively impact subsequent reproductive performance. A total of 152 multiparous sows was [...] Read more.
This experiment examined whether multiparous sows fed a diet lower in energy and lysine at a reduced feed allowance would still mobilise fat and (or) protein to support piglet growth and negatively impact subsequent reproductive performance. A total of 152 multiparous sows was allocated in a 2 × 2 factorial design with the respective factors being diet type fed in lactation (gestation, 13.0 MJ digestible energy (DE)/kg, 0.42 g standardised ileal digestible (SID) lysine/MJ DE; or lactation, 14.3 MJ DE/kg, 0.62 g SID lysine/MJ DE) and feed allowance (ad libitum or 7.5 kg/d, ~15% reduction on ad libitum intake). Body composition was estimated on the day after farrowing (day 2) and at weaning (day 21). Blood was collected on days 2, 21 and at standing heat, for the analysis of insulin and insulin-like growth factor 1 (IGF-1). Diet type did not alter (p > 0.05) bodyweight or P2 backfat depth change in lactation, estimated body fat and protein changes, litter growth, or subsequent total piglets born. Ad libitum-fed sows showed a significant gain in girth compared to sows offered 7.5 kg/d (2.9 versus −0.4 mm, p = 0.015) and had a tendency for a shorter wean-to-service interval (p < 0.10). Sows fed the lactation diet had higher insulin concentrations at weaning (p < 0.05), but levels were the same (p > 0.10) by heat detection; IGF-1 concentrations remained unaffected. These data indicate that imposing a calculated negative energy and lysine balance on lactating sows had a limited impact on lactation or subsequent reproductive performance, supporting the notion that the modern sow may be more resilient to nutritional impositions than has been historically reported. Full article
(This article belongs to the Special Issue Effects of Dietary Interventions on Monogastric Animal Production)
Show Figures

Figure 1

12 pages, 1307 KiB  
Article
Reverse Transcription Loop-Mediated Isothermal Amplification Assay Using Samples Directly: Point-of-Care Detection of Severe Fever with Thrombocytopenia Syndrome Virus
by Marla Anggita, Kyoko Hayashida, Miyuka Nishizato, Hiroshi Shimoda and Daisuke Hayasaka
Zoonotic Dis. 2025, 5(3), 19; https://doi.org/10.3390/zoonoticdis5030019 - 11 Jul 2025
Viewed by 246
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by the SFTS virus (SFTSV). A rapid and cost-effective point-of-care testing detection system is important for the early diagnosis of SFTS. Herein, we developed a ready-to-use dried reverse transcription loop-mediated isothermal [...] Read more.
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by the SFTS virus (SFTSV). A rapid and cost-effective point-of-care testing detection system is important for the early diagnosis of SFTS. Herein, we developed a ready-to-use dried reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the direct detection of SFTSV in clinical samples. The assay enables simple, RNA-extraction-free detection using heat-treated serum or plasma, followed by a 30 min incubation at 65 °C. The results are visually interpreted through the color emitted, which can be observed under LED light. The established assay demonstrated detection sensitivity for SFTSV at 104 copies/µL and was effective in identifying infections in cats. Despite being less sensitive than real-time RT-PCR, this dried RT-LAMP method offers a rapid, cost-effective alternative suitable for point-of-care use, particularly in remote or resource-limited settings. The simplified workflow and visual readout make it a practical tool for the early detection and daily surveillance of SFTSV in animals. Full article
Show Figures

Figure 1

23 pages, 2459 KiB  
Review
Climate-Sensitive Health Outcomes in Kenya: A Scoping Review of Environmental Exposures and Health Outcomes Research, 2000–2024
by Jessica Gerard, Titus Kibaara, Iris Martine Blom, Jane Falconer, Shamsudeen Mohammed, Zaharat Kadri-Alabi, Roz Taylor, Leila Abdullahi, Robert C. Hughes, Bernard Onyango and Ariel A. Brunn
Climate 2025, 13(7), 133; https://doi.org/10.3390/cli13070133 - 20 Jun 2025
Viewed by 2279
Abstract
Climate change threatens health and social development gains in Kenya, necessitating health policy planning for risk reduction and mitigation. To understand the state of knowledge on climate-related health impacts in Kenya, a scoping review of 25 years of environmental health research was conducted. [...] Read more.
Climate change threatens health and social development gains in Kenya, necessitating health policy planning for risk reduction and mitigation. To understand the state of knowledge on climate-related health impacts in Kenya, a scoping review of 25 years of environmental health research was conducted. In compliance with a pre-registered protocol, nine bibliographic databases and grey literature sources were searched for articles published from 2000 to 2024. Of 19,234 articles screened, 816 full texts were reviewed in duplicate, and a final 348 articles underwent data extraction for topic categorisation, trend analysis, and narrative summary. Most of the studies (97%, n = 336) were journal articles, with 64% published after 2014 (n = 224). The health topics centred on vector-borne diseases (45%, n = 165), primarily vector abundance (n = 111) and malaria (n = 67), while mental health (n = 12) and heat exposure (n = 9) studies were less frequent. The research was geographically concentrated on the Lake Victoria Basin, Rift Valley, and Coastal regions, with fewer studies from the northern arid and semi-arid regions. The findings show a shift from a focus on infectious diseases towards broader non-communicable outcomes, as well as regional disparities in research coverage. This review highlights the development of baseline associations between environmental exposures and health outcomes in Kenya, providing a necessary foundation for evidence-informed climate change and health policy. However, challenges in data and study designs limit some of the evidentiary value. Full article
(This article belongs to the Special Issue Climate, Ecosystem and Human Health: Impacts and Adaptation)
Show Figures

Figure 1

21 pages, 1222 KiB  
Article
Reducing Systemic Inflammation in IUGR-Born Neonatal Lambs via Daily Oral ω-3 PUFA Supplement Improved Skeletal Muscle Glucose Metabolism, Glucose-Stimulated Insulin Secretion, and Blood Pressure
by Melanie R. White, Rachel L. Gibbs, Pablo C. Grijalva, Zena M. Hicks, Haley N. Beer, Eileen S. Marks-Nelson and Dustin T. Yates
Metabolites 2025, 15(6), 346; https://doi.org/10.3390/metabo15060346 - 22 May 2025
Viewed by 593
Abstract
Background/Objectives: Intrauterine growth restriction (IUGR) is associated with enhanced inflammatory activity, poor skeletal muscle glucose metabolism, and pancreatic β cell dysfunction that persist in offspring. We hypothesized that targeting heightened inflammation in IUGR-born neonatal lambs by supplementing anti-inflammatory ω-3 polyunsaturated fatty acids (ω-3 [...] Read more.
Background/Objectives: Intrauterine growth restriction (IUGR) is associated with enhanced inflammatory activity, poor skeletal muscle glucose metabolism, and pancreatic β cell dysfunction that persist in offspring. We hypothesized that targeting heightened inflammation in IUGR-born neonatal lambs by supplementing anti-inflammatory ω-3 polyunsaturated fatty acids (ω-3 PUFAs) would improve metabolic outcomes. Methods: Maternal heat stress was used to produce IUGR lambs, which received daily oral boluses of ω-3 PUFA Ca2+ salts or placebo for 30 days. Results: Greater circulating TNFα and semitendinosus IL6R in IUGR lambs were fully resolved by ω-3 PUFA, and impaired glucose-stimulated insulin secretion, muscle glucose oxidation, and hypertension were partially rescued. Impaired glucose oxidation by IUGR muscle coincided with a greater glycogen content that was completely reversed by ω-3 PUFA and greater lactate production that was partially reversed. Ex vivo O2 consumption was increased in IUGR muscle, indicating compensatory lipid oxidation. This too was alleviated by ω-3 PUFA. Conversely, ω-3 PUFA had little effect on IUGR-induced changes in lipid flux and hematology parameters, did not resolve greater muscle TNFR1, and further reduced muscle β2-adrenoceptor content. Conclusions: These findings show that targeting elevated inflammatory activity in IUGR-born lambs in the early neonatal period improved metabolic outcomes, particularly muscle glucose metabolism and β cell function. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

18 pages, 4617 KiB  
Article
Hydroxy-Selenomethionine Supplementation During Gestation and Lactation Improve Reproduction of Sows by Enhancing the Antioxidant Capacity and Immunity Under Heat Stress Conditions
by Juan Wang, Hua Sun, Zhe Peng, Shao-Qing Wang, Yi-Qin Yan, Wei-Cai Luo, Ren-Gui Yang, Wei-Cheng Bei, Lv-Hui Sun and Jia-Cheng Yang
Antioxidants 2025, 14(5), 525; https://doi.org/10.3390/antiox14050525 - 27 Apr 2025
Viewed by 705
Abstract
The objective of this study was to determine whether hydroxy-selenomethionine (OH-SeMet) exerts better protective effects on sows against heat stress than sodium selenite (SeNa) or seleno-yeast (SeY). A total of 60 sows (Landrace × Yorkshire) were randomly allocated into the three groups and [...] Read more.
The objective of this study was to determine whether hydroxy-selenomethionine (OH-SeMet) exerts better protective effects on sows against heat stress than sodium selenite (SeNa) or seleno-yeast (SeY). A total of 60 sows (Landrace × Yorkshire) were randomly allocated into the three groups and fed a base diet supplemented with SeNa, SeY, or OH-SeMet at 0.3 mg Se/kg under a heat stress condition for a reproductive cycle. Compared to SeNa or SeY, OH-SeMet could more effectively sustain offspring growth performance, as evidenced by an increased number of live-born piglets, higher litter weight at day 21, and greater litter body weight gain from days 1 to 21. OH-SeMet was more effective in supporting endogenous redox systems, as shown by enhanced levels of TXNRD and GSH and reduced levels of GSSG in the serum of sows, improved T-AOC, TXNRD, and GSH alongside decreased MDA and GSSG in the serum of piglets, and heightened T-AOC in the jejunum of piglets. Furthermore, among the two tested organic Se sources, OH-SeMet was more effective than SeY in regulating immune responses compared to SeNa. OH-SeMet reduced inflammation-related markers CRP, HP, MAP, LPS, IL-1β, IL-6, and TNF-α, some or all of which were reduced in the serum of sows and their offspring. In addition, OH-SeMet also showed reduced glucose, TG, and NEFA levels, along with elevated insulin levels in the serum of sows. Correspondingly, among the two organic forms of Se, particularly those sows fed OH-SeMet showed better gut protection for the sows’ offspring, as indicated by a reduced crypt depth and increased villus height/crypt depth ratio in the duodenum, jejunum, and ileum than those fed SeNa. Specifically, compared to SeNa or SeY, OH-SeMet upregulated the expression of selenoproteins (GPX6, TXNRD3, GPX4, and SELENON), the tight junction protein (ZO-1), and host defense peptide gene (pBD1, pBD2, pBD3, NPG3, NPG4), along with downregulating levels of inflammation factor (IL-1β, IL-6 and TNF-α) and pro-apoptotic factor (P53) in the jejunum of piglets. Taken together, OH-SeMet more effectively mitigated the adverse effects induced by heat stress in sows and their offspring. Full article
(This article belongs to the Special Issue Redox Homeostasis in Poultry/Animal Production)
Show Figures

Figure 1

15 pages, 955 KiB  
Systematic Review
Reproductive Failure in Smallholder Pig Farms in East and Southeast Asia: A Systematic Review
by Belete Haile, Esa Karalliu, Jeremy Ho, Karyn A. Havas, Renata Ivanek, Joyce Ip, Chen Xin and Omid Nekouei
Animals 2025, 15(9), 1226; https://doi.org/10.3390/ani15091226 - 26 Apr 2025
Cited by 1 | Viewed by 764
Abstract
Reproductive failure has significant socioeconomic impacts on smallholder pig farms. This systematic review was conducted to compile the types of reproductive failures and their underlying causes reported in smallholder pig farms from East and Southeast Asia and to identify relevant knowledge gaps. Following [...] Read more.
Reproductive failure has significant socioeconomic impacts on smallholder pig farms. This systematic review was conducted to compile the types of reproductive failures and their underlying causes reported in smallholder pig farms from East and Southeast Asia and to identify relevant knowledge gaps. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, 26 peer-reviewed studies met the eligibility criteria and were included in our synthesis. These studies were conducted in 11 countries, with Vietnam, China, and Thailand representing the highest share (53.8%). Only six studies (23%) investigated reproductive failure as their primary objective. Stillbirth, mummification, late-term abortion, and weak-born piglets were the predominant reproductive failures reported from smallholder pig farms across the region. The most frequently cited viral pathogens associated with these failures were porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV-2). Common non-infectious risk factors included extreme climate conditions (e.g., heat stress), poor diet and housing, and suboptimal boar management. Our synthesis highlighted a dearth of research focused on reproductive failure in smallholder pig farms in the region and emphasised the need for more targeted studies to clarify the biological, environmental, and managerial risk factors contributing to reproductive failure. This will facilitate the development of targeted prevention and control measures that account for the unique farming conditions and challenges smallholder farms face in East and Southeast Asia. Full article
(This article belongs to the Special Issue Infectious Diseases on Livestock Reproduction)
Show Figures

