Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = heat shock protein 20

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1899 KiB  
Article
Heterologous Watermelon HSP17.4 Expression Confers Improved Heat Tolerance to Arabidopsis thaliana
by Yajie Hong, Yurui Li, Jing Chen, Nailin Xing, Wona Ding, Lili Chen, Yunping Huang, Qiuping Li and Kaixing Lu
Curr. Issues Mol. Biol. 2025, 47(8), 606; https://doi.org/10.3390/cimb47080606 - 1 Aug 2025
Viewed by 158
Abstract
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce [...] Read more.
Members of the heat shock protein 20 (HSP20) family of proteins play an important role in responding to various forms of stress. Here, the expression of ClaHSP17.4 was induced by heat stress in watermelon. Then, a floral dipping approach was used to introduce the pCAMBIA1391b-GFP overexpression vector encoding the heat tolerance-related gene ClaHSP17.4 from watermelon into Arabidopsis thaliana, and we obtained ClaHSP17.4-overexpressing Arabidopsis plants. Under normal conditions, the phenotypes of transgenic and wild-type (WT) Arabidopsis plants were largely similar. Following exposure to heat stress, however, the germination rates (96%) of transgenic Arabidopsis plants at the germination stages were significantly higher than those of wild-type idopsis (17%). Specifically, the malondialdehyde (MDA) content of transgenic Arabidopsis was half that of the control group, while the activities of peroxidase (POD) and superoxide dismutase (SOD) were 1.25 times those of the control group after exposure to high temperatures for 12 h at the seedling stages. The proline content in ClaHSP17.4-overexpressing transgenic Arabidopsis increased by 17% compared to WT plants (* p < 0.05), while the soluble sugar content rose by 37% (* p < 0.05). These results suggest that ClaHSP17.4 overexpression indirectly improves the antioxidant capacity and osmotic regulatory capacity of Arabidopsis seedlings, leading to improved survival and greater heat tolerance. Meanwhile, the results of this study provide a reference for further research on the function of the ClHSP17.4 gene and lay a foundation for breeding heat-tolerant watermelon varieties and advancing our understanding of plant adaptation to environmental stress. Full article
Show Figures

Figure 1

14 pages, 6123 KiB  
Article
Effects of Near-Infrared Diode Laser Irradiation on Pain Relief and Neuropeptide Markers During Experimental Tooth Movement in the Periodontal Ligament Tissues of Rats: A Pilot Study
by Kanako Okazaki, Ayaka Nakatani, Ryo Kunimatsu, Isamu Kado, Shuzo Sakata, Hirotaka Kiridoshi and Kotaro Tanimoto
Int. J. Mol. Sci. 2025, 26(15), 7404; https://doi.org/10.3390/ijms26157404 - 31 Jul 2025
Viewed by 169
Abstract
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin [...] Read more.
Pain following orthodontic treatment is the chief complaint of patients undergoing this form of treatment. Although the use of diode lasers has been suggested for pain reduction, the mechanism of laser-induced analgesic effects remains unclear. Neuropeptides, such as substance P (SP) and calcitonin gene-related peptide (CGRP), contribute to the transmission and maintenance of inflammatory pain. Heat shock protein (HSP) 70 plays a protective role against various stresses, including orthodontic forces. This study aimed to examine the effects of diode laser irradiation on neuropeptides and HSP 70 expression in periodontal tissues induced by experimental tooth movement (ETM). For inducing ETM for 24 h, 50 g of orthodontic force was applied using a nickel–titanium closed-coil spring to the upper left first molar and the incisors of 20 male Sprague Dawley rats (7 weeks old). The right side without ETM treatment was considered the untreated control group. In 10 rats, diode laser irradiation was performed on the buccal and palatal sides of the first molar for 90 s with a total energy of 100.8 J/cm2. A near-infrared (NIR) laser with a 808 nm wavelength, 7 W peak power, 560 W average power, and 20 ms pulse width was used for the experiment. We measured the number of facial groomings and vacuous chewing movements (VCMs) in the ETM and ETM + laser groups. Immunohistochemical staining of the periodontal tissue with SP, CGRP, and HSP 70 was performed. The number of facial grooming and VCM periods significantly decreased in the ETM + laser group compared to the ETM group. Moreover, the ETM + laser group demonstrated significant suppression of SP, CGRP, and HSP 70 expression. These results suggest that the diode laser demonstrated analgesic effects on ETM-induced pain by inhibiting SP and CGRP expression, and decreased HSP 70 expression shows alleviation of cell damage. Thus, although further validation is warranted for human applications, an NIR diode laser can be used for reducing pain and neuropeptide markers during orthodontic tooth movement. Full article
(This article belongs to the Special Issue Advances in Photobiomodulation Therapy)
Show Figures

Figure 1

20 pages, 2074 KiB  
Article
Cannabidiol Mediates Beneficial Effects on the Microvasculature of Murine Hearts with Regard to Irradiation-Induced Inflammation and Early Signs of Fibrosis
by Lisa Bauer, Bayan Alkotub, Markus Ballmann, Khouloud Hachani, Mengyao Jin, Morteza Hasanzadeh Kafshgari, Gerhard Rammes, Alan Graham Pockley and Gabriele Multhoff
Radiation 2025, 5(2), 17; https://doi.org/10.3390/radiation5020017 - 21 May 2025
Viewed by 1262
Abstract
Objective: Radiotherapy administered to control thoracic cancers results in a partial irradiation of the heart at mean doses up to 19 Gy, which increases the risk of developing a spectrum of cardiovascular diseases known as radiation-induced heart disease (RIHD). As inflammation is a [...] Read more.
Objective: Radiotherapy administered to control thoracic cancers results in a partial irradiation of the heart at mean doses up to 19 Gy, which increases the risk of developing a spectrum of cardiovascular diseases known as radiation-induced heart disease (RIHD). As inflammation is a major driver of the development of RIHD, we investigated the potential of the anti-inflammatory agent cannabidiol (CBD) to attenuate irradiation-induced cardiovascular damage in vivo. Methods: Female C57BL/6 mice were given daily injections of CBD (i.p., 20 mg/kg body weight) for 4 weeks beginning either 2 weeks prior to 16 Gy irradiation of the heart or at the time of irradiation. Mice were sacrificed 30 min and 2, 4, and 10 weeks after irradiation to investigate the expression of inflammatory markers and stress proteins in primary cardiac endothelial cells (ECs). DNA double-strand breaks, immune cell infiltration, and signs of fibrosis were studied in explanted heart tissue. Results: We showed that the irradiation-induced upregulation of the inflammatory markers ICAM-1 and MCAM was only attenuated when treatment with CBD was started 2 weeks prior to irradiation but not when the CBD treatment was started concomitant with irradiation of the heart. The protective effect of CBD was associated with a decrease in irradiation-induced DNA damage and an increased expression of protective heat shock proteins (Hsp), such as Hsp32/Heme-oxygenase-1 (HO-1) and Hsp70, in the heart tissue. While the upregulation of the inflammatory markers ICAM-1 and MCAM, expression was prevented up to 10 weeks after irradiation by CBD pre-treatment, and the expression of VCAM-1, which started to increase 10 weeks after irradiation, was further upregulated in CBD pre-treated mice. Despite this finding, 10 weeks after heart irradiation, immune cell infiltration and fibrosis markers of the heart were significantly reduced in CBD pre-treated mice. Conclusion: CBD treatment before irradiation mediates beneficial effects on murine hearts of mice, resulting in a reduction of radiation-induced complications, such as vascular inflammation, immune cell infiltration, and fibrosis. Full article
(This article belongs to the Topic Innovative Radiation Therapies)
Show Figures

Figure 1

13 pages, 1235 KiB  
Article
Validation of a Real-Time PCR for the Diagnosis of Leishmania Species Using the Hsp20 Gene
by Mayra Maldonado-Aroni, Nyshon Rojas-Palomino, Aide Sandoval-Juarez, Marco Galarza-Pérez, José Alarcón-Guerrero, Rosa Guevara-Montero and Víctor Cárdenas-López
Trop. Med. Infect. Dis. 2025, 10(5), 121; https://doi.org/10.3390/tropicalmed10050121 - 1 May 2025
Viewed by 849
Abstract
Leishmaniasis is a complex neglected tropical disease that impacts public health, particularly in resource-limited populations where access to accurate and timely diagnosis is often limited. Current diagnostic methods, primarily relying on microscopy, suffer from low sensitivity and specificity, hindering effective case management and [...] Read more.
Leishmaniasis is a complex neglected tropical disease that impacts public health, particularly in resource-limited populations where access to accurate and timely diagnosis is often limited. Current diagnostic methods, primarily relying on microscopy, suffer from low sensitivity and specificity, hindering effective case management and disease control. The objective of this study was to validate a novel real-time PCR assay targeting the conserved Hsp20 gene for the detection of Leishmania spp. We evaluated the performance of the method using two distinct detection systems, such as SYBR Green and TaqMan probes, against a diverse panel of 225 clinical samples confirmed to have the disease. The real-time PCR targeting Hsp20 using SYBR Green demonstrated a sensitivity of 88% (95% CI: 83.53–92.47) and 100% specificity. Meanwhile, the TaqMan probe demonstrated a lower sensitivity of 47% (95% CI: 29.53–64.92). The high sensitivity and robust performance of the real-time PCR using SYBR Green establish its potential as a valuable diagnostic tool, particularly useful in endemic regions where rapid and accurate diagnosis is critical for timely treatment and effective disease control. Full article
(This article belongs to the Special Issue Molecular Surveillance and New Diagnostic Tests for Leishmaniasis)
Show Figures

Figure 1

22 pages, 4175 KiB  
Article
TBG096 Ameliorates Memory Deficiency in AD Mouse Model via Promoting Neurogenesis and Regulation of Hsc70/HK2/PKM2/LAMP2A Signaling Pathway
by Danni Chen, Opeyemi B. Fasina, Jiahui Lin, Jiayuan Zeng, Majid Manzoor, Hiroshi Ohno, Lan Xiang and Jianhua Qi
Int. J. Mol. Sci. 2025, 26(6), 2804; https://doi.org/10.3390/ijms26062804 - 20 Mar 2025
Cited by 1 | Viewed by 929
Abstract
In previous studies, we isolated a series of novel gentisides with nerve growth factor (NGF)-mimic activities from Gentiana rigescens Franch and conducted continuous structure–activity relationship (SAR) studies. Recently, a lead compound named TBG096 was discovered with significant NGF-mimic activity, low toxicity, and ability [...] Read more.
In previous studies, we isolated a series of novel gentisides with nerve growth factor (NGF)-mimic activities from Gentiana rigescens Franch and conducted continuous structure–activity relationship (SAR) studies. Recently, a lead compound named TBG096 was discovered with significant NGF-mimic activity, low toxicity, and ability to pass through the blood–brain barrier (BBB). At the cell level, TBG096 exerts NGF-mimic activity by regulation of heat-shock cognate protein 70 (Hsc70) and downstream proteins. Subsequently, high-fat diet (HFD)-induced Alzheimer disease (AD) mouse models were used to evaluate the anti-AD efficacy of the compound. TBG096 significantly improved the memory dysfunction of AD mice at doses of 0.1, 5, and 20 mg/kg, respectively. In order to elucidate the mechanism of action of the compound against AD, the RNA-sequence analysis of transcriptomics, quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence staining, and Western blot analysis were performed using animal samples. TBG096 significantly increased the expression of the Wnt gene family (Wnt10b, Wnt5a, and Wnt1) and the number of mature neurons and newborn neurons in the hippocampus and cerebral cortex of AD mice, respectively. At the same time, it reduced the activity of microglia, astrocyte cells, and expression of inducible nitric oxide synthase (INOS) in the brain. Moreover, this compound significantly increased phosphorylated-adenosine 5′-monophosphate-activated protein kinase (AMPK), Hsc70, and lysosomal-associated membrane protein 2a (LAMP2A) and decreased the expression of hexokinase 2 (HK2), pyruvate kinase M2 (PKM2), amyloid precursor protein (APP), microtubule-associated protein tau (Tau), phosphoryl-Tau, and β-amyloid (Aβ) at the protein level. These results suggest that TBG096 produced the NGF-mimic activity and the anti-AD effect via promoting neurogenesis and modification of the Hsc70/HK2/PKM2/LAMP2A signaling pathway, proposing a potential novel approach to counteracting cognitive decline by developing small molecules that promote neurogenesis and the Hsc70 signaling pathway. Full article
(This article belongs to the Topic Natural Products and Drug Discovery)
Show Figures

Figure 1

30 pages, 2381 KiB  
Article
Effects of Dietary Gamma-Aminobutyric Acid (GABA) Inclusion on Acute Temperature Stress Responses in Juvenile Olive Flounder (Paralichthys olivaceus)
by Abayomi Oladimeji Ogun, Haham Kim, Sooa Yoon, Suhyun Lee, Hyuncheol Jeon, Deni Aulia, Junhyeok Hur and Seunghyung Lee
Animals 2025, 15(6), 809; https://doi.org/10.3390/ani15060809 - 12 Mar 2025
Cited by 1 | Viewed by 1252
Abstract
This study investigated the potential of dietary gamma-aminobutyric acid (GABA) inclusion to mitigate acute temperature stress impacting the physiological resilience of juvenile olive flounder (Paralichthys olivaceus). A total of 360 juvenile fish, with an average initial weight of 12.97 ± 0.1 [...] Read more.
This study investigated the potential of dietary gamma-aminobutyric acid (GABA) inclusion to mitigate acute temperature stress impacting the physiological resilience of juvenile olive flounder (Paralichthys olivaceus). A total of 360 juvenile fish, with an average initial weight of 12.97 ± 0.1 g (mean ± SEM), were randomly assigned in triplicate to 18 tanks (20 fish per tank) and reared at 19.5 °C for 8 weeks, with bi-monthly collection of growth performance data. The fish were fed one of six experimental diets: control (GABA74), 174 ppm of GABA (GABA174), 275 ppm of GABA (GABA275), 396 ppm of GABA (GABA396), 476 ppm of GABA (GABA476), and 516 ppm of GABA (GABA516). At the end of the trial, one group of fish was subjected to lethal temperature stress (31 °C) for 48 h, while another was exposed to acute temperature stress (29 °C) for 6 h. Growth performance remained relatively stable across all inclusion levels (p > 0.05), with the final body weight (FBW) ranging from 48.2 ± 0.3 g (GABA174) to 50.3 ± 0.6 g (GABA516) and the feed conversion ratio (FCR) varying between 2.06 ± 0.07 (GABA396) and 2.35 ± 0.07 (control). There were no significant differences in average whole-body composition across all dietary treatments, with moisture content ranging from 74.8 to 75.0%, crude protein from 17.8 to 18.2%, crude lipid from 2.89 to 3.15%, and crude ash from 3.62 to 3.80%. Similarly, there were no significant differences in cumulative survival rates during lethal temperature exposure between the GABA-supplemented groups and the control group, with an average of 28.5 ± 4.6%. Additionally, GABA inclusion did not significantly alter plasma-free amino acid profiles, antioxidant enzyme activities, or immune functions (p > 0.05). However, temperature significantly reduced the levels of superoxide dismutase (SOD) from 3.34 ± 0.17 to 2.29 ± 0.36 µg/mL and increased the levels of glutamate oxaloacetate transaminase (GOT) from 17.1 ± 0.8 to 46.3 ± 6.2 U/L, glutamate pyruvate transaminase (GPT) from 14.4 ± 0.6 to 30.2 ± 2.1 U/L, glucose (GLU) from 13.3 ± 0.5 to 68.7 ± 7.7 mg/dL, total protein (TP) from 2.94 ± 0.00 to 3.21 ± 0.1 g/dL, and cortisol from 5001 ± 147 to 6395 ± 194 ng/mL. Furthermore, no significant changes were observed in the expression of key stress-related genes, including heat shock proteins (hsp60, hsp70, and hsp90) and the warm water acclimation-related gene wap65. This study establishes the safety of GABA as a dietary inclusion for olive flounder and highlights its potential to enhance stress resilience in aquaculture. However, the effectiveness of GABA-based interventions could depend on critical factors such as dosage, stress duration, and species-specific responses. Our findings highlight the need for further research to optimize GABA inclusion strategies, particularly with consideration for long-term physiological impacts. Full article
Show Figures

