Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,442)

Search Parameters:
Keywords = health and nutritional benefits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 749 KiB  
Review
Hemp-Based Meat Analogs: An Updated Review on Extraction Technologies, Nutritional Excellence, Functional Innovation, and Sustainable Processing Technologies
by Hassan Barakat and Thamer Aljutaily
Foods 2025, 14(16), 2835; https://doi.org/10.3390/foods14162835 - 15 Aug 2025
Abstract
The global transition toward plant-based diets has intensified the search for sustainable protein alternatives, positioning hemp-based meat analogs (HBMAs) as a promising solution due to their exceptional nutritional profile and environmental benefits. This comprehensive review critically examines hemp protein research, focusing on extraction [...] Read more.
The global transition toward plant-based diets has intensified the search for sustainable protein alternatives, positioning hemp-based meat analogs (HBMAs) as a promising solution due to their exceptional nutritional profile and environmental benefits. This comprehensive review critically examines hemp protein research, focusing on extraction technologies, nutritional excellence, functional innovation, and sustainable processing approaches for meat analog development. Hemp seeds contain 25–30% protein, primarily consisting of highly digestible edestin and albumin proteins that provide a complete amino acid profile comparable to soy and animal proteins. The protein exhibits superior digestibility (>88%) and generates bioactive peptides with demonstrated antioxidant, antihypertensive, and anti-inflammatory properties, offering significant health benefits beyond basic nutrition. Comparative analysis reveals that while alkaline extraction-isoelectric precipitation remains the industrial standard due to cost-effectiveness ($2.50–3.20 kg−1), enzymatic extraction and ultrasound-assisted methods deliver superior functional properties despite higher costs. Hemp protein demonstrates moderate solubility and good emulsifying properties, though its gelation capacity requires optimization through enzymatic hydrolysis, high-pressure processing, or strategic blending with complementary proteins. Processing innovations, particularly high-moisture extrusion combined with protein blending strategies, enable fibrous structures closely mimicking conventional meat texture. Hemp protein can replace up to 60% of soy protein in high-moisture meat analogs, with formulations incorporating wheat gluten or chickpea protein showing superior textural attributes. Despite advantages in nutritional density, sustainability, and functional versatility, HBMAs face challenges including sensory limitations, regulatory barriers, and production scaling requirements. Hemp cultivation demonstrates 40–50% lower carbon footprint and water usage compared with conventional protein sources. Future research directions emphasize techniques and action processes, developing novel protein modification techniques, and addressing consumer acceptance through improved sensory properties for successful market adoption. Full article
Show Figures

Figure 1

12 pages, 690 KiB  
Article
A Comparative Analysis of Fruit Quality and Flavor in Capsicum chinense and Capsicum annuum from Myanmar, Peru, and Japan
by Claudia F. Ortega Morales, Kenji Irie and Makoto Kawase
Int. J. Plant Biol. 2025, 16(3), 90; https://doi.org/10.3390/ijpb16030090 - 14 Aug 2025
Viewed by 68
Abstract
Chili peppers, a staple spice in global cuisine, hold substantial economic value due to their diverse pungency levels and distinctive aromatic profiles. In addition to their sensory attributes, Capsicum fruits exhibit notable morphological diversity and potential health benefits. While contemporary Capsicum breeding efforts [...] Read more.
Chili peppers, a staple spice in global cuisine, hold substantial economic value due to their diverse pungency levels and distinctive aromatic profiles. In addition to their sensory attributes, Capsicum fruits exhibit notable morphological diversity and potential health benefits. While contemporary Capsicum breeding efforts have focused on the yield, shelf life, and resistance to biotic and abiotic stresses, comparatively less emphasis has been placed on the fruit quality and flavor traits increasingly valued by consumers seeking novel flavors and functional foods. We evaluated seven underutilized Capsicum landraces collected from Peru, Myanmar, and Japan and conducted an integrative analysis of their morphological traits, nutritional composition, pungency, and volatile compounds. Our findings highlight C. chinense from Myanmar and Peru as a particularly diverse species, encompassing accessions with mild to very highly pungent, elevated antioxidant content, and significant contributions to fruity aromatic notes. These findings support the development of flavor-driven chili-pepper-based food products with enhanced nutritional value and tailored pungency. Our identification of beneficial alleles also offers opportunities for interspecific breeding to produce novel cultivars aligned with evolving consumer preferences, thereby supporting the commercialization of traditional varieties, conserving genetic resources, and expanding the market potential of new cultivars. Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
Show Figures

Figure 1

23 pages, 4518 KiB  
Article
In Vitro Inhibitory Effects and Molecular Mechanism of Four Theaflavins on Isozymes of CYP450 and UGTs
by Lin Hu, Zhuohan Hu, Junying Peng, Aixiang Hou, Zhubing Hao, Zhongqin Wu, Yan Li, Ke Li, Zongjun Li, Zhonghua Liu, Yu Xiao and Yuanliang Wang
Foods 2025, 14(16), 2822; https://doi.org/10.3390/foods14162822 - 14 Aug 2025
Viewed by 83
Abstract
Theaflavins, benzotropolone compounds formed during black tea processing via catechin condensation, have drawn attention for their potential health benefits and diverse biological effects. This study evaluated the inhibitory effects of four theaflavin monomers—theaflavin-3′-gallate, theaflavin-3,3′-digallate, theaflavin-3-gallate, and theaflavin—on eight CYP450 enzymes using pooled human [...] Read more.
Theaflavins, benzotropolone compounds formed during black tea processing via catechin condensation, have drawn attention for their potential health benefits and diverse biological effects. This study evaluated the inhibitory effects of four theaflavin monomers—theaflavin-3′-gallate, theaflavin-3,3′-digallate, theaflavin-3-gallate, and theaflavin—on eight CYP450 enzymes using pooled human liver microsomes and specific probe substrates, and seven UGT enzymes using human recombinant UGT enzymes and specific probe substrates. Theaflavin-3′-gallate moderately inhibited CYP1A2-catalyzed phenacetin metabolism and CYP2C8-mediated amodiaquine metabolism, with IC50 values of 8.67 μM and 10–20 μM, respectively. Theaflavin-3,3′-digallate exhibited similar effects. Both compounds showed negligible inhibition with other CYP enzymes. In UGT assays, theaflavin-3′-gallate and theaflavin-3,3′-digallate moderately inhibited UGT1A1- and UGT1A3-mediated beta-estradiol glucuronidation (IC50: 1.40–5.22 μM), with weak or no effects on other UGT enzymes. Molecular docking revealed that CYP1A2-theaflavin-3′-gallate and CYP2C8-theaflavin-3,3′-digallate interactions were non-competitive, primarily mediated by hydrogen bonding and π-interactions. UGT1A1-theaflavin interactions suggested non-competitive inhibition, while UGT1A3-theaflavin interactions indicated competitive inhibition. Other enzyme-theaflavin interactions exhibited minimal binding energy differences, implying mixed-type inhibition. These findings highlight the selective inhibitory effects of theaflavins on specific hepatic enzymes, with potential implications for nutrient interactions, particularly for nutrients metabolized by CYP1A2, CYP2C8, UGT1A1, and UGT1A3. Further research is needed to explore the in vivo relevance and assess the dietary implications of theaflavin-rich black tea in nutrition and metabolism. Full article
(This article belongs to the Special Issue Potential Health Benefits of Plant Food-Derived Bioactive Compounds)
Show Figures

Figure 1

25 pages, 2795 KiB  
Review
Precision Nutrition for Dementia: Exploring the Potential in Mitigating Dementia Progression
by Tara J. Jewell, Michelle Minehan, Jackson Williams and Nathan M. D’Cunha
J. Dement. Alzheimer's Dis. 2025, 2(3), 28; https://doi.org/10.3390/jdad2030028 - 14 Aug 2025
Viewed by 120
Abstract
Precision nutrition is a tailored dietary approach that considers an individual’s genetic and metabolic profile, lifestyle factors, and specific nutritional needs to improve health and potentially modify disease progression. While research is ongoing into precision nutrition approaches for preventing dementia, there is no [...] Read more.
Precision nutrition is a tailored dietary approach that considers an individual’s genetic and metabolic profile, lifestyle factors, and specific nutritional needs to improve health and potentially modify disease progression. While research is ongoing into precision nutrition approaches for preventing dementia, there is no evidence on its targeted application to slow dementia-related disease progression and mitigate functional and cognitive decline. This narrative review addresses this gap by synthesising evidence on nutrient–gene interactions, genotype, gut microbiome, nutritional status and the interplay between metabolic pathways implicated in neuroinflammation and neurodegeneration to modify disease progression in a protective or therapeutic manner. Understanding and addressing comorbidities that share pathological mechanisms with dementia have the potential to enhance the understanding of precision nutrition to inform more effective, tailored approaches to slow dementia progression. To increase the robustness of precision nutrition trials for people with dementia, further research is needed into biomarker discovery, multi-omics technologies, and increasing mechanistic research to map the precise biological pathways underpinning the interactions between diet, gene expression, and neuroinflammation. Moreover, there is a need to evaluate the feasibility of precision nutrition for people experiencing cognitive impairment. Addressing these gaps will determine if people with dementia can benefit from precision nutrition and, subsequently, improve their quality of life and health outcomes. Full article
Show Figures

Figure 1

25 pages, 1264 KiB  
Review
Deep Eutectic Solvent Systems as Media for the Selective Extraction of Anti-Inflammatory Bioactive Agents
by Beatriz Giner, Estela Sangüesa, Estefania Zuriaga, Laura Culleré and Laura Lomba
Molecules 2025, 30(16), 3357; https://doi.org/10.3390/molecules30163357 - 12 Aug 2025
Viewed by 313
Abstract
Bioactive compounds (BCs) are naturally occurring molecules found in plants, fungi, and microorganisms that can provide health benefits beyond nutrition. However, in order to administer them, they must be extracted from these organisms. This study reviews the extraction of anti-inflammatory bioactive compounds using [...] Read more.
Bioactive compounds (BCs) are naturally occurring molecules found in plants, fungi, and microorganisms that can provide health benefits beyond nutrition. However, in order to administer them, they must be extracted from these organisms. This study reviews the extraction of anti-inflammatory bioactive compounds using deep eutectic systems (DESs). It was found that DES extraction media can be categorized as either choline chloride-based or natural product-based (e.g., proline, betaine, and lactic acid). Results indicate that extraction yields depended on many factors such as extraction method and DES composition, with values ranging from 0.02 to 200 mg/g. For example, curcumin extraction using ChCl–propylene glycol (1:2), for example, reached 23.1 mg/g, whereas rutin extraction using ChCl–levulinic acid (1:2) achieved 200 mg/g. Regarding this, most of the eutectic mixtures used are choline chloride (ChCl)-based combined with sugars, polyalcohols, organic acids, or even water. Nonpolar DESs combining betaine, L-proline, amino acids, sugars, and organic acids have also been used for the extraction of BCs with anti-inflammatory potential. Although the use of DES offers significant advantages for extraction processes, certain limitations still need to be overcome. This review highlights the comparative advantages of DESs in terms of extraction efficiency and environmental sustainability, offering practical insights for selecting optimal systems to extract anti-inflammatory bioactive compounds. Full article
Show Figures

Figure 1

38 pages, 2276 KiB  
Review
Drying Technologies for Stevia rebaudiana Bertoni: Advances, Challenges, and Impacts on Bioactivity for Food Applications—A Review
by Shahin Roohinejad, Mohamed Koubaa and Seyed Mohammad Taghi Gharibzahedi
Foods 2025, 14(16), 2801; https://doi.org/10.3390/foods14162801 - 12 Aug 2025
Viewed by 389
Abstract
Stevia rebaudiana leaves and extracts need to be promptly dried after harvest to prevent microbial activity and preserve their bioactive compounds, including glycosides, flavonoids, and essential oils. Effective drying also reduces moisture and volume, which lowers packaging, storage, and transportation costs. Therefore, innovative [...] Read more.
Stevia rebaudiana leaves and extracts need to be promptly dried after harvest to prevent microbial activity and preserve their bioactive compounds, including glycosides, flavonoids, and essential oils. Effective drying also reduces moisture and volume, which lowers packaging, storage, and transportation costs. Therefore, innovative drying methods are necessary to maintain stevia’s physicochemical, sensory, and nutritional properties for functional food formulations. This review evaluates various drying technologies for stevia leaves and extracts, including convective hot air, infrared, vacuum, microwave, freeze, and shade drying, and their impacts on product quality and energy efficiency. It also explores the growing applications of dried and extracted stevia in food products. By comparing different drying methods and highlighting the benefits of stevia in these food formulations, this investigation aims to identify future research directions and optimization strategies for utilizing stevia as a natural sweetener and functional ingredient. Convective hot air drying at higher temperatures was found to be the most energy-efficient, though several studies have reported moderate degradation of key bioactive compounds such as stevioside and rebaudioside A, particularly at elevated temperatures and extended drying times. Infrared drying enhanced antimicrobial activity but resulted in lower levels of polyphenols and antioxidants. Vacuum drying effectively preserved anti-inflammatory compounds like flavonoids. Microwave drying presented strong protection of antioxidant activity and superior particle morphology. Freeze drying, while less energy-efficient, was the most effective at retaining antioxidants, polyphenols, and volatile compounds. Shade drying, though time-consuming, maintained high levels of polyphenols, flavonoids, and essential oils. Advanced techniques like spray drying and electrospraying have been reported to enhance the sensory qualities and stability of stevia extracts, making them ideal for food applications such as dairy and baked products, confectionery, syrups, snacks, jams, preserves, and meat products. Overall, stevia not only serves as a natural, zero-calorie sweetener but also contributes to improved health benefits and product quality in these diverse food formulations. Full article
Show Figures

Figure 1

12 pages, 2441 KiB  
Article
Linolenic Acid Inhibits Cancer Stemness and Induces Apoptosis by Regulating Nrf2 Expression in Gastric Cancer Cells
by Jen-Lung Chen, Yi-Shih Ma, Kuen-Jang Tsai, Hsin-Yi Tsai, Li-Jen Yeh, Hung-Wen Tsai, Judy Yen, Hong-Wen Tsai and Ming-Wei Lin
Curr. Issues Mol. Biol. 2025, 47(8), 646; https://doi.org/10.3390/cimb47080646 - 12 Aug 2025
Viewed by 232
Abstract
Although chemotherapy is the preferred treatment for gastric cancer, the therapeutic drugs currently available have limited efficacy and severe side effects. Cancer stem cells within tumor masses have the distinctive properties of self-renewal, maintenance, and resistance to chemotherapy. Hence, agents capable of targeting [...] Read more.
Although chemotherapy is the preferred treatment for gastric cancer, the therapeutic drugs currently available have limited efficacy and severe side effects. Cancer stem cells within tumor masses have the distinctive properties of self-renewal, maintenance, and resistance to chemotherapy. Hence, agents capable of targeting stemness in gastric tumors with minimal side effects are urgently required. Enzymes that generate reactive oxygen species contribute to the high oxidation levels observed in tumors. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2), an antioxidant transcription factor, regulates cancer stemness. Increasing evidence highlights the potential of nutritional supplementation to treat cancer stemness. ω-3 polyunsaturated fatty acids support human health and offer benefits for cancer treatment. Linolenic acid (LA), an ω-3 polyunsaturated fatty acid, inhibits the expression of proteins associated with stemness and promotes apoptosis in gastric cancer cells. Our findings indicated that LA treatment substantially inhibited key characteristics of gastric cancer stemness and induced oxidative stress and caspase-3-mediated apoptosis by downregulating Nrf2-mediated expression. These results suggest that LA is a promising nutritional supplement for targeting cancer stemness in the treatment of gastric cancer. Full article
(This article belongs to the Special Issue Targeting Tumor Microenvironment for Cancer Therapy, 3rd Edition)
Show Figures

Graphical abstract

27 pages, 2435 KiB  
Article
Functional Compound Bioaccessibility and Microbial Viability in Green and Black Tea Kombucha During Simulated Digestion
by Gloria Ghion, Jacopo Sica, Sofia Massaro, Armin Tarrah, Tove Gulbrandsen Devold, Davide Porcellato, Alessio Giacomini, Frederico Augusto Ribeiro de Barros, Viviana Corich and Chiara Nadai
Foods 2025, 14(16), 2770; https://doi.org/10.3390/foods14162770 - 9 Aug 2025
Viewed by 454
Abstract
Kombucha, a fermented tea beverage, is gaining popularity due to its rich content of bioactive compounds and associated health benefits. Kombucha fermentation involves a complex microbial consortium, including acetic acid bacteria, lactic acid bacteria, and yeasts, that works synergistically to enhance its nutritional [...] Read more.
Kombucha, a fermented tea beverage, is gaining popularity due to its rich content of bioactive compounds and associated health benefits. Kombucha fermentation involves a complex microbial consortium, including acetic acid bacteria, lactic acid bacteria, and yeasts, that works synergistically to enhance its nutritional and functional properties. Key compounds produced during fermentation provide antioxidant, anti-inflammatory, and antimicrobial benefits. Despite its well-documented health-promoting properties, limited research exists on how human digestion influences the stability and functionality of kombucha bioactive components. This study investigated how digestion impacts kombucha made from green and black teas, focusing on free amino acid content, antioxidant activity, antimicrobial potential, and microbiota viability. Results showed that digestion significantly increased free amino acids, as fermentation released peptides suitable for gastrointestinal digestion. However, L-theanine, a beneficial tea compound, was no longer detectable after fermentation and digestion, suggesting limited bioaccessibility. Digested kombucha exhibited higher antioxidant activity and stronger antimicrobial effects compared to undigested tea. Moreover, culture-dependent and PMA-based sequencing confirmed the survival of viable microbial strains through simulated gastrointestinal conditions, suggesting the potential of kombucha as a source of live, functional microbes. These findings support the role of kombucha as a natural functional beverage whose health benefits not only persist but may be enhanced after digestion. Full article
(This article belongs to the Special Issue Advances on Functional Foods with Antioxidant Bioactivity)
Show Figures

Figure 1

17 pages, 271 KiB  
Article
Beyond Infant Nutrition: Investigating the Long-Term Neurodevelopmental Impact of Breastfeeding
by Desislava Zhelyazkova, Maria Dzhogova, Simoneta Popova and Rouzha Pancheva
Nutrients 2025, 17(16), 2578; https://doi.org/10.3390/nu17162578 - 8 Aug 2025
Viewed by 588
Abstract
Background/objectives: Optimal infant nutrition, particularly exclusive breastfeeding for the first 6 months, is crucial for both immediate and long-term health. The early years of life are essential for brain development due of the rapid maturation of social, emotional, cognitive and motor capacities. [...] Read more.
Background/objectives: Optimal infant nutrition, particularly exclusive breastfeeding for the first 6 months, is crucial for both immediate and long-term health. The early years of life are essential for brain development due of the rapid maturation of social, emotional, cognitive and motor capacities. While benefits of breastfeeding are well established, its long-term impact on neurodevelopment remains underexplored. This study investigates the relationship between breastfeeding duration and neurodevelopment outcomes at 5 years of age. Methods: This prospective cohort study followed 92 term-born infants in Varna, Bulgaria (2017–2024). Parents provided informed consent and completed questionnaires regarding demographic characteristics, feeding practices and atopic diseases. At 5 years of age, children were assessed using the Neurodevelopmental Test for Five-Year-Olds. Results: Feeding practices differed significantly across groups (p < 0.001), with exclusive breastfeeding more prevalent among children breastfed for longer. At 5 years, significant differences were observed in language development (p = 0.037) and behavioral outcomes (p = 0.001). A linear regression model for behavioral outcomes (F = 2.29, p = 0.011, R2 = 0.297) showed that breastfeeding for 6–12 months was associated with more favorable behavior (Estimate = −5.88, p = 0.026), compared to less than 6 months. In contrast, paternal secondary education (Estimate = 3.58, p = 0.048) compared to higher education and mixed ethnicity (Estimate = 12.55, p = 0.023) compared with Bulgarian ethnicity were associated with poorer behavioral outcomes (Estimate = 3.58, p = 0.048). Conclusions: Breastfeeding for 6 to 12 months may be associated with improved behavioral development, and to a lesser extent, language outcomes at age five. However, these domain-specific associations were not consistently supported across all statistical methods and should be interpreted with caution. Neurodevelopment is influenced by a complex interplay of nutritional, social and environmental factors. Longitudinal studies are needed to clarify the long-term effects of breastfeeding duration on neurodevelopment. Full article
(This article belongs to the Special Issue Early Nutrition and Neurodevelopment)
Show Figures

Graphical abstract

16 pages, 353 KiB  
Article
Exclusive Breastfeeding or Formula Use? A Cross-Sectional Survey of Romanian Mothers’ Feeding Practices and Influencing Factors
by Ioana Roșca, Andreea Teodora Constantin, Alexandru Dinulescu, Mirela-Luminița Pavelescu, Leonard Năstase, Daniela-Eugenia Popescu and Alexandru Blidaru
Medicina 2025, 61(8), 1425; https://doi.org/10.3390/medicina61081425 - 7 Aug 2025
Viewed by 320
Abstract
Background and Objectives: Exclusive breastfeeding offers optimal nutrition and health benefits for infants, yet many mothers face challenges that impact their ability to breastfeed. This study aimed to explore breastfeeding practices among Romanian mothers and identify factors associated with successful exclusive breastfeeding. Materials [...] Read more.
Background and Objectives: Exclusive breastfeeding offers optimal nutrition and health benefits for infants, yet many mothers face challenges that impact their ability to breastfeed. This study aimed to explore breastfeeding practices among Romanian mothers and identify factors associated with successful exclusive breastfeeding. Materials and Methods: A cross-sectional online survey was conducted from February to March 2025, targeting Romanian mothers via social media platforms. The questionnaire, developed specifically for this study, collected data on sociodemographics, birth and neonatal variables, hospital practices, feeding intentions, community influences, and breastfeeding outcomes. A total of 874 valid responses were analyzed using Fisher’s exact tests and multivariable logistic regression. Results: While 87.2% of mothers intended to breastfeed, only 56.1% reported exclusive breastfeeding. Factors significantly associated with reduced likelihood of exclusive breastfeeding included maternal age ≥ 30 years (OR = 1.40, p = 0.042), Cesarean delivery (OR = 1.78, p < 0.001), absence of rooming-in (OR = 2.32, p < 0.001), and pacifier use (OR > 4.7, p < 0.001). Protective factors included non-smoking status (OR = 0.52, p < 0.001) and encouragement to breastfeed by medical staff (OR = 1.60, p = 0.004). Despite external advice to use formula, many mothers continued breastfeeding. Conclusions: Although breastfeeding intention was high, exclusive breastfeeding remains suboptimal in Romania. Targeted support—particularly in maternity hospitals and for mothers recovering from Cesarean sections—alongside prenatal education and consistent postnatal guidance are essential to bridge the gap between intention and practice. Full article
(This article belongs to the Section Obstetrics and Gynecology)
10 pages, 208 KiB  
Article
Effect of Technological Process and Temperature on Phospholipids in Buffalo Milk, Whey and Buttermilk
by Marika Di Paolo, Valeria Pelizzola, Lucia De Luca, Loriana Casalino, Giulia Polizzi, Milena Povolo and Raffaele Marrone
Foods 2025, 14(15), 2756; https://doi.org/10.3390/foods14152756 - 7 Aug 2025
Viewed by 196
Abstract
Phospholipids (PLs) are a group of biomolecules found in the milk fat globule membranes (MFGMs). Recently, MFGM phospholipids have attracted increasing amounts of attention due to their unique composition, stability, and potential health benefits, including protective effects against Alzheimer’s disease, hypercholesterolemia, and certain [...] Read more.
Phospholipids (PLs) are a group of biomolecules found in the milk fat globule membranes (MFGMs). Recently, MFGM phospholipids have attracted increasing amounts of attention due to their unique composition, stability, and potential health benefits, including protective effects against Alzheimer’s disease, hypercholesterolemia, and certain types of cancer. Although buffalo milk is the second most commonly produced milk and has high nutritional value, few studies have focused on the properties of buffalo MFGM. This study investigates the PLs composition of buffalo milk and related dairy by-products (whey and buttermilk). Milk and whey were collected from two dairy farms (A—small and B—big) to produce mozzarella buffalo cheese (high-pasteurization milk for GDO production and low for local); while buttermilk was obtained from a butter-making farm. Phospholipids were purified by a solid-phase extraction method and then identified by high-performance liquid chromatography with an evaporative light-scattering detector (HPLC/ELSD). Five classes of phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), and sphingomyelin (SM)] were identified. The thermal process of milk did not significantly affect the PLs milk. However, local whey showed a higher concentration of total PLs than GDO, which was mainly represented by PE followed by PC content. Farm A exhibited higher PL content than B, particularly with a greater concentration of SM. Buttermilk showed the lowest PLs content. These findings offer valuable insights for the dairy industry and related applications, contributing to the valorization of buffalo dairy products. Full article
(This article belongs to the Section Food Engineering and Technology)
20 pages, 1722 KiB  
Article
Andean Pistacia vera L. Crops: Phytochemical Update and Influence of Soil-Growing Elemental Composition on Nutritional Properties of Nuts
by Daniela Zalazar-García, Mario J. Simirgiotis, Jessica Gómez, Alejandro Tapia and María Paula Fabani
Horticulturae 2025, 11(8), 925; https://doi.org/10.3390/horticulturae11080925 - 5 Aug 2025
Viewed by 251
Abstract
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in [...] Read more.
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in the stomach. Pistachio consumption provides several health benefits, primarily due to its antioxidant properties and high content of essential nutrients. In this study, we analyzed the mineral composition, total phenolic content (TP), antioxidant activity (AA), and UHPLC/MS-MS polyphenolic profile of three Argentinian pistachio crops. Additionally, the physicochemical parameters and the elemental profiles of the growing soils were determined, as they influence mineral uptake and the synthesis of bioactive compounds in pistachio kernels. The TP was not significantly modified by the growing soils, with Crop3 presenting the highest TP content (276 ± 14 mg GA/100 g DW). Crop3 exhibited 18% higher TP content compared to Crop2. Similarly, FRAP values ranged from 28.0 to 36.5 mmol TE/100 g DW, with Crop1 showing a 30% increase compared to Crop2. DPPH values varied from 19.0 to 24.3 mmol TE/100 g DW, with Crop1 displaying 28% higher activity than Crop2. However, the polyphenolic profile was similar for all crops analyzed. Thirty compounds were identified; only Crop 1 contained the flavanone eriodyctiol and the isoflavone genistein, while the flavanone naringenin and the flavone luteolin were identified in Crop1 and Crop3. Regarding mineral content, the pistachio kernels mainly contained K, Ca, and Mg. Multivariate analyses revealed distinct elemental and antioxidant profiles among crops. LDA achieved classification accuracies of 77.7% for soils and 74.4% for kernels, with Pb, Zn, Cu, Rb, Sr, and Mn as key discriminants. CCA confirmed strong soil–kernel mineral correlations (r = 1), while GPA showed higher congruence between antioxidant traits and kernel composition than with soil geochemistry. These findings underscore the importance of soil composition in determining the nutritional quality of pistachio kernels, thereby supporting the beneficial health effects associated with pistachio consumption. Full article
Show Figures

Figure 1

26 pages, 931 KiB  
Article
Nutritional Quality, Fatty Acids Profile, and Phytochemical Composition of Unconventional Vegetable Oils
by Wiktoria Kamińska, Anna Grygier, Katarzyna Rzyska-Szczupak, Anna Przybylska-Balcerek, Kinga Stuper-Szablewska and Grażyna Neunert
Molecules 2025, 30(15), 3269; https://doi.org/10.3390/molecules30153269 - 4 Aug 2025
Viewed by 573
Abstract
This study compares the nutritional and metabolic properties of unconventional cold-pressed vegetable oils available on the Polish market. Twelve oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, pumpkin seed, sesame, mustard seed, sea buckthorn, blue poppy seed, borage, and safflower—were examined. The [...] Read more.
This study compares the nutritional and metabolic properties of unconventional cold-pressed vegetable oils available on the Polish market. Twelve oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, pumpkin seed, sesame, mustard seed, sea buckthorn, blue poppy seed, borage, and safflower—were examined. The chosen oils were investigated based on their fatty acids profiles, total phenolic compounds (TPC), tocopherols, and pigment contents. Despite the high polyunsaturated fatty acids (PUFAs) content raising concerns about oxidative stability, the significant tocopherol levels and polyphenols content contribute to antioxidative protection. These oils’ favorable hypocholesterolemic, antiatherogenic, and antithrombogenic properties were highlighted by key nutritional indices, showing potential benefits for cardiovascular health. These results suggest that these oils are a promising dietary supplement for promoting both cardiovascular health and sustainability, owing to their rich content of essential fatty acids and bioactive compounds. Moreover, high correlations were found between theoretical and experimental established oxidative stability of the tested oils at the ending stage of the thermostat test. Full article
Show Figures

Figure 1

24 pages, 1951 KiB  
Review
Antioxidant Capacity and Therapeutic Applications of Honey: Health Benefits, Antimicrobial Activity and Food Processing Roles
by Ivana Tlak Gajger, Showket Ahmad Dar, Mohamed Morsi M. Ahmed, Magda M. Aly and Josipa Vlainić
Antioxidants 2025, 14(8), 959; https://doi.org/10.3390/antiox14080959 - 4 Aug 2025
Viewed by 725
Abstract
Honey is a natural product of honeybees that has been consumed for centuries due to its nutritional value and potential health benefits. Recent scientific research has focused on its antioxidant capacity, which is linked to a variety of bioactive compounds such as phenolic [...] Read more.
Honey is a natural product of honeybees that has been consumed for centuries due to its nutritional value and potential health benefits. Recent scientific research has focused on its antioxidant capacity, which is linked to a variety of bioactive compounds such as phenolic acids, enzymes (e.g., glucose oxidase, catalase), flavonoids, ascorbic acid, carotenoids, amino acids, and proteins. Together, these components work synergistically to neutralize free radicals, regulate antioxidant enzyme activity, and reduce oxidative stress. This review decisively outlines the antioxidant effects of honey and presents compelling clinical and experimental evidence supporting its critical role in preventing diseases associated with oxidative stress. Honey stands out for its extensive health benefits, which include robust protection against cardiovascular issues, notable anticancer and anti-inflammatory effects, enhanced glycemic control in diabetes, immune modulation, neuroprotection, and effective wound healing. As a recognized functional food and dietary supplement, honey is essential for the prevention and adjunct treatment of chronic diseases. However, it faces challenges due to variations in composition linked to climatic conditions, geographical and floral sources, as well as hive management practices. The limited number of large-scale clinical trials further underscores the need for more research. Future studies must focus on elucidating honey’s antioxidant mechanisms, standardizing its bioactive compounds, and examining its synergistic effects with other natural antioxidants to fully harness its potential. Full article
Show Figures

Figure 1

23 pages, 2353 KiB  
Article
Seaweeds of the Israeli Mediterranean Sea: Nutritional and Biotechnological Potential Through Seasonal and Species Variation
by Doron Yehoshua Ashkenazi, Félix L. Figueroa, Julia Vega, Shoshana Ben-Valid, Guy Paz, Eitan Salomon, Avigdor Abelson and Álvaro Israel
Mar. Drugs 2025, 23(8), 320; https://doi.org/10.3390/md23080320 - 4 Aug 2025
Viewed by 636
Abstract
Macroalgae (seaweeds) produce unique bioactive metabolites that have enabled their survival for millions of years, offering significant potential for human benefits. In the Israeli Mediterranean Sea, no comprehensive systematic surveys of seaweeds have been published since the 1990s, and their chemical composition remains [...] Read more.
Macroalgae (seaweeds) produce unique bioactive metabolites that have enabled their survival for millions of years, offering significant potential for human benefits. In the Israeli Mediterranean Sea, no comprehensive systematic surveys of seaweeds have been published since the 1990s, and their chemical composition remains largely unexplored. This study presents an extensive survey of intertidal seaweed communities along the shallow Israeli coastline, documenting their spatial, temporal, and biochemical diversity. Of the 320 specimens collected, 55 seaweed species were identified: 29 red (Rhodophyta), 14 brown (Phaeophyceae), and 12 green (Chlorophyta). A significant shift in species abundance was documented, with a single dominant annual bloom occurring during spring, unlike previously reported biannual blooms. Chemical analysis of the dominant species revealed significant seasonal variations in compound levels, with higher protein content in winter and increased antioxidant capacity during spring. Phenolic and natural sunscreen compounds (mycosporine-like amino acids, MAAs) showed no general seasonal trend. These findings highlight the optimal environmental conditions for seaweed growth and underscore their potential for aquaculture and biotechnology. We hypothesize that the ecologically unique conditions of the Israeli Mediterranean Sea may foster resilient seaweed species enriched with distinctive chemical properties, suitable for nutritional, health, pharmaceutical, and nutraceutical applications, particularly as climate-adaptive bioresources. Full article
Show Figures

Graphical abstract

Back to TopTop