Figure 1

29 pages, 23859 KiB  
Article
Super-Resolution of Landsat-8 Land Surface Temperature Using Kolmogorov–Arnold Networks with PlanetScope Imagery and UAV Thermal Data
by Mahdiyeh Fathi, Hossein Arefi, Reza Shah-Hosseini and Armin Moghimi
Remote Sens. 2025, 17(8), 1410; https://doi.org/10.3390/rs17081410 - 16 Apr 2025
Viewed by 1375
Abstract
Super-Resolution Land Surface Temperature (LSTSR) maps are essential for urban heat island (UHI) analysis and temperature monitoring. While much of the literature focuses on improving the resolution of low-resolution LST (e.g., MODIS-derived LST) using high-resolution space-borne data (e.g., Landsat-derived LST), Unmanned [...] Read more.
Super-Resolution Land Surface Temperature (LSTSR) maps are essential for urban heat island (UHI) analysis and temperature monitoring. While much of the literature focuses on improving the resolution of low-resolution LST (e.g., MODIS-derived LST) using high-resolution space-borne data (e.g., Landsat-derived LST), Unmanned Aerial Vehicles (UAVs)/drone thermal imagery are rarely used for this purpose. Additionally, many deep learning (DL)-based super-resolution approaches, such as Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), require significant computational resources. To address these challenges, this study presents a novel approach to generate LSTSR maps by integrating Low-Resolution Landsat-8 LST (LSTLR) with High-Resolution PlanetScope images (IHR) and UAV-derived thermal imagery (THR) using the Kolmogorov–Arnold Network (KAN) model. The KAN efficiently integrates the strengths of splines and Multi-Layer Perceptrons (MLPs), providing a more effective solution for generating LSTSR. The multi-step process involves acquiring and co-registering THR via the DJI Mavic 3 thermal (T) drone, IHR from Planet (3 m resolution), and LSTLR from Landsat-8, with THR serving as reference data while IHR and LSTLR are used as input features for the KAN model. The model was trained at two sites in Germany (Oberfischbach and Mittelfischbach) and tested at Königshain, achieving reasonable performance (RMSE: 4.06 °C, MAE: 3.09 °C, SSIM: 0.83, PSNR: 22.22, MAPE: 9.32%), and outperforming LightGBM, XGBoost, ResDensNet, and ResDensNet-Attention. These results demonstrate the KAN’s superior ability to extract fine-scale temperature patterns (e.g., edges and boundaries) from IHR, significantly improving LSTLR. This advancement can enhance UHI analysis, local climate monitoring, and LST modeling, providing a scalable solution for urban heat mitigation and broader environmental applications. To improve scalability and generalizability, KAN models benefit from training on a more diverse set of UAV thermal imagery, covering different seasons, land use types, and regions. Despite this, the proposed approach is effective in areas with limited UAV data availability. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