Figure 1

18 pages, 874 KiB  
Article
Identification of Subtle Differences in the Physiological Quality of Commercial Soybean Seed Lots Using Shotgun Proteomics During Germination
by Fellipe Ramos Sampaio, Irma Yuliana Mora-Ocampo, Fredy Davi Albuquerque Silva, Kevein Ruas Oliveira, Carlos Priminho Pirovani and Rafael Marani Barbosa
Agronomy 2025, 15(3), 609; https://doi.org/10.3390/agronomy15030609 - 28 Feb 2025
Cited by 1 | Viewed by 565
Abstract
Soybean seeds with similar germination rates may exhibit subtle differences in physiological quality, influencing field performance and storage longevity. This study used a shotgun proteomics approach to characterize the proteomic profile of two commercial soybean seed lots (higher- and lower-quality) during germination, aiming [...] Read more.
Soybean seeds with similar germination rates may exhibit subtle differences in physiological quality, influencing field performance and storage longevity. This study used a shotgun proteomics approach to characterize the proteomic profile of two commercial soybean seed lots (higher- and lower-quality) during germination, aiming to identify biomarkers associated with vigor and deterioration. Proteins were analyzed across three germination phases: imbibition (Phase I, 0.5 h), metabolic activation (Phase II, 20 h), and radicle protrusion (Phase III, 51 h). A total of 777 proteins were identified, and of these differentially abundant proteins (DAPs), the following totals were detected: 12 in Phase I, 17 in Phase II, and 28 in Phase III. In Phase I, ribosomal proteins were more abundant in high-quality seeds, indicating efficient translation and preparation for germination. Conversely, in Phase III, low-quality seeds showed increased levels of storage proteins and stress-response proteins, including alcohol dehydrogenase (ADH), heat shock proteins, and annexins, reflecting delayed germination and more deterioration. These findings highlight the dynamic nature of protein expression during germination and demonstrate the potential of proteomics to detect subtle differences in physiological quality. The identified biomarkers provide insights for seed quality assessment and offer practical applications for improving classification and management of commercial soybean seed lots. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 2765 KiB  
Article
Effects of Heat Shock Protein 70 Gene Polymorphism on Heat Resistance in Beef and Dairy Calves Based on Proliferation and Heat Shock Protein 70 Gene Expression in Peripheral Blood Mononuclear Cells and Hair Follicles
by Won Seob Kim, Yong Ho Jo, Jalil Ghassemi Nejad and Hong Gu Lee
Animals 2025, 15(4), 475; https://doi.org/10.3390/ani15040475 - 7 Feb 2025
Viewed by 1198
Abstract
The study objectives were to investigate the heat resistance using peripheral blood mononuclear cells (PBMCs) and hair follicles in beef and dairy calves based on heat shock protein (HSP) 70 genetic polymorphisms. The hair follicle samples from sixty calves (6 months old; 30 [...] Read more.
The study objectives were to investigate the heat resistance using peripheral blood mononuclear cells (PBMCs) and hair follicles in beef and dairy calves based on heat shock protein (HSP) 70 genetic polymorphisms. The hair follicle samples from sixty calves (6 months old; 30 Korean native beef calves and 30 Holstein dairy calves) were collected for DNA extraction. The HSP70 single nucleotide polymorphism (SNP) was genotyped using a 5′-exonuclease activity (TaqMan) assay. In Study 1, PBMCs were isolated from 20 calves categorized by their HSP70 genotypes during a thermoneutral period: 10 Korean native beef calves (B-CC and B-C/-type) and 10 Holstein dairy calves (D-CC, D-C/-type). The PBMCs were then exposed to heat stress at 37 °C (control, CON) and 42 °C (heat stress, HS) for 3 h. Following this, the cells were returned to the 37 °C incubator at 0, 1, 3, 6, and 12 h for further recovery analysis. In Study 2, hair follicles were collected from 20 calves (six times every 30 days; threshold, mild, and moderate stress levels) and HSP70 gene expression was measured. Data were analyzed via two-way analysis of variance (ANOVA) and Tukey’s honestly significant difference (HSD) test. The cell proliferation in the D-C/-group was significantly higher (p < 0.05) than in the D-CC and B-C/-groups at 0 and 1 h after HS for 3 h. The mRNA gene expression of HSP70 was greater (p < 0.01) in all HS groups compared to the CON groups after heat exposure. The expression of the HSP70 gene in the D-C/-group was significantly higher (p < 0.05) compared to the B-CC and B-C/-groups immediately (0 h) following 3 h of HS. The expression in the D-CC group also higher (p < 0.05) than in the B-C/-group. The gene expression of HSP70 in hair follicles increased more at the moderate HS level than that at the threshold level. In addition, overexpression of HSP70 was noted (p < 0.05) in the D-CC and D-C/-groups compared to the B-CC and B-C/-groups. In conclusion, our results indicate that breeds and HSP70 genetic polymorphisms exhibit a distinctive pattern of immune cell proliferation and HSP70 expression profiles. Additionally, the HSP70 gene expression in hair follicles may serve as an indicator of heat resistance across different breeds, making it a potential novel barometer for HS. Full article
(This article belongs to the Special Issue Genetic Research for Improving Livestock Heat Stress Resistance)
Show Figures

Figure 1

17 pages, 3928 KiB  
Article
Exogenous Trehalose Assists Zygosaccharomyces rouxii in Resisting High-Temperature Stress Mainly by Activating Genes Rather than Entering Metabolism
by Xiong Xiao, Quan Liu, Qian Zhang, Zhenzhen Yan, Dongbo Cai and Xin Li
J. Fungi 2024, 10(12), 842; https://doi.org/10.3390/jof10120842 - 5 Dec 2024
Cited by 1 | Viewed by 1153
Abstract
Zygosaccharomyces rouxii is a typical aroma-producing yeast in food brewing, but it has low heat resistance and poor proliferation ability at high temperature. Trehalose is generally considered to be a protective agent that helps stable yeast cells resist heat shock stress, but its [...] Read more.
Zygosaccharomyces rouxii is a typical aroma-producing yeast in food brewing, but it has low heat resistance and poor proliferation ability at high temperature. Trehalose is generally considered to be a protective agent that helps stable yeast cells resist heat shock stress, but its functional mechanism for yeast cells in the adaptation period under heat stress is unclear. In this study, the physiological metabolism changes, specific gene transcription expression characteristics, and transcriptome differences of Z. rouxii under different carbon sources under high-temperature stress (40 °C) were compared to explore the mechanism of trehalose inducing Z. rouxii to recover and proliferate under high-temperature stress during the adaptation period. The results showed that high concentration of trehalose (20% Tre) could not be used as the main carbon source for the proliferation of Z. rouxii under long-term high-temperature stress, but it helped to maintain the stability of the cell population. The intracellular trehalose of Z. rouxii was mainly derived from the synthesis and metabolism of intracellular glucose, and the extracellular acetic acid concentration showed an upward trend with the improvement of yeast growth. A high concentration of trehalose (20% Tre) can promote the expression of high glucose receptor gene GRT2 (12.0-fold) and induce the up-regulation of HSF1 (27.1-fold), MSN4 (58.9-fold), HXK1 (8.3-fold), and other signal transduction protein genes, and the increase of trehalose concentration will maintain the temporal up-regulation of these genes. Transcriptome analysis showed that trehalose concentration and the presence of glucose had a significant effect on the gene expression of Z. rouxii under high-temperature stress. In summary, trehalose assists Z. rouxii in adapting to high temperature by changing gene expression levels, and assists Z. rouxii in absorbing glucose to achieve cell proliferation. Full article
Show Figures

Figure 1

17 pages, 4216 KiB  
Article
Evaluating the Influence of Different Artificial Diets on Apis mellifera L. Using Health Biomarkers and Performance Metrics
by Shams Ul Islam, Muhammad Anjum Aqueel, Muhammad Usman Yousuf, Asim Abbasi, Muhammad Yasin, Rashid Iqbal, Muhammad Fahim Raza, Aqsa Parvaiz and Nazih Y. Rebouh
Insects 2024, 15(11), 905; https://doi.org/10.3390/insects15110905 - 19 Nov 2024
Viewed by 1430
Abstract
The diet of Apis mellifera L. is a crucial factor for managing its colonies particularly during dearth periods. Numerous diets have been developed; however, their global implementation faces challenges due to diverse climatic conditions and some other factors. To address this issue, three [...] Read more.
The diet of Apis mellifera L. is a crucial factor for managing its colonies particularly during dearth periods. Numerous diets have been developed; however, their global implementation faces challenges due to diverse climatic conditions and some other factors. To address this issue, three previously evaluated diets (selected from seven) were tested to assess their effects on A. mellifera using key health biomarkers (immune function, stress response) and performance metrics (foraging activity, honey quality, and social interactions). The experiment was conducted using 12 colonies, including three replications, in The Islamia University of Bahawalpur, Pakistan, from June to September 2023. The results revealed that all the tested parameters were significantly affected by diets. Highest phenol-oxidase activity was recorded in T1 (28.7 U/mg). Heat shock protein (HSP) bands showed that T1 had the fewest (Hsp70), while T0 had more bands (Hsp40, Hsp60, and Hsp70), indicating stress differences. In foraging activity, average number of outgoing bees were highest in T1 (81.8) and lowest in T0 (31.2) and similar trend was followed for returning bees, i.e., T1 (81.8) and T0 (31.2). For pollen-carrying bees, the highest bees were counted in T1 (34.9), and the lowest in T0 (4.10). Honey quality was also significantly affected by diets, pH was highest in T1 (3.85), while moisture was highest in T0 (19.44%). Diastase activity, ash content, and electrical conductivity were best in T1 (13.74 units/g, 0.17%, 0.94 mS/cm, respectively). Mineral content was highest in T1 (406.54 mg/kg), and fructose content also peaked in T1 (396.21 mg/kg). Antioxidant contents, total phenolic content, flavonoid content, and ORAC value were highest in T1 (60.50 mg GAE/100 g, 44.41 mg QE/100 g, 10,237.30 µmol TE/g), while T0 consistently showed the lowest values across all parameters. In social interaction experiments, trophallaxis events were most frequent in T1 (7.38), and T1 also exhibited the longest trophallaxis time (5.51 s). The number of bees per trophallaxis event and antennation frequency followed a similar trend, with the highest recorded in T1 (5.16 bees/event, 10.1 antennation frequency) and the lowest in T0 (2.94 bees/event, 4.18 antennation frequency). Therefore, diet-1 (Watermelon juice 20 mL + Fenugreek powder 2 g + Chickpea flour 20 g + Lupin flour 20 g + Mung bean flour 20 g + Yeast 10 g + Powdered sugar 40 g + vegetable oil 10 mL) is recommended as a suitable substitute for managing A. mellifera colonies during dearth periods. Full article
(This article belongs to the Collection Science of Insect Rearing Systems)
Show Figures

Figure 1

21 pages, 9179 KiB  
Article
Pan-Genome-Wide Investigation and Co-Expression Network Analysis of HSP20 Gene Family in Maize
by Hengyu Yan, Mingzhe Du, Jieyao Ding, Di Song, Weiwei Ma and Yubin Li
Int. J. Mol. Sci. 2024, 25(21), 11550; https://doi.org/10.3390/ijms252111550 - 27 Oct 2024
Cited by 1 | Viewed by 2059
Abstract
Heat shock protein 20 (HSP20) is a diverse and functionally important protein family that plays a crucial role in plants’ tolerance to various abiotic stresses. In this study, we systematically analyzed the structural and functional characteristics of the HSP20 gene family within the [...] Read more.
Heat shock protein 20 (HSP20) is a diverse and functionally important protein family that plays a crucial role in plants’ tolerance to various abiotic stresses. In this study, we systematically analyzed the structural and functional characteristics of the HSP20 gene family within the Zea pan-genome. By identifying 56 HSP20 pan-genes, we revealed the variation in the number of these genes across different maize inbreds or relatives. Among those 56 genes, only 31 are present in more than 52 inbreds or relatives. Further phylogenetic analysis classified these genes into four major groups (Class A, B, C, D) and explored their diversity in subcellular localization, physicochemical properties, and the terminal structures of those HSP20s. Through collinearity analysis and Ka/Ks ratio calculations, we found that most HSP20 genes underwent purifying selection during maize domestication, although a few genes showed signs of positive selection pressure. Additionally, expression analysis showed that several HSP20 genes were significantly upregulated under high temperatures, particularly in tassels and leaves. Co-expression network analysis revealed that HSP20 genes were significantly enriched in GO terms related to environmental stress responses, suggesting that HSP20 genes not only play key roles in heat stress but may also be involved in regulating various other biological processes, such as secondary metabolism and developmental processes. These findings expand our understanding of the functions of the maize HSP20 family and provide new insights for further research into maize’s response mechanisms to environmental stresses. Full article
(This article belongs to the Special Issue Transcription Factors in Plant Gene Expression Regulation)
Show Figures

