The Impacts of Feeding a Reduced Energy and Lysine Balance in Lactation on Sow Body Composition, Litter Growth, and Markers of Subsequent Reproductive Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Animal Management
2.2. Experimental Design
2.3. Sow Body Condition and Composition Measures
2.4. Litter Growth Performance
2.5. Blood Sampling and Analyses
2.6. Statistical Analyses
3. Results
3.1. Sow Performance
3.2. Litter Performance and Subsequent Reproductive Performance
3.3. Plasma Metabolites
4. Discussion
4.1. Sow Performance
4.2. Litter Performance
4.3. Reproductive Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pedersen, T.F.; van Vliet, S.; Bruun, T.S.; Theil, P.K. Feeding sows during the transition period—Is a gestation diet, a simple transition diet, or a lactation diet the best choice? Trans. Anim. Sci. 2020, 4, 34–48. [Google Scholar] [CrossRef]
- Strathe, A.V.; Bruun, T.S.; Hansen, C.F. Sows with high milk production had both a high feed intake and high body mobilization. Animal 2017, 11, 1913–1921. [Google Scholar] [CrossRef] [PubMed]
- Hojgaard, C.K.; Bruun, T.S.; Theil, P.K. Optimal lysine in diets for high-yielding lactating sows. J. Anim. Sci. 2019, 97, 4268–4281. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Heo, S.; Jin, Z.; Yun, J.; Shinde, P.; Choi, J.; Yang, B.; Chae, B. Effects of dietary energy and lysine intake during late gestation and lactation on blood metabolites, hormones, milk composition and reproductive performance in multiparous sows. Arch. Anim. Nutr. 2008, 62, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Maes, D.G.D.; Janssens, G.P.J.; Delputte, P.; Lammertyn, A.; de Kruif, A. Back fat measurements in sows from three commercial pig herds: Relationship with reproductive efficiency and correlation with visual body condition scores. Livest. Prod. Sci. 2004, 91, 57–67. [Google Scholar] [CrossRef]
- Noblet, J.; Dourmad, J.-Y.; Etienne, M. Energy utilization in pregnant and lactating sows: Modeling of energy requirements. J. Anim. Sci. 1990, 68, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, R.; Largouët, C.; Gaillard, C.; Cloutier, L.; Guay, F.; Dourmad, J. Dynamic modeling of nutrient use and individual requirements of lactating sows. J. Anim. Sci. 2019, 97, 2822–2836. [Google Scholar] [CrossRef] [PubMed]
- Clowes, E.J.; Aherne, F.X.; Foxcroft, G.R.; Baracos, V.E. Selective protein loss in lactating sows is associated with reduced litter growth and ovarian function. J. Anim. Sci. 2003, 81, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Piao, X.; Li, D.; Li, P.; Zhang, R.; Kim, S.W.; Dong, B. The effect of the ratio of standardized ileal digestible lysine to metabolizable energy on growth performance, blood metabolites and hormones of lactating sows. J. Anim. Sci. Biotechnol. 2012, 3, 11. [Google Scholar] [CrossRef] [PubMed]
- Strathe, A.V.; Bruun, T.S.; Tauson, A.-H.; Theil, P.K.; Hansen, C.F. Increased dietary protein for lactating sows affects body composition, blood metabolites and milk production. Animal 2019, 14, 285–294. [Google Scholar] [CrossRef]
