Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,236)

Search Parameters:
Keywords = hazardous zones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5546 KiB  
Article
Modification of Vegetation Structure and Composition to Reduce Wildfire Risk on a High Voltage Transmission Line
by Tom Lewis, Stephen Martin and Joel James
Fire 2025, 8(8), 309; https://doi.org/10.3390/fire8080309 - 5 Aug 2025
Abstract
The Mapleton Falls National Park transmission line corridor in Queensland, Australia, has received a number of vegetation management treatments over the last decade to maintain and protect the infrastructure and to ensure continuous electricity supply. Recent treatments have included ‘mega-mulching’ (mechanical mastication of [...] Read more.
The Mapleton Falls National Park transmission line corridor in Queensland, Australia, has received a number of vegetation management treatments over the last decade to maintain and protect the infrastructure and to ensure continuous electricity supply. Recent treatments have included ‘mega-mulching’ (mechanical mastication of vegetation to a mulch layer) in 2020 and targeted herbicide treatment of woody vegetation, with the aim of reducing vegetation height by encouraging a native herbaceous groundcover beneath the transmission lines. We measured vegetation structure (cover and height) and composition (species presence in 15 × 2 m plots), at 12 transects, 90 m in length on the transmission line corridor, to determine if management goals were being achieved and to determine how the vegetation and fire hazard (based on the overall fuel hazard assessment method) varied among the treated corridor, the forest edge environment, and the natural forest. The results showed that vegetation structure and composition in the treated zones had been modified to a state where herbaceous plant species were dominant; there was a significantly (p < 0.05) higher native grass cover and cover of herbs, sedges, and ferns in the treated zones, and a lower cover of trees and tall woody plants (>1 m in height) in these areas. For example, mean native grass cover and the cover of herbs and sedges in the treated areas was 10.2 and 2.8 times higher, respectively, than in the natural forest. The changes in the vegetation structure (particularly removal of tall woody vegetation) resulted in a lower overall fuel hazard in the treated zones, relative to the edge zones and natural forest. The overall fuel hazard was classified as ‘high’ in 83% of the transects in the treated areas, but it was classified as ‘extreme’ in 75% of the transects in the adjacent forest zone. Importantly, there were few introduced species recorded. The results suggest that fuel management has been successful in reducing wildfire risk in the transmission corridor. Temporal monitoring is recommended to determine the frequency of ongoing fuel management. Full article
Show Figures

Figure 1

24 pages, 11081 KiB  
Article
Quantifying Wildfire Dynamics Through Spatio-Temporal Clustering and Remote Sensing Metrics: The 2023 Quebec Case Study
by Tuğrul Urfalı and Abdurrahman Eymen
Fire 2025, 8(8), 308; https://doi.org/10.3390/fire8080308 - 5 Aug 2025
Abstract
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the [...] Read more.
Wildfires have become increasingly frequent and destructive environmental hazards, especially in boreal ecosystems facing prolonged droughts and temperature extremes. This study presents an integrated spatio-temporal framework that combines Spatio-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN), Fire Radiative Power (FRP), and the differenced Normalized Burn Ratio (ΔNBR) to characterize the dynamics and ecological impacts of large-scale wildfires, using the extreme 2023 Quebec fire season as a case study. The analysis of 80,228 VIIRS fire detections resulted in 19 distinct clusters across four fire zones. Validation against the National Burned Area Composite (NBAC) showed high spatial agreement in densely burned areas, with Intersection over Union (IoU) scores reaching 62.6%. Gaussian Process Regression (GPR) revealed significant non-linear relationships between FRP and key fire behavior metrics. Higher mean FRP was associated with both longer durations and greater burn severity. While FRP was also linked to faster spread rates, this relationship varied by zone. Notably, Fire Zone 2 exhibited the most severe ecological impact, with 83.8% of the area classified as high-severity burn. These findings demonstrate the value of integrating spatial clustering, radiative intensity, and post-fire vegetation damage into a unified analytical framework. Unlike traditional methods, this approach enables scalable, hypothesis-driven assessment of fire behavior, supporting improved fire management, ecosystem recovery planning, and climate resilience efforts in fire-prone regions. Full article
Show Figures