Figure 1

11 pages, 1957 KiB  
Article
Prediction of Oral Cancer Biomarkers by Salivary Proteomics Data
by Veronica Remori, Manuel Airoldi, Tiziana Alberio, Mauro Fasano and Lorenzo Azzi
Int. J. Mol. Sci. 2024, 25(20), 11120; https://doi.org/10.3390/ijms252011120 - 16 Oct 2024
Viewed by 2107
Abstract
Oral cancer, representing 2–4% of all cancer cases, predominantly consists of Oral Squamous Cell Carcinoma (OSCC), which makes up 90% of oral malignancies. Early detection of OSCC is crucial, and identifying specific proteins in saliva as biomarkers could greatly improve early diagnosis. Here, [...] Read more.
Oral cancer, representing 2–4% of all cancer cases, predominantly consists of Oral Squamous Cell Carcinoma (OSCC), which makes up 90% of oral malignancies. Early detection of OSCC is crucial, and identifying specific proteins in saliva as biomarkers could greatly improve early diagnosis. Here, we proposed a strategy to pinpoint candidate biomarkers. Starting from a list of salivary proteins detected in 10 OSCC patients and 20 healthy controls, we combined a univariate approach and a multivariate approach to select candidates. To reduce the number of proteins selected, a Protein–Protein Interaction network was built to consider only connected proteins. Then, an over-representation analysis (ORA) determined the enriched pathways. The network from 172 differentially abundant proteins highlighted 50 physically connected proteins, selecting relevant candidates for targeted experimental validations. Notably, proteins like Heat shock 70 kDa protein 1A/1B, Pyruvate kinase PKM, and Phosphoglycerate kinase 1 were suggested to be differentially regulated in OSCC patients, with implications for oral carcinogenesis and tumor growth. Additionally, the ORA revealed enrichment in immune system, complement, and coagulation pathways, all known to play roles in tumorigenesis and cancer progression. The employed method has successfully identified potential biomarkers for early diagnosis of OSCC using an accessible body fluid. Full article
(This article belongs to the Special Issue Molecular Insight into Oral Diseases)
Show Figures

Figure 1

20 pages, 22440 KiB  
Article
Genome-Wide Identification and Expression Analysis of Heat Shock Protein 20 (HSP20) Gene Family in Response to High-Temperature Stress in Chickpeas (Cicer arietinum L.)
by Sushuang Liu, Yizhou Wu, Yang Li, Zaibao Zhang, Dandan He, Jianguo Yan, Huasong Zou and Yanmin Liu
Agronomy 2024, 14(8), 1696; https://doi.org/10.3390/agronomy14081696 - 1 Aug 2024
Cited by 2 | Viewed by 1548
Abstract
Chickpeas (Cicer arietinum L.) are an important legume crop known for their rich nutrient content, including proteins, carbohydrates, and minerals. Thus, they are enjoyed by people worldwide. In recent years, the production scale of chickpeas has been growing gradually. The planting area [...] Read more.
Chickpeas (Cicer arietinum L.) are an important legume crop known for their rich nutrient content, including proteins, carbohydrates, and minerals. Thus, they are enjoyed by people worldwide. In recent years, the production scale of chickpeas has been growing gradually. The planting area of chickpeas represents roughly 35–36% of the total planting area, and the output of the beans is roughly 47–48%. However, the growth and development process of chickpeas is limited by a number of factors, including high temperature, drought, salt stress, and so forth. In particular, high temperatures can reduce the germination rate, photosynthesis, seed setting rate, and filling rate of chickpeas, restricting seed germination, plant growth, and reproductive growth. These changes lead to a decrease in the yield and quality of the crop. Heat shock proteins (HSPs) are small proteins that play an important role in plant defense against abiotic stress. Therefore, in the present study, HSP20 gene family members were identified based on the whole-genome data of chickpeas, and their chromosomal positions, evolutionary relationships, promoter cis-acting elements, and tissue-specific expression patterns were predicted. Subsequently, qRT-PCR was used to detect and analyze the expression characteristics of HSP20 genes under different temperature stress conditions. Ultimately, we identified twenty-one HSP20 genes distributed on seven chromosomes, and their gene family members were found to be relatively conserved, belonging to ten subfamilies. We also found that CaHSP20 promoter regions have many cis-acting elements related to growth and development, hormones, and stress responses. In addition, under high-temperature stress, the relative expression of CaHSP20-17, CaHSP20-20, CaHSP20-7, CaHSP20-3, and CaHSP20-12 increased hundreds or even thousands of times as the temperature increased from 25 °C to 42 °C. Among them, excluding CaHSP20-5, the other five genes all contain 1-2 ABA cis-regulatory elements. This finding indicates that CaHSP20s are involved in the growth and development of chickpeas under heat stress, and the mechanisms of their responses to high-temperature stress may be related to hormone regulation. The results of the present study lay the foundation for exploring HSP20 gene family resources and the molecular mechanisms of heat resistance in chickpeas. Our results can also provide a theoretical basis for breeding high-temperature-resistant chickpea varieties and provide valuable information for the sustainable development of the global chickpea industry. Full article
(This article belongs to the Special Issue Advances in Legume Genetics and Genomics from Mendelian to NGS Era)
Show Figures

Figure 1

22 pages, 6028 KiB  
Article
Effects of Premortem Stress on Protein Expression, Steak Color, Oxidation, and Myofibrillar Fragmentation Index in the Longissimus Lumborum
by Reganne K. Briggs, Jerrad F. Legako, Paul R. Broadway, Jeff A. Carroll, Nicole C. Burdick Sanchez, Nikole E. Ineck, Zachary K. Smith, Ranjith Ramanathan and Kara J. Thornton
Animals 2024, 14(15), 2170; https://doi.org/10.3390/ani14152170 - 25 Jul 2024
Viewed by 1175
Abstract
Forty castrated Holstein calves underwent an adrenocorticotropic hormone (ACTH) challenge to assess the effects of premortem stress on the longissimus lumborum (LL) following harvest. LL biopsies were collected before the challenge, at different harvest times (2, 12, 24, and 48 h; n = [...] Read more.
Forty castrated Holstein calves underwent an adrenocorticotropic hormone (ACTH) challenge to assess the effects of premortem stress on the longissimus lumborum (LL) following harvest. LL biopsies were collected before the challenge, at different harvest times (2, 12, 24, and 48 h; n = 10), and after 14 d aging. The expression of small heat shock proteins (SHSPs), deglycase 1 (DJ-1), and troponin were analyzed. Blood was analyzed throughout the ACTH challenge and at harvest for cortisol, oxidative stress, and complete blood count (CBC). Color and myofibrillar fragmentation index (MFI) were measured in aged samples. Unexpectedly, calves from different harvest times differed (p = 0.05) in cortisol response. Calves were divided into two different cortisol response groups (high or low; n = 20). Statistical analysis assessed the effects of cortisol response (n = 20), harvest time (n = 10), and their interaction. Harvest time altered SHSPs (p = 0.03), DJ-1 (p = 0.002), and troponin (p = 0.02) expression. Harvest time and cortisol response impacted steak color (p < 0.05), and harvest time altered steak pH (p < 0.0001). Additionally, various CBCs were changed (p < 0.05) by harvest time. Harvest time changed (p = 0.02) MFI. These data demonstrate that the protein expression, color, and MFI of the LL may be influenced by premortem stress. Full article
(This article belongs to the Special Issue Carcass Traits and Meat Quality in Cattle)
Show Figures

Figure 1

23 pages, 4070 KiB  
Article
Levels of Small Extracellular Vesicles Containing hERG-1 and Hsp47 as Potential Biomarkers for Cardiovascular Diseases
by Luis A. Osorio, Mauricio Lozano, Paola Soto, Viviana Moreno-Hidalgo, Angely Arévalo-Gil, Angie Ramírez-Balaguera, Daniel Hevia, Jorge Cifuentes, Yessia Hidalgo, Francisca Alcayaga-Miranda, Consuelo Pasten, Danna Morales, Diego Varela, Cinthya Urquidi, Andrés Iturriaga, Alejandra Rivera-Palma, Ricardo Larrea-Gómez and Carlos E. Irarrázabal
Int. J. Mol. Sci. 2024, 25(9), 4913; https://doi.org/10.3390/ijms25094913 - 30 Apr 2024
Cited by 4 | Viewed by 2281
Abstract
The diagnosis of cardiovascular disease (CVD) is still limited. Therefore, this study demonstrates the presence of human ether-a-go-go-related gene 1 (hERG1) and heat shock protein 47 (Hsp47) on the surface of small extracellular vesicles (sEVs) in human peripheral blood and their association with [...] Read more.
The diagnosis of cardiovascular disease (CVD) is still limited. Therefore, this study demonstrates the presence of human ether-a-go-go-related gene 1 (hERG1) and heat shock protein 47 (Hsp47) on the surface of small extracellular vesicles (sEVs) in human peripheral blood and their association with CVD. In this research, 20 individuals with heart failure and 26 participants subjected to cardiac stress tests were enrolled. The associations between hERG1 and/or Hsp47 in sEVs and CVD were established using Western blot, flow cytometry, electron microscopy, ELISA, and nanoparticle tracking analysis. The results show that hERG1 and Hsp47 were present in sEV membranes, extravesicularly exposing the sequences 430AFLLKETEEGPPATE445 for hERG1 and 169ALQSINEWAAQTT- DGKLPEVTKDVERTD196 for Hsp47. In addition, upon exposure to hypoxia, rat primary cardiomyocytes released sEVs into the media, and human cardiomyocytes in culture also released sEVs containing hERG1 (EV-hERG1) and/or Hsp47 (EV-Hsp47). Moreover, the levels of sEVs increased in the blood when cardiac ischemia was induced during the stress test, as well as the concentrations of EV-hERG1 and EV-Hsp47. Additionally, the plasma levels of EV-hERG1 and EV-Hsp47 decreased in patients with decompensated heart failure (DHF). Our data provide the first evidence that hERG1 and Hsp47 are present in the membranes of sEVs derived from the human cardiomyocyte cell line, and also in those isolated from human peripheral blood. Total sEVs, EV-hERG1, and EV-Hsp47 may be explored as biomarkers for heart diseases such as heart failure and cardiac ischemia. Full article
(This article belongs to the Special Issue Roles and Function of Extracellular Vesicles in Diseases 2.0)
Show Figures

Graphical abstract

Back to TopTop