- Booth, P.J.; Craigon, J.; Foxcroft, G.R. Nutritional manipulation of growth and metabolic and reproductive status in prepubertal gilts. J. Anim. Sci. 1994, 72, 2415–2424. [Google Scholar] [CrossRef] [PubMed]
- Tokach, M.D.; Menegat, M.B.; Gourley, K.M.; Goodband, R.D. Review: Nutrient requirements of the modern high-producing lactating sow, with an emphasis on amino acid requirements. Animal 2019, 12, 2967–2977. [Google Scholar] [CrossRef] [PubMed]
- Muller, T.L.; Hewitt, R.J.; Plush, K.J.; D’Souza, D.N.; Pluske, J.R.; van Barneveld, R.J. Does the relationship between sow body composition change in lactation and rebreeding success still exist? Anim. Prod. Sci. 2022, 62, 1173–1180. [Google Scholar] [CrossRef]
- Craig, A.; Gordon, A.; Magowan, E. Understanding the drivers of improved pig weaning weight by investigation of colostrum intake, sow lactation feed intake, or lactation diet specification. J. Anim. Sci. 2017, 95, 4499–4509. [Google Scholar] [CrossRef] [PubMed]
- Muirhead, M.R.; Alexander, T.J.L. Nutrition and Disease. In Managing Pig Health and the Treatment of Disease: A Reference for the Farm; 5M Enterprises: Sheffield, UK, 1997; pp. 441–470. [Google Scholar]
- Hoving, L.L.; Soede, N.M.; van der Peet-Schwering, C.M.C.; Graat, E.A.M.; Feitsma, H.; Kemp, B. An increased feed intake during early pregnancy improves sow body weight recovery and increases litter size in young sows. J. Anim. Sci. 2011, 89, 3542–3550. [Google Scholar] [CrossRef] [PubMed]
- Dourmad, J.-Y.; Étienne, M.; Noblet, J.; Causeur, D. Prédiction de la composition chimique des truies reproductrices à partir du poids vif et de l’épaisseur de lard dorsal: Application à la définition des besoins énergétiques. Journées Rech. Porcine France 1997, 29, 255–262. [Google Scholar]
- Muller, T.L.; Ward, L.; Plush, K.J.; Pluske, J.R.; D’Souza, D.N.; Bryden, W.; van Barneveld, R.J. Use of bioelectrical impedance spectroscopy to provide a measure of body composition in sows. Animal 2021, 15, 100156. [Google Scholar] [CrossRef] [PubMed]
- Hojgaard, C.K.; Bruun, T.S.; Theil, P.K. Impact of milk and nutrient intake of piglets and sow milk composition on piglet growth and body composition at weaning. J. Anim. Sci. 2020, 98, skaa060. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Swine, 11th ed.; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Dourmad, J.-Y.; Étienne, M.; Valancogne, A.; Dubois, S.; van Milgen, J.; Noblet, J. InraPorc: A model and decision support tool for the nutrition of sows. Anim. Feed Sci. Technol. 2008, 143, 372–386. [Google Scholar] [CrossRef]
- Close, W.H.; Cole, D.J.A. Nutrition of Sows and Boars; Nottingham University Press: Nottingham, UK, 2000. [Google Scholar]
- van der Peet-Schwering, C.M.C.; Bikker, P. Energy and Amino Acid Requirement of Gestating and Lactating Sows; Report 1190; Wageningen Livestock Research: Wageningen, The Netherlands, 2019. [Google Scholar]
- Watzeck, M.C.; Huber, L.A. The standardized ileal digestible lysine-to-net energy ratio in the diets of sows to optimize milk nitrogen retention is dynamic during lactation. J. Anim. Sci. 2024, 102, skae094. [Google Scholar] [CrossRef] [PubMed]
- Gregory, N.; Huber, L. Meeting the estimated daily optimal standardized ileal digestible lysine-to-net energy ratios for first and second parity lactating sows improved piglet growth rates. Transl. Anim. Sci. 2025, 9, txaf070. [Google Scholar] [CrossRef] [PubMed]
- Huber, L. Feeding strategies to meet the dynamic lysine and energy requirements of gestating and lactating sows. Animal 2025, 101574. [Google Scholar] [CrossRef] [PubMed]
- Boler, D.; Perez, J.; Parr, E.; Welch, M.; Kyle, K.; Johnson, D.; Neill, C.; Estrada, J. Effects of increasing SID lysine (Lys) and metabolizable energy (ME) levels of lactation diets fed to young and multiparous sows. J. Anim. Sci. 2024, 102 (Suppl. S2), 59–60. [Google Scholar] [CrossRef]
- Pedersen, T.F.; Bruun, T.S.; Feyera, T.; Larsen, U.F.; Theil, P.K. A two-diet feeding regime for lactating sows reduced nutrient deficiency in early lactation and improved milk yield. Livest. Sci. 2016, 191, 165–173. [Google Scholar] [CrossRef]
- Feyera, T.; Theil, P.K. Energy and lysine requirements and balances of sows during transition and lactation: A factorial approach. Livest. Sci. 2017, 201, 50–57. [Google Scholar] [CrossRef]
- Liao, S.F.; Wang, T.; Regmi, N. Lysine nutrition in swine and the related monogastric animals: Muscle protein biosynthesis and beyond. Springerplus. 2015, 4, 147. [Google Scholar] [CrossRef] [PubMed]
- Patterson, J.L.; Smit, M.N.; Novak, S.; Wellen, A.P.; Foxcroft, G.R. Restricted feed intake in lactating primiparous sows. I. Effects on sow metabolic state and subsequent reproductive performance. Reprod. Fert. Dev. 2011, 23, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Gourley, K.M.; Nichols, G.E.; Sonderman, J.A.; Spencer, Z.T.; Woodworth, J.C.; Tokach, M.D.; DeRouchey, J.M.; Dritz, S.S.; Goodband, R.D.; Kitt, S.J.; et al. Determining the impact of increasing standardized ileal digestible lysine for primiparous and multiparous sows during lactation. Trans. Anim. Sci. 2017, 1, 426–436. [Google Scholar] [CrossRef] [PubMed]
- Greiner, L.; Srichana, P.; Usry, J.L.; Neill, C.; Allee, G.L.; Connor, J.; Touchette, K.J.; Knight, C.D. Lysine (protein) requirements of lactating sows. Trans. Anim. Sci. 2020, 4, 750–763. [Google Scholar] [CrossRef] [PubMed]
- Strathe, A.V.; Bruun, T.S.; Geertsen, N.; Zerrahn, J.-E.; Hansen, C.F. Increased dietary protein levels during lactation improved sow and litter performance. Anim. Feed Sci. Technol. 2017, 232, 169–181. [Google Scholar] [CrossRef]
- Laspiur, J.P.; Burton, J.L.; Weber, P.S.D.; Moore, J.; Kirkwood, R.N.; Trottier, N.L. Dietary protein intake and stage of lactation differentially modulate amino acid transporter mRNA abundance in porcine mammary tissue. J. Nutr. 2009, 139, 1677–1684. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Pettigrew, J.E.; Johnston, L.J.; Shurson, G.C.; Wheaton, J.E.; White, M.E.; Koketsu, Y.; Sower, A.F.; Rathmacher, J.A. Effects of dietary lysine intake during lactation on blood metabolites, hormones, and reproductive performance in primiparous sows. J. Anim. Sci. 2000, 78, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- De Leeuw, J.A.; Bolhuis, J.E.; Bosch, G.; Gerrits, W.J.J. Effects of dietary fibre on behaviour and satiety in pigs. Proc. Nutr. Soc. 2008, 67, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Berg, S.; Andersen, I.L.; Tajet, G.M.; Haukvik, I.A.; Kongsrud, S.; Bøe, K.E. Piglet use of the creep area and piglet mortality—Effects of closing the piglets inside the creep area during sow feeding time in pens for individually loose-housed sows. Anim. Sci. 2006, 82, 277–281. [Google Scholar] [CrossRef]
- Costermans, N.G.J.; Teerds, K.J.; Kemp, B.V.; Keijer, J.; Soede, N.M. Physiological and metabolic aspects of follicular developmental competence as affected by lactational body condition loss. Mol. Reprod. Dev. 2023, 90, 491–502. [Google Scholar] [CrossRef] [PubMed]
- Whitley, N.C.; Quirk-Thomas, M.N.; Skelton, J.O.; Moore, A.B.; Purvis, J.; Qiu, Y.; Cox, N.M. Influence of insulin on follicular development and the intrafollicular insulin-like growth factor (IGF-1) system in sows after weaning. J. Reprod. Fert. 1998, 112, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Xang, Y.X.; Jin, Z.; Park, M.S.; Yang, B.K.; Chae, B.J. Effects of dietary energy and lysine intake during late gestation and lactation on blood metabolites, hormones, milk composition and reproductive performance in primiparous sows. Can. J. Anim. Sci. 2008, 88, 247–255. [Google Scholar] [CrossRef]
- Mejia-Guadarrama, C.A.; Pasquier, A.; Dourmad, J.Y.; Prunier, A.; Quesnel, H. Protein (lysine) restriction in primiparous lactating sows: Effects on metabolic state, somatotropic axis, and reproductive performance after weaning. J. Anim. Sci. 2002, 80, 3286–3300. [Google Scholar] [CrossRef] [PubMed]
- Zak, L.J.; Cosgrove, J.R.; Aherne, F.X.; Foxcroft, G.R. Pattern of feed intake and associated metabolic and endocrine changes differentially affect postweaning fertility in primiparous lactating sows. J. Anim. Sci. 1997, 75, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Vinsky, M.D.; Novak, S.; Dixon, W.T.; Dyck, M.K.; Foxcroft, G.R. Nutritional restriction in lactating primiparous sows selectively affects female embryo survival and overall litter development. Reprod. Fert. Dev. 2006, 18, 347–355. [Google Scholar] [CrossRef] [PubMed]
Item | Gestation (G) Diet | Lactation (L) Diet |
---|---|---|
Ingredients (g/kg) | ||
Barley | 202.0 | - |
Wheat | 437.2 | 514.0 |
Grape marc crimped | 6.8 | 13.5 |
Millrun | 210.0 | 70.0 |
Peas-field | - | 118.0 |
Lentils | 72.0 | - |
Pulse offal | 6.0 | - |
Soybean meal | - | 33.0 |
Full-fat soybean | - | 19.3 |
Blood meal | - | 5.0 |
Canola meal | - | 100.0 |
Meat meal | 22.0 | 66.0 |
Salmon oil | - | 4.3 |
Vegetable oil blend | 14.0 | 35.0 |
Poultry tallow | 0.4 | 1.1 |
Limestone fine | 12.8 | 5.1 |
Monocalcium phosphate | 4.0 | 0.6 |
Salt | 3.0 | 4.2 |
DL-Methionine | 1.08 | 0.68 |
Lysine HCl | 1.68 | 1.81 |
L-Threonine | 1.0 | 0.6 |
L-Tryptophan | 0.12 | 0.12 |
L-Valine | - | 0.23 |
Betaine (liquid) 40% | 3.6 | 4.8 |
Flavour | - | 0.3 |
Levucell SB10 ME Titan | 0.1 | 0.1 |
Phytase | 0.2 | 0.2 |
Vitamin/Mineral Premix * | 2.0 | 2.0 |
Calculated analysis | ||
Digestible energy (MJ/kg) | 13.0 | 14.3 |
Crude protein, % | 14.8 | 19.8 |
SID Lysine, % | 0.55 | 0.89 |
Crude fibre, % | 4.80 | 4.51 |
SID Lys:DE, g MJ | 0.42 | 0.62 |
Calcium, % | 0.88 | 0.95 |
Available phosphorus, % | 0.45 | 0.50 |
Diet Type | Gestation | Lactation | p Value | |||||
---|---|---|---|---|---|---|---|---|
Feed Allowance | Ad Libitum | Reduced | Ad Libitum | Reduced | SEM | Diet Type | Feed Allowance | Diet Type × Feed Allowance |
ADFI, kg/d | 7.7 a | 6.4 c | 6.7 b | 6.3 c | 0.01 | 0.009 | <0.001 | 0.015 |
DE | ||||||||
Intake, MJ/d | 100.0 a | 82.6 c | 95.5 a | 90.0 b | 28.21 | 0.596 | <0.001 | 0.023 |
Requirement 1, MJ/d | 104.4 | 97.7 | 101.6 | 104.1 | 32.81 | 0.540 | 0.461 | 0.105 |
Balance 3, MJ/d | −3.4 | −15.7 | −6.9 | −13.3 | 47.2 | 0.867 | 0.007 | 0.384 |
SID lysine | ||||||||
Intake, g/d | 41.9 | 34.6 | 59.7 | 56.2 | 7.40 | <0.001 | <0.001 | 0.149 |
Requirement 2, g/d | 56.6 | 52 | 54.4 | 55.8 | 17.73 | 0.682 | 0.436 | 0.145 |
Balance 3, g/d | −14.2 | −17.6 | 4.5 | 0.7 | 21.19 | <0.001 | 0.118 | 0.934 |
Body weight, kg | ||||||||
Farrowing | 223.0 | 224.4 | 224.3 | 228.2 | 4.77 | 0.647 | 0.636 | 0.822 |
Weaning | 226.6 | 223.5 | 229.0 | 230.7 | 4.26 | 0.340 | 0.894 | 0.625 |
Change | 3.7 | −1.4 | 7.9 | 4.8 | 2.41 | 0.135 | 0.236 | 0.769 |
Backfat P2 4, mm | ||||||||
Farrowing | 17.1 | 16.8 | 17.2 | 17.1 | 0.62 | 0.581 | 0.731 | 0.686 |
Weaning | 15 | 15.1 | 14.7 | 14.8 | 0.55 | 0.334 | 0.746 | 0.939 |
Change | −1.7 | −1.6 | −2.2 | −2.3 | 0.61 | 0.124 | 0.941 | 0.821 |
Girth circumference, cm | ||||||||
Farrowing | 144.1 | 146.1 | 140.9 | 144.1 | 10.89 | 0.103 | 0.106 | 0.713 |
Weaning | 146.6 | 144.9 | 144.2 | 143.8 | 11.82 | 0.304 | 0.552 | 0.697 |
Change | 1.8 | −0.9 | 4.1 | 0.1 | 7.50 | 0.226 | 0.015 | 0.659 |
Fat 5, kg | ||||||||
Farrowing | 43.7 | 43.8 | 43.3 | 45.3 | 9.33 | 0.728 | 0.525 | 0.537 |
Weaning | 41.7 | 40.9 | 41.5 | 42 | 6.81 | 0.724 | 0.908 | 0.639 |
Change | −2.2 | −2.8 | −1.6 | −2.8 | 5.44 | 0.782 | 0.452 | 0.775 |
Protein 6, kg | ||||||||
Farrowing | 36.4 | 36.7 | 36.7 | 37.5 | 3.88 | 0.544 | 0.544 | 0.794 |
Weaning | 37.6 | 37.1 | 37.7 | 38.3 | 3.01 | 0.475 | 0.965 | 0.515 |
Change | 1.2 | 0.3 | 1 | 1.2 | 2.55 | 0.683 | 0.690 | 0.480 |
Diet Type | Gestation | Lactation | p Value | |||||
---|---|---|---|---|---|---|---|---|
Feed Allowance | Ad Libitum | Reduced | Ad Libitum | Reduced | SEM | Diet Type | Feed Allowance | Diet Type × Feed Allowance |
Litter size | ||||||||
Farrowing | 11.6 | 11.3 | 10.9 | 11.4 | 0.21 | 0.170 | 0.770 | 0.068 |
Weaning | 10.8 | 10.0 | 9.8 | 9.8 | 0.36 | 0.033 | 0.091 | 0.144 |
Mortality | ||||||||
Total removals | 1.1 | 1.4 | 1.3 | 1.9 | 0.26 | 0.182 | 0.037 | 0.636 |
Overlays | 0.7 | 0.9 | 0.6 | 1.3 | 0.22 | 0.544 | 0.021 | 0.302 |