17 pages, 3678 KiB  
Article
Impact of Human Body Temperature on Stress Tolerance and Transcriptome of Cronobacter sakazakii
by Siqi Li, Yuanyuan Wang, Yahao Yang, Xinlu Yu, Jiajia Liu, Meiling Jiang, Jing Zhang, Ge Yun, Yufei Han, Heng Wang, Qiong Xie and Gukui Chen
Pathogens 2025, 14(3), 281; https://doi.org/10.3390/pathogens14030281 - 14 Mar 2025
Viewed by 698
Abstract
Cronobacter sakazakii is a food-borne pathogen that can thrive in various environments, including the human body. The human body’s physiological temperature exceeds that of the environment (22–30 °C), necessitating adaptations to heat stress during this transition. Managing heat stress is crucial when transitioning [...] Read more.
Cronobacter sakazakii is a food-borne pathogen that can thrive in various environments, including the human body. The human body’s physiological temperature exceeds that of the environment (22–30 °C), necessitating adaptations to heat stress during this transition. Managing heat stress is crucial when transitioning from the environment to the human body. In this study, we explored the effect of human body temperature on the growth of planktonic C. sakazakii, as well as its acid resistance, osmotic stress resistance, autoaggregation, and cell surface hydrophobicity. Our study demonstrated that human body temperature facilitated the growth, acid resistance, and osmotic resistance of C. sakazakii, compared to 28 °C. The relationship between human body temperature and phenotypes was studied by comparing gene expression at human and environmental temperatures (37 to 28 °C) using high-throughput sequencing. The results revealed up-regulation in the expression of 626 genes, including genes involved in arginine and proline metabolism, carbon fixation pathways, and nitrogen metabolism. Further analysis showed that human body temperature is essential for the environmental stress resistance of C. sakazakii. It boosts denitrification, betaine transport, and universal stress proteins, supporting membrane integrity and osmoprotectant transport. This study enhances our understanding of the strategies employed by C. sakazakii during its adaptation to the human body. Full article
Show Figures

Figure 1

10 pages, 535 KiB  
Article
Investigating the Temporal Effects of Thermal Stress on Corticosterone Release and Growth in Toad Tadpoles
by Saeid Panahi Hassan Barough, Dillon J. Monroe, Thomas C. Clark and Caitlin R. Gabor
Biology 2025, 14(3), 255; https://doi.org/10.3390/biology14030255 - 3 Mar 2025
Viewed by 915
Abstract
Corticosterone (CORT) is a key glucocorticoid hormone that regulates energy balance and physiological responses to environmental stressors, making it a valuable biomarker for assessing how organisms cope with changing conditions. Understanding how amphibians respond to chronic thermal stress is critical in the context [...] Read more.
Corticosterone (CORT) is a key glucocorticoid hormone that regulates energy balance and physiological responses to environmental stressors, making it a valuable biomarker for assessing how organisms cope with changing conditions. Understanding how amphibians respond to chronic thermal stress is critical in the context of climate change and urbanization. We investigated the effects of a week-long exposure to elevated water temperatures on CORT release rates and growth in Gulf Coast toad (Incilius nebulifer) tadpoles, a species adapted to variable thermal environments. Using a non-invasive water-borne hormone method, we measured CORT at multiple time points (1 h, 2 h, 6 h, 24 h, 48 h, and 5 days) post-treatment to assess how CORT varied with time after exposure to elevated heat vs. the control temperature. We found a significant time-by-treatment response in tadpoles after a week of exposure to 32 °C versus 23 °C (control) temperatures. Both control and treatment individuals showed a marked decrease in CORT release rates 6 h post-return to room temperature, but by 24 h post-experiment, CORT release rates were higher in the tadpoles exposed to 32 °C. Heat-exposed tadpoles also showed significantly faster growth during and after treatment, but a lower survival to 12 days, indicating a potential trade-off between survival and accelerated growth. Overall, our study highlights a trade-off for populations of I. nebulifer when exposed to thermal stress and suggests that amphibian responses to chronic environmental stressors are shaped by adaptive physiological strategies, with implications for understanding and conserving amphibian populations in a rapidly changing world. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

13 pages, 2708 KiB  
Article
Changes in the Composition and Richness of Epiphytic Macrolichens Within Cluj-Napoca City (Romania) Between 2000 and 2024
by Florin Crișan, Dan Gafta and Irina Goia
J. Zool. Bot. Gard. 2025, 6(1), 14; https://doi.org/10.3390/jzbg6010014 - 3 Mar 2025
Viewed by 891
Abstract
The present study is based on a follow-up of a survey carried out in 2000, consisting in the revisitation of ten sites, with the scope of assessing changes in the composition and richness of epiphytic macrolichens within Cluj-Napoca city over the past 24 [...] Read more.
The present study is based on a follow-up of a survey carried out in 2000, consisting in the revisitation of ten sites, with the scope of assessing changes in the composition and richness of epiphytic macrolichens within Cluj-Napoca city over the past 24 years. Within this period most of the polluting factories from the city outskirts were closed but in turn, the number of registered cars increased almost six-fold. An increasing compositional homogenization by contribution of generalist, stress-tolerant species was detected over time while total lichen taxa richness declined, which is mostly imputable to the synergic effects of intense car traffic and warmer/drier summers. Most sites displayed a compositional change along a weak, mixed gradient of eutrophication and xerophitization. Only two sites (located on the windy, Someș valley bottom) experienced a compositional change from higher to lower trophicity levels. Other two sites (positioned on more sheltered hillsides) displayed unfavourable dynamics in terms of lost species. Unexpectedly, the number of epiphytic lichen taxa at site level has, on average, increased over time, but the main contributors were poleotolerant species. The warming trend, due to climate change and local heat sources, is expected to worsen the negative effects of air-borne pollutants on the composition of the epiphytic lichen species pool within the Cluj-Napoca urban area. Full article
Show Figures

Figure 1

15 pages, 1360 KiB  
Article
Optimization of Haskap Extract and Tannic Acid Combined with Mild Heat Treatment: A Predictive Study on the Inhibition of Cronobacter sakazakii
by Gökçe Polat Yemiş, Oktay Yemiş and Aysun Öztürk
Foods 2025, 14(4), 562; https://doi.org/10.3390/foods14040562 - 8 Feb 2025
Cited by 1 | Viewed by 769
Abstract
Cronobacter sakazakii is an opportunistic food-borne pathogen that causes severe infections with high morbidity and mortality rates in neonates, the elderly, and immunocompromised individuals. The plant extracts containing natural antibacterial compounds are currently under consideration as alternatives to synthetic artificial preservatives for the [...] Read more.
Cronobacter sakazakii is an opportunistic food-borne pathogen that causes severe infections with high morbidity and mortality rates in neonates, the elderly, and immunocompromised individuals. The plant extracts containing natural antibacterial compounds are currently under consideration as alternatives to synthetic artificial preservatives for the control of C. sakazakii. There has been increasing interest in using plant-derived antimicrobials in combination with mild heat to control pathogens in preservative-free foods. In this study, the individual and combined effects of four independent variables, i.e., polyphenol-rich haskap extract (HE) concentration (2–10%), tannic acid (TA) concentration (0.1–0.5), temperature (35–55 °C), and time (1–5 min), on C. sakazakii inactivation were investigated by response surface methodology (RSM) with a five-level four factor central composite design (CCD) and an optimal combination for maximum inhibition was determined. The statistic metrics of R2, R2adjusted, R2predicted, coefficient of variation (CV), Predicted Residual Error Sum of Squares (PRESSs), adequate precision, and lack-of-fit were used to reveal the prediction performance. The results revealed that all the independent variables, except time, influenced C. sakazakii inactivation. Among the independent variables, the temperature was the most effective variable (p < 0.0001) as regards inactivation. The synergistic effects of HE with TA and temperature were observed. Many possible optimum conditions of mild heat treatment that maximized the inhibition of C. sakazakii were obtained. The findings indicated that two distinct combinations were identified as the most effective inhibition of C. sakazakii: high concentration at low temperature and high temperature at low concentration. It can be concluded that haskap polyphenol extract, alone or in combination with tannic acid, has the potential to be used as a natural preservative to reduce the risk of C. sakazakii. Full article
(This article belongs to the Special Issue Detection and Control of Food-Borne Pathogens)
Show Figures