Figure 1

14 pages, 5448 KiB  
Article
A Study of Climate-Sensitive Diseases in Climate-Stressed Areas of Bangladesh
by Ahammadul Kabir, Shahidul Alam, Nusrat Jahan Tarin, Shila Sarkar, Anthony Eshofonie, Mohammad Ferdous Rahman Sarker, Abul Kashem Shafiqur Rahman and Tahmina Shirin
Climate 2025, 13(8), 166; https://doi.org/10.3390/cli13080166 - 5 Aug 2025
Abstract
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of [...] Read more.
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of data on climate-sensitive diseases and related hospital visits in these areas. This study explored the prevalence of such diseases using the Delphi method through focus group discussions with 493 healthcare professionals from 153 hospitals in 156 upazilas across 21 districts and ten zones. Participants were selected by district Civil Surgeons. Key climate-sensitive diseases identified included malnutrition, diarrhea, pneumonia, respiratory infections, typhoid, skin diseases, hypertension, cholera, mental health disorders, hepatitis, heat stroke, and dengue. Seasonal surges in hospital visits were noted, influenced by factors like extreme heat, air pollution, floods, water contamination, poor sanitation, salinity, and disease vectors. Some diseases were zone-specific, while others were widespread. Regions with fewer hospital visits often had higher disease burdens, indicating under-reporting or lack of access. The findings highlight the need for area-specific adaptation strategies and updates to the Health National Adaptation Plan. Strengthening resilience through targeted investment and preventive measures is crucial to reducing health risks from climate change. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

29 pages, 14336 KiB  
Article
Geospatial Mudflow Risk Modeling: Integration of MCDA and RAMMS
by Ainur Mussina, Assel Abdullayeva, Victor Blagovechshenskiy, Sandugash Ranova, Zhixiong Zeng, Aidana Kamalbekova and Ulzhan Aldabergen
Water 2025, 17(15), 2316; https://doi.org/10.3390/w17152316 - 4 Aug 2025
Abstract
This article presents a comprehensive assessment of mudflow risk in the Talgar River basin through the application of Multi-Criteria Decision Analysis (MCDA) methods and numerical modeling using the Rapid Mass Movement Simulation (RAMMS) environment. The first part of the study involves a spatial [...] Read more.
This article presents a comprehensive assessment of mudflow risk in the Talgar River basin through the application of Multi-Criteria Decision Analysis (MCDA) methods and numerical modeling using the Rapid Mass Movement Simulation (RAMMS) environment. The first part of the study involves a spatial assessment of mudflow hazard and susceptibility using GIS technologies and MCDA. The key condition for evaluating mudflow hazard is the identification of factors influencing the formation of mudflows. The susceptibility assessment was based on viewing the area as an object of spatial and functional analysis, enabling determination of its susceptibility to mudflow impacts across geomorphological zones: initiation, transformation, and accumulation. Relevant criteria were selected for analysis, each assigned weights based on expert judgment and the Analytic Hierarchy Process (AHP). The results include maps of potential mudflow hazard and susceptibility, showing areas of hazard occurrence and risk impact zones within the Talgar River basin. According to the mudflow hazard map, more than 50% of the basin area is classified as having a moderate hazard level, while 28.4% is subject to high hazard, and only 1.8% falls under the very high hazard category. The remaining areas are categorized as very low (4.1%) and low (14.7%) hazard zones. In terms of susceptibility to mudflows, 40.1% of the territory is exposed to a high level of susceptibility, 35.6% to a moderate level, and 5.5% to a very high level. The remaining areas are classified as very low (1.8%) and low (15.6%) susceptibility zones. The predictive performance was evaluated through Receiver Operating Characteristic (ROC) curves, and the Area Under the Curve (AUC) value of the mudflow hazard assessment is 0.86, which indicates good adaptability and relatively high accuracy, while the AUC value for assessing the susceptibility of the territory is 0.71, which means that the accuracy of assessing the susceptibility of territories to mudflows is within the acceptable level of model accuracy. To refine the spatial risk assessment, mudflow modeling was conducted under three scenarios of glacial-moraine lake outburst using the RAMMS model. For each scenario, key flow parameters—height and velocity—were identified, forming the basis for classification of zones by impact intensity. The integration of MCDA and RAMMS results produced a final mudflow risk map reflecting both the likelihood of occurrence and the extent of potential damage. The presented approach demonstrates the effectiveness of combining GIS analysis, MCDA, and physically-based modeling for comprehensive natural hazard assessment and can be applied to other mountainous regions with high mudflow activity. Full article
Show Figures

Figure 1

44 pages, 58273 KiB  
Article
Geological Hazard Susceptibility Assessment Based on the Combined Weighting Method: A Case Study of Xi’an City, China
by Peng Li, Wei Sun, Chang-Rao Li, Ning Nan and Sheng-Rui Su
Geosciences 2025, 15(8), 290; https://doi.org/10.3390/geosciences15080290 - 1 Aug 2025
Viewed by 198
Abstract
Xi’an, China, has a complex geological environment, with geological hazards seriously hindering urban development and safety. This study analyzed the conditions leading to disaster formation and screened 12 evaluation factors (e.g., slope and slope direction) using Spearman’s correlation. Furthermore, it also introduced an [...] Read more.
Xi’an, China, has a complex geological environment, with geological hazards seriously hindering urban development and safety. This study analyzed the conditions leading to disaster formation and screened 12 evaluation factors (e.g., slope and slope direction) using Spearman’s correlation. Furthermore, it also introduced an innovative combined weighting method, integrating subjective weights from the hierarchical analysis method and objective weights from the entropy method, as well as an information value model for susceptibility assessment. The main results are as follows: (1) There are 787 hazard points—landslides/collapses are concentrated in loess areas and Qinling foothills, while subsidence/fissures are concentrated in plains. (2) The combined weighting method effectively overcame the limitations of single methods. (3) Validation using hazard density and ROC curves showed that the combined weighting information value model achieved the highest accuracy (AUC = 0.872). (4) The model was applied to classify the disaster susceptibility of Xi’an into high (12.31%), medium (18.68%), low (7.88%), and non-susceptible (61.14%) zones. The results are consistent with the actual distribution of disasters, thus providing a scientific basis for disaster prevention. Full article
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 (registering DOI) - 1 Aug 2025
Viewed by 192
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

32 pages, 17155 KiB  
Article
Machine Learning Ensemble Methods for Co-Seismic Landslide Susceptibility: Insights from the 2015 Nepal Earthquake
by Tulasi Ram Bhattarai and Netra Prakash Bhandary
Appl. Sci. 2025, 15(15), 8477; https://doi.org/10.3390/app15158477 (registering DOI) - 30 Jul 2025
Viewed by 206
Abstract
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack [...] Read more.
The Mw 7.8 Gorkha Earthquake of 25 April 2015 triggered over 25,000 landslides across central Nepal, with 4775 events concentrated in Gorkha District alone. Despite substantial advances in landslide susceptibility mapping, existing studies often overlook the compound role of post-seismic rainfall and lack robust spatial validation. To address this gap, we validated an ensemble machine learning framework for co-seismic landslide susceptibility modeling by integrating seismic, geomorphological, hydrological, and anthropogenic variables, including cumulative post-seismic rainfall. Using a balanced dataset of 4775 landslide and non-landslide instances, we evaluated the performance of Logistic Regression (LR), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost) models through spatial cross-validation, SHapley Additive exPlanations (SHAP) explainability, and ablation analysis. The RF model outperformed all others, achieving an accuracy of 87.9% and a Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) value of 0.94, while XGBoost closely followed (AUC = 0.93). Ensemble models collectively classified over 95% of observed landslides into High and Very High susceptibility zones, demonstrating strong spatial reliability. SHAP analysis identified elevation, proximity to fault, peak ground acceleration (PGA), slope, and rainfall as dominant predictors. Notably, the inclusion of post-seismic rainfall substantially improved recall and F1 scores in ablation experiments. Spatial cross-validation revealed the superior generalizability of ensemble models under heterogeneous terrain conditions. The findings underscore the value of integrating post-seismic hydrometeorological factors and spatial validation into susceptibility assessments. We recommend adopting ensemble models, particularly RF, for operational hazard mapping in earthquake-prone mountainous regions. Future research should explore the integration of dynamic rainfall thresholds and physics-informed frameworks to enhance early warning systems and climate resilience. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

27 pages, 8496 KiB  
Article
Comparative Performance of Machine Learning Models for Landslide Susceptibility Assessment: Impact of Sampling Strategies in Highway Buffer Zone
by Zhenyu Tang, Shumao Qiu, Haoying Xia, Daming Lin and Mingzhou Bai
Appl. Sci. 2025, 15(15), 8416; https://doi.org/10.3390/app15158416 - 29 Jul 2025
Viewed by 151
Abstract
Landslide susceptibility assessment is critical for hazard mitigation and land-use planning. This study evaluates the impact of two different non-landslide sampling methods—random sampling and sampling constrained by the Global Landslide Hazard Map (GLHM)—on the performance of various machine learning and deep learning models, [...] Read more.
Landslide susceptibility assessment is critical for hazard mitigation and land-use planning. This study evaluates the impact of two different non-landslide sampling methods—random sampling and sampling constrained by the Global Landslide Hazard Map (GLHM)—on the performance of various machine learning and deep learning models, including Naïve Bayes (NB), Support Vector Machine (SVM), SVM-Random Forest hybrid (SVM-RF), and XGBoost. The study area is a 2 km buffer zone along the Duku Highway in Xinjiang, China, with 102 landslide and 102 non-landslide points extracted by aforementioned sampling methods. Models were tested using ROC curves and non-parametric significance tests based on 20 repetitions of 5-fold spatial cross-validation data. GLHM sampling consistently improved AUROC and accuracy across all models (e.g., AUROC gains: NB +8.44, SVM +7.11, SVM–RF +3.45, XGBoost +3.04; accuracy gains: NB +11.30%, SVM +8.33%, SVM–RF +7.40%, XGBoost +8.31%). XGBoost delivered the best performance under both sampling strategies, reaching 94.61% AUROC and 84.30% accuracy with GLHM sampling. SHAP analysis showed that GLHM sampling stabilized feature importance rankings, highlighting STI, TWI, and NDVI as the main controlling factors for landslides in the study area. These results highlight the importance of hazard-informed sampling to enhance landslide susceptibility modeling accuracy and interpretability. Full article
Show Figures

Figure 1

21 pages, 6310 KiB  
Article
Geological Evaluation of In-Situ Pyrolysis Development of Oil-Rich Coal in Tiaohu Mining Area, Santanghu Basin, Xinjiang, China
by Guangxiu Jing, Xiangquan Gao, Shuo Feng, Xin Li, Wenfeng Wang, Tianyin Zhang and Chenchen Li
Energies 2025, 18(15), 4034; https://doi.org/10.3390/en18154034 - 29 Jul 2025
Viewed by 183
Abstract
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index [...] Read more.
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index classification and quantification was employed in combination with the geological features of the Tiaohu mining area to establish a feasibility evaluation index system suitable for in-situ development in the study region. Among these factors, coal quality parameters (e.g., coal type, moisture content, volatile matter, ash yield), coal seam occurrence characteristics (e.g., seam thickness, burial depth, interburden frequency), and hydrogeological conditions (e.g., relative water inflow) primarily govern pyrolysis process stability. Surrounding rock properties (e.g., roof/floor lithology) and structural features (e.g., fault proximity) directly impact pyrolysis furnace sealing integrity, while environmental geological factors (e.g., hazardous element content in coal) determine environmental risk control effectiveness. Based on actual geological data from the Tiaohu mining area, the comprehensive weight of each index was determined. After calculation, the southwestern, central, and southeastern subregions of the mining area were identified as favorable zones for pyrolysis development. A constraint condition analysis was then conducted, accompanied by a one-vote veto index system, in which the thresholds were defined for coal seam thickness (≥1.5 m), burial depth (≥500 m), thickness variation coefficient (≤15%), fault proximity (≥200 m), tar yield (≥7%), high-pressure permeability (≥10 mD), and high-pressure porosity (≥15%). Following the exclusion of unqualified boreholes, three target zones for pyrolysis furnace deployment were ultimately selected. Full article
Show Figures

Figure 1

33 pages, 16026 KiB  
Article
Spatiotemporal Analysis of BTEX and PM Using Me-DOAS and GIS in Busan’s Industrial Complexes
by Min-Kyeong Kim, Jaeseok Heo, Joonsig Jung, Dong Keun Lee, Jonghee Jang and Duckshin Park
Toxics 2025, 13(8), 638; https://doi.org/10.3390/toxics13080638 - 29 Jul 2025
Viewed by 232
Abstract
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for [...] Read more.
Rapid industrialization and urbanization have progressed in Korea, yet public attention to hazardous pollutants emitted from industrial complexes remains limited. With the increasing coexistence of industrial and residential areas, there is a growing need for real-time monitoring and management plans that account for the rapid dispersion of hazardous air pollutants (HAPs). In this study, we conducted spatiotemporal data collection and analysis for the first time in Korea using real-time measurements obtained through mobile extractive differential optical absorption spectroscopy (Me-DOAS) mounted on a solar occultation flux (SOF) vehicle. The measurements were conducted in the Saha Sinpyeong–Janglim Industrial Complex in Busan, which comprises the Sasang Industrial Complex and the Sinpyeong–Janglim Industrial Complex. BTEX compounds were selected as target volatile organic compounds (VOCs), and real-time measurements of both BTEX and fine particulate matter (PM) were conducted simultaneously. Correlation analysis revealed a strong relationship between PM10 and PM2.5 (r = 0.848–0.894), indicating shared sources. In Sasang, BTEX levels were associated with traffic and localized facilities, while in Saha Sinpyeong–Janglim, the concentrations were more influenced by industrial zoning and wind patterns. Notably, inter-compound correlations such as benzene–m-xylene and p-xylene–toluene suggested possible co-emission sources. This study proposes a GIS-based, three-dimensional air quality management approach that integrates variables such as traffic volume, wind direction, and speed through real-time measurements. The findings are expected to inform effective pollution control strategies and future environmental management plans for industrial complexes. Full article
Show Figures

Graphical abstract

13 pages, 5349 KiB  
Article
Effects of Weak Structural Planes on Roadway Deformation Failure in Coastal Mines
by Jie Guo, Guang Li and Fengshan Ma
Water 2025, 17(15), 2257; https://doi.org/10.3390/w17152257 - 29 Jul 2025
Viewed by 193
Abstract
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs [...] Read more.
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs an optimized Finite–Discrete Element Method (Y-Mat) to simulate WSP-driven fracture evolution, introducing an elastoplastic failure criterion and enhanced contact force calculations. The results show that the farther the WSP is from the roadway, the lower its influence; its existence alters the shape of the plastic zone by lengthening the failure zone along the fault direction, while its angle changes the shape and location of the failure zone and deflects fracture directions, with the surrounding rock between the roadway and WSP suffering the most severe failure. The deformation failure of roadway surrounding rock is influenced by WSPs. Excavation unloading reduces the normal stress and shear strength in the weak structural plane of surrounding rock, resulting in slip and deformation. Additionally, WSP-induced fractures act as groundwater influx conduits, especially in fault-proximal roadways or where crack angles align with hydraulic gradients, so mitigation in water-rich mining environments should prioritize sealing these pathways. The results provide a theoretical basis for roadway excavation and support engineering under the influence of WSPs. Full article
Show Figures

Figure 1

24 pages, 4396 KiB  
Article
Study of the Characteristics of a Co-Seismic Displacement Field Based on High-Resolution Stereo Imagery: A Case Study of the 2024 MS7.1 Wushi Earthquake, Xinjiang
by Chenyu Ma, Zhanyu Wei, Li Qian, Tao Li, Chenglong Li, Xi Xi, Yating Deng and Shuang Geng
Remote Sens. 2025, 17(15), 2625; https://doi.org/10.3390/rs17152625 - 29 Jul 2025
Viewed by 242
Abstract
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that [...] Read more.
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that are suitable for the detailed extraction and quantification of vertical co-seismic displacements. In this study, we utilized pre- and post-event WorldView-2 stereo images of the 2024 Ms7.1 Wushi earthquake in Xinjiang to generate DEMs with a spatial resolution of 0.5 m and corresponding terrain point clouds with an average density of approximately 4 points/m2. Subsequently, we applied the Iterative Closest Point (ICP) algorithm to perform differencing analysis on these datasets. Special care was taken to reduce influences from terrain changes such as vegetation growth and anthropogenic structures. Ultimately, by maintaining sufficient spatial detail, we obtained a three-dimensional co-seismic displacement field with a resolution of 15 m within grid cells measuring 30 m near the fault trace. The results indicate a clear vertical displacement distribution pattern along the causative sinistral–thrust fault, exhibiting alternating uplift and subsidence zones that follow a characteristic “high-in-center and low-at-ends” profile, along with localized peak displacement clusters. Vertical displacements range from approximately 0.2 to 1.4 m, with a maximum displacement of ~1.46 m located in the piedmont region north of the Qialemati River, near the transition between alluvial fan deposits and bedrock. Horizontal displacement components in the east-west and north-south directions are negligible, consistent with focal mechanism solutions and surface rupture observations from field investigations. The successful extraction of this high-resolution vertical displacement field validates the efficacy of satellite-based high-resolution stereo-imaging methods for overcoming the limitations of GNSS and InSAR techniques in characterizing near-field surface displacements associated with earthquake ruptures. Moreover, this dataset provides robust constraints for investigating fault-slip mechanisms within near-surface geological contexts. Full article
Show Figures

Figure 1

17 pages, 14890 KiB  
Article
Spatiotemporal Dynamics of Heat-Related Health Risks of Elderly Citizens in Nanchang, China, Under Rapid Urbanization
by Jinijn Xuan, Shun Li, Chao Huang, Xueling Zhang and Rong Mao
Land 2025, 14(8), 1541; https://doi.org/10.3390/land14081541 - 27 Jul 2025
Viewed by 238
Abstract
Heatwaves intensified by climate change increasingly threaten urban populations, especially the elderly. However, most existing studies have concentrated on short-term or single-scale analyses, lacking a comprehensive understanding of how land cover changes and urbanization affect the vulnerability of the elderly to extreme heat. [...] Read more.
Heatwaves intensified by climate change increasingly threaten urban populations, especially the elderly. However, most existing studies have concentrated on short-term or single-scale analyses, lacking a comprehensive understanding of how land cover changes and urbanization affect the vulnerability of the elderly to extreme heat. This study aims to investigate the spatiotemporal distribution patterns of heat-related health risks among the elderly in Nanchang City and to identify their key driving factors within the context of rapid urbanization. This study employs Crichton’s risk triangle framework to the heat-related health risks for the elderly in Nanchang, China, from 2002 to 2020 by integrating meteorological records, land surface temperature, land cover data, and socioeconomic indicators. The model captures the spatiotemporal dynamics of heat hazards, exposure, and vulnerability and identifies the key drivers shaping these patterns. The results show that the heat health risk index has increased significantly over time, with notably higher levels in the urban core compared to those in suburban areas. A 1% rise in impervious surface area corresponds to a 0.31–1.19 increase in the risk index, while a 1% increase in green space leads to a 0.21–1.39 reduction. Vulnerability is particularly high in economically disadvantaged, medically under-served peripheral zones. These findings highlight the need to optimize the spatial distribution of urban green space and control the expansion of impervious surfaces to mitigate urban heat risks. In high-vulnerability areas, improving infrastructure, expanding medical resources, and establishing targeted heat health monitoring and early warning systems are essential to protecting elderly populations. Overall, this study provides a comprehensive framework for assessing urban heat health risks and offers actionable insights into enhancing climate resilience and health risk management in rapidly urbanizing regions. Full article
(This article belongs to the Special Issue Climate Adaptation Planning in Urban Areas)
Show Figures

Figure 1

18 pages, 15284 KiB  
Article
Two-Dimensional Flood Modeling of a Piping-Induced Dam Failure Triggered by Seismic Deformation: A Case Study of the Doğantepe Dam
by Fatma Demir, Suleyman Sarayli, Osman Sonmez, Melisa Ergun, Abdulkadir Baycan and Gamze Tuncer Evcil
Water 2025, 17(15), 2207; https://doi.org/10.3390/w17152207 - 24 Jul 2025
Viewed by 471
Abstract
This study presents a scenario-based, two-dimensional flood modeling approach to assess the potential downstream impacts of a piping-induced dam failure triggered by seismic activity. The case study focuses on the Doğantepe Dam in northwestern Türkiye, located near an active branch of the North [...] Read more.
This study presents a scenario-based, two-dimensional flood modeling approach to assess the potential downstream impacts of a piping-induced dam failure triggered by seismic activity. The case study focuses on the Doğantepe Dam in northwestern Türkiye, located near an active branch of the North Anatolian Fault. Critical deformation zones were previously identified through PLAXIS 2D seismic analyses, which served as the physical basis for a dam break scenario. This scenario was modeled using the HEC-RAS 2D platform, incorporating high-resolution topographic data, reservoir capacity, and spatially varying Manning’s roughness coefficients. The simulation results show that the flood wave reaches downstream settlements within the first 30 min, with water depths exceeding 3.0 m in low-lying areas and flow velocities surpassing 6.0 m/s, reaching up to 7.0 m/s in narrow sections. Inundation extents and hydraulic parameters such as water depth and duration were spatially mapped to assess flood hazards. The study demonstrates that integrating physically based seismic deformation data with hydrodynamic modeling provides a realistic and applicable framework for evaluating flood risks and informing emergency response planning. Full article
(This article belongs to the Special Issue Disaster Analysis and Prevention of Dam and Slope Engineering)
Show Figures

Figure 1

29 pages, 8706 KiB  
Article
An Integrated Risk Assessment of Rockfalls Along Highway Networks in Mountainous Regions: The Case of Guizhou, China
by Jinchen Yang, Zhiwen Xu, Mei Gong, Suhua Zhou and Minghua Huang
Appl. Sci. 2025, 15(15), 8212; https://doi.org/10.3390/app15158212 - 23 Jul 2025
Viewed by 216
Abstract
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is [...] Read more.
Rockfalls, among the most common natural disasters, pose risks such as traffic congestion, casualties, and substantial property damage. Guizhou Province, with China’s fourth-longest highway network, features mountainous terrain prone to frequent rockfall incidents annually. Consequently, assessing highway rockfall risks in Guizhou Province is crucial for safeguarding the lives and travel of residents. This study evaluates highway rockfall risk through three key components: susceptibility, hazard, and vulnerability. Susceptibility was assessed using information content and logistic regression methods, considering factors such as elevation, slope, normalized difference vegetation index (NDVI), aspect, distance from fault, relief amplitude, lithology, and rock weathering index (RWI). Hazard assessment utilized a fuzzy analytic hierarchy process (AHP), focusing on average annual rainfall and daily maximum rainfall. Socioeconomic factors, including GDP, population density, and land use type, were incorporated to gauge vulnerability. Integration of these assessments via a risk matrix yielded comprehensive highway rockfall risk profiles. Results indicate a predominantly high risk across Guizhou Province, with high-risk zones covering 41.19% of the area. Spatially, the western regions exhibit higher risk levels compared to eastern areas. Notably, the Bijie region features over 70% of its highway mileage categorized as high risk or above. Logistic regression identified distance from fault lines as the most negatively correlated factor affecting highway rockfall susceptibility, whereas elevation gradient demonstrated a minimal influence. This research provides valuable insights for decision-makers in formulating highway rockfall prevention and control strategies. Full article
Show Figures

Figure 1

Back to TopTop