Litter weight, kg | ||||||||
Farrowing | 17.6 | 17.9 | 17.8 | 16.7 | 0.96 | 0.298 | 0.455 | 0.160 |
Weaning 1 | 62.9 | 59.5 | 61.2 | 60.9 | 12.29 | 0.933 | 0.284 | 0.374 |
Litter gain, kg 1 | 45.3 | 41.6 | 43.6 | 44.7 | 11.33 | 0.682 | 0.436 | 0.145 |
Milk output 3, kg/day 2 | 9.5 | 8.7 | 9.1 | 9.4 | 0.51 | 0.684 | 0.436 | 0.145 |
Litter ADG, kg/d 1 | 2.3 | 2.1 | 2.2 | 2.2 | 0.11 | 0.682 | 0.436 | 0.145 |
Wean-to-service interval, days | 4.1 | 4.6 | 4.2 | 4.4 | 0.28 | 0.825 | 0.085 | 0.547 |
Bred < 7 days 4, % | 85.7 | 82.7 | 87.5 | 85.7 | 1.14 | 0.341 | 0.594 | 0.659 |
Farrowing rate 4, % | 97.0 | 96.6 | 100 | 91.4 | 0.88 | 0.633 | 0.664 | 0.742 |
Total piglets born in the subsequent litter | 12.9 | 12.6 | 12.5 | 13.3 | 1.31 | 0.796 | 0.661 | 0.288 |
Diet Type | Gestation | Lactation | p Value | |||||
---|---|---|---|---|---|---|---|---|
Feed Allowance | Ad Libitum | Reduced | Ad Libitum | Reduced | SEM | Diet Type | Feed Allowance | Diet × Feed Allowance |
Insulin, uU/mL | ||||||||
Farrowing | 29.6 | 20 | 29.8 | 30.3 | 3.26 | 0.137 | 0.194 | 0.151 |
Weaning | 10.1 | 9.5 | 14.9 | 14.6 | 2.11 | 0.030 | 0.825 | 0.942 |
Change | −19.3 | −10.5 | −14.8 | −15.1 | 4.02 | 0.997 | 0.293 | 0.267 |
Standing heat | 17.3 | 19.3 | 14.2 | 13.6 | 2.55 | 0.106 | 0.848 | 0.152 |
IGF-1, ng/mL | ||||||||
Day 1 lactation | 158.1 | 133.9 | 130.8 | 122.9 | 12.9 | 0.146 | 0.221 | 0.534 |
Weaning | 158 | 149.7 | 152.6 | 163.7 | 16.4 | 0.797 | 0.935 | 0.560 |
Change | −0.1 | 15.8 | 21.7 | 40.8 | 16.2 | 0.154 | 0.287 | 0.922 |
Standing heat | 128.1 | 123.1 | 114.7 | 131.4 | 10.6 | 0.817 | 0.585 | 0.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muller, T.L.; Plush, K.J.; Pluske, J.R.; D’Souza, D.N.; Miller, D.W.; Van Barneveld, R.J. The Impacts of Feeding a Reduced Energy and Lysine Balance in Lactation on Sow Body Composition, Litter Growth, and Markers of Subsequent Reproductive Performance. Agriculture 2025, 15, 1559. https://doi.org/10.3390/agriculture15141559
Muller TL, Plush KJ, Pluske JR, D’Souza DN, Miller DW, Van Barneveld RJ. The Impacts of Feeding a Reduced Energy and Lysine Balance in Lactation on Sow Body Composition, Litter Growth, and Markers of Subsequent Reproductive Performance. Agriculture. 2025; 15(14):1559. https://doi.org/10.3390/agriculture15141559
Chicago/Turabian StyleMuller, Tracy L., Kate J. Plush, John R. Pluske, Darryl N. D’Souza, David W. Miller, and Robert J. Van Barneveld. 2025. "The Impacts of Feeding a Reduced Energy and Lysine Balance in Lactation on Sow Body Composition, Litter Growth, and Markers of Subsequent Reproductive Performance" Agriculture 15, no. 14: 1559. https://doi.org/10.3390/agriculture15141559
APA StyleMuller, T. L., Plush, K. J., Pluske, J. R., D’Souza, D. N., Miller, D. W., & Van Barneveld, R. J. (2025). The Impacts of Feeding a Reduced Energy and Lysine Balance in Lactation on Sow Body Composition, Litter Growth, and Markers of Subsequent Reproductive Performance. Agriculture, 15(14), 1559. https://doi.org/10.3390/agriculture15141559