Figure 1

11 pages, 2174 KiB  
Technical Note
Using Night-Time Drone-Acquired Thermal Imagery to Monitor Flying-Fox Productivity—A Proof of Concept
by Jessica Meade, Eliane D. McCarthy, Samantha H. Yabsley, Sienna C. Grady, John M. Martin and Justin A. Welbergen
Remote Sens. 2025, 17(3), 518; https://doi.org/10.3390/rs17030518 - 3 Feb 2025
Viewed by 1153
Abstract
Accurate and precise monitoring of species abundance is essential for determining population trends and responses to environmental change. Species, such as bats, that have slow life histories, characterized by extended lifespans and low reproductive rates, are particularly vulnerable to environmental changes, stochastic events, [...] Read more.
Accurate and precise monitoring of species abundance is essential for determining population trends and responses to environmental change. Species, such as bats, that have slow life histories, characterized by extended lifespans and low reproductive rates, are particularly vulnerable to environmental changes, stochastic events, and human activities. An accurate assessment of productivity can improve parameters for population modelling and provide insights into species’ capacity to recover from population perturbations, yet data on reproductive output are often lacking. Recently, advances in drone technology have allowed for the development of a drone-based thermal remote sensing technique to accurately and precisely count the numbers of flying-foxes (Pteropus spp.) in their tree roosts. Here, we extend that method and use a drone-borne thermal camera flown at night to count the number of flying-fox pups that are left alone in the roost whilst their mothers are out foraging. We show that this is an effective method of estimating flying-fox productivity on a per-colony basis, in a standardized fashion, and at a relatively low cost. When combined with a day-time drone flight used to estimate the number of adults in a colony, this can also provide an estimate of female reproductive performance, which is important for assessments of population health. These estimates can be related to changes in local food availability and weather conditions (including extreme heat events) and enable us to determine, for the first time, the impacts of disturbances from site-specific management actions on flying-fox population trajectories. Full article
Show Figures

Figure 1

22 pages, 1378 KiB  
Article
Microhardness, Young’s and Shear Modulus in Tetrahedrally Bonded Novel II-Oxides and III-Nitrides
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(3), 494; https://doi.org/10.3390/ma18030494 - 22 Jan 2025
Cited by 5 | Viewed by 1059
Abstract
Direct wide-bandgap III-Ns and II-Os have recently gained considerable attention due to their unique electrical and chemical properties. These novel semiconductors are being explored to design short-wavelength light-emitting diodes, sensors/biosensors, photodetectors for integration into flexible transparent nanoelectronics/photonics to achieve high-power radio-frequency modules, and [...] Read more.
Direct wide-bandgap III-Ns and II-Os have recently gained considerable attention due to their unique electrical and chemical properties. These novel semiconductors are being explored to design short-wavelength light-emitting diodes, sensors/biosensors, photodetectors for integration into flexible transparent nanoelectronics/photonics to achieve high-power radio-frequency modules, and heat-resistant optical switches for communication networks. Knowledge of the elastic constants structural and mechanical properties has played crucial roles both in the basic understanding and assessing materials’ use in thermal management applications. In the absence of experimental structural, elastic constants, and mechanical traits, many theoretical simulations have yielded inconsistent results. This work aims to investigate the basic characteristics of tetrahedrally coordinated, partially ionic BeO, MgO, ZnO, and CdO, and partially covalent BN, AlN, GaN, and InN materials. By incorporating a bond-orbital and a valance force field model, we have reported comparative results of our systematic calculations for the bond length d, bond polarity αP, covalency αC, bulk modulus B, elastic stiffness C(=c11c122), bond-stretching α and bond-bending β force constants, Kleinmann’s internal displacement ζ, and Born’s transverse effective charge eT*. Correlations between C/B, β/α, c12c11, ζ, and αC revealed valuable trends of structural, elastic, and bonding characteristics. The study noticed AlN and GaN (MgO and ZnO) showing nearly comparable features, while BN (BeO) is much harder compared to InN (CdO) material, with drastically softer bonding. Calculations of microhardness H, shear modulus G, and Young’s modulus Y have predicted BN (BeO) satisfying a criterion of super hardness. III-Ns (II-Os) could be vital in electronics, aerospace, defense, nuclear reactors, and automotive industries, providing integrity and performance at high temperature in high-power applications, ranging from heat sinks to electronic substrates to insulators in high-power devices. Full article
Show Figures

Figure 1

Back to TopTop