Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (392)

Search Parameters:
Keywords = harvesting protocol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 954 KiB  
Protocol
High-Throughput DNA Extraction Using Robotic Automation (RoboCTAB) for Large-Scale Genotyping
by Vincent-Thomas Boucher St-Amour, Vipin Tomar and François Belzile
Plants 2025, 14(15), 2263; https://doi.org/10.3390/plants14152263 - 23 Jul 2025
Abstract
Efficient and consistent DNA extraction is crucial for genotyping but often hindered by the limitations of traditional manual processes, which are labour-intensive, error-prone, and costly. We introduce a semi-automated, robotic-assisted DNA extraction (RoboCTAB) tailored for large-scale plant genotyping, leveraging advanced yet affordable liquid-handling [...] Read more.
Efficient and consistent DNA extraction is crucial for genotyping but often hindered by the limitations of traditional manual processes, which are labour-intensive, error-prone, and costly. We introduce a semi-automated, robotic-assisted DNA extraction (RoboCTAB) tailored for large-scale plant genotyping, leveraging advanced yet affordable liquid-handling robotic systems. The protocol/workflow integrates a CTAB extraction protocol specifically adapted for a robotic liquid-handling system, making it compatible with high-throughput genotyping techniques such as SNP genotyping and sequencing. Various plant parts (leaves, roots, manual seed chip) were explored as the source material for DNA extractions, with the aim of identifying the tissue best suited for collection on a large scale. Young roots (radicle) proved the easiest to harvest at scale, while the harvest of leaves and seed chips were more laborious and error-prone. DNA yield and quality from both leaves and roots (but not seed chips) were similar and sufficient for downstream analysis. Interestingly, root tissue could still be extracted from imbibed seeds, even if the seeds failed to germinate, thus proving useful for DNA extraction. Cost analysis indicates significant savings in labour costs, highlighting the approach’s suitability for large-scale projects. Quality assessments demonstrate that the robotic process yields high-quality DNA, maintaining integrity for downstream applications. This semi-automated DNA extraction system represents a scalable, reliable solution for large-scale genotyping that is accessible to many users who cannot implement highly sophisticated and costly systems as are known to exist in large multinational seed companies. RoboCTAB, a low-cost, optimized method for high-throughput DNA extraction, minimizes the risk of cross-contamination. RoboCTAB is capable of processing up to four 96-well plates (384 samples) simultaneously in a single run, improving cost-efficiency and providing seamless integration with laboratory workflows, potentially setting new standards for efficiency and quality in DNA processing and sequencing at scale. Full article
Show Figures

Figure 1

19 pages, 5202 KiB  
Article
Optimizing Energy/Current Fluctuation of RF-Powered Secure Adiabatic Logic for IoT Devices
by Bendito Freitas Ribeiro and Yasuhiro Takahashi
Sensors 2025, 25(14), 4419; https://doi.org/10.3390/s25144419 - 16 Jul 2025
Viewed by 313
Abstract
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a [...] Read more.
The advancement of Internet of Things (IoT) technology has enabled battery-powered devices to be deployed across a wide range of applications; however, it also introduces challenges such as high energy consumption and security vulnerabilities. To address these issues, adiabatic logic circuits offer a promising solution for achieving energy efficiency and enhancing the security of IoT devices. Adiabatic logic circuits are well suited for energy harvesting systems, especially in applications such as sensor nodes, RFID tags, and other IoT implementations. In these systems, the harvested bipolar sinusoidal RF power is directly used as the power supply for the adiabatic logic circuit. However, adiabatic circuits require a peak detector to provide bulk biasing for pMOS transistors. To meet this requirement, a diode-connected MOS transistor-based voltage doubler circuit is used to convert the sinusoidal input into a usable DC signal. In this paper, we propose a novel adiabatic logic design that maintains low power consumption while optimizing energy and current fluctuations across various input transitions. By ensuring uniform and complementary current flow in each transition within the logic circuit’s functional blocks, the design reduces energy variation and enhances resistance against power analysis attacks. Evaluation under different clock frequencies and load capacitances demonstrates that the proposed adiabatic logic circuit exhibits lower fluctuation and improved security, particularly at load capacitances of 50 fF and 100 fF. The results show that the proposed circuit achieves lower power dissipation compared to conventional designs. As an application example, we implemented an ultrasonic transmitter circuit within a LoRaWAN network at the end-node sensor level, which serves as both a communication protocol and system architecture for long-range communication systems. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

26 pages, 3905 KiB  
Article
Data Collection and Remote Control of an IoT Electronic Nose Using Web Services and the MQTT Protocol
by Juan J. Pérez-Solano and Antonio Ruiz-Canales
Sensors 2025, 25(14), 4356; https://doi.org/10.3390/s25144356 - 11 Jul 2025
Viewed by 209
Abstract
An electronic nose is a device capable of characterizing samples of substances and products by their aroma. The development of such devices relies on a series of non-specific sensors that react to gases and generate different signals, which can be used for compound [...] Read more.
An electronic nose is a device capable of characterizing samples of substances and products by their aroma. The development of such devices relies on a series of non-specific sensors that react to gases and generate different signals, which can be used for compound identification and sample classification. The deployment of such devices often requires the possibility of having remote access over the Internet to manage their operation and to collect the sampled data. In this context, the application of web technologies to the monitoring and supervision of these systems connected to the Internet, which can be considered as an Internet of Things (IoT) device, offers the advantage of not requiring the development of client-side applications. Users can employ a browser to connect to the IoT device and monitor or control its operation. Moreover, web design enables the development of cross-platform web monitoring systems. In addition, the inclusion of the MQTT protocol and the utilization of a virtual private network (VPN) enable a secure transmission and collection of the sampled data. In this work, all these technologies have been applied in the development of a system to manage and collect data to monitor rot in lemons treated with sodium benzoate before harvest. Full article
(This article belongs to the Special Issue Electronic Nose and Artificial Olfaction)
Show Figures

Figure 1

22 pages, 7140 KiB  
Article
Impact of Phenological and Lighting Conditions on Early Detection of Grapevine Inflorescences and Bunches Using Deep Learning
by Rubén Íñiguez, Carlos Poblete-Echeverría, Ignacio Barrio, Inés Hernández, Salvador Gutiérrez, Eduardo Martínez-Cámara and Javier Tardáguila
Agriculture 2025, 15(14), 1495; https://doi.org/10.3390/agriculture15141495 - 11 Jul 2025
Viewed by 174
Abstract
Reliable early-stage yield forecasts are essential in precision viticulture, enabling timely interventions such as harvest planning, canopy management, and crop load regulation. Since grape yield is directly related to the number and size of bunches, the early detection of inflorescences and bunches, carried [...] Read more.
Reliable early-stage yield forecasts are essential in precision viticulture, enabling timely interventions such as harvest planning, canopy management, and crop load regulation. Since grape yield is directly related to the number and size of bunches, the early detection of inflorescences and bunches, carried out even before flowering, provides a valuable foundation for estimating potential yield far in advance of veraison. Traditional yield prediction methods are labor-intensive, subjective, and often restricted to advanced phenological stages. This study presents a deep learning-based approach for detecting grapevine inflorescences and bunches during early development, assessing how phenological stage and illumination conditions influence detection performance using the YOLOv11 architecture under commercial field conditions. A total of 436 RGB images were collected across two phenological stages (pre-bloom and fruit-set), two lighting conditions (daylight and artificial night-time illumination), and six grapevine cultivars. All images were manually annotated following a consistent protocol, and models were trained using data augmentation to improve generalization. Five models were developed: four specific to each condition and one combining all scenarios. The results show that the fruit-set stage under daylight provided the best performance (F1 = 0.77, R2 = 0.97), while for inflorescences, night-time imaging yielded the most accurate results (F1 = 0.71, R2 = 0.76), confirming the benefits of artificial lighting in early stages. These findings define optimal scenarios for early-stage organ detection and support the integration of automated detection models into vineyard management systems. Future work will address scalability and robustness under diverse conditions. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

13 pages, 1449 KiB  
Article
Novel DNA Barcoding and Multiplex PCR Strategy for the Molecular Identification and Mycotoxin Gene Detection of Fusarium spp. in Maize from Bulgaria
by Daniela Stoeva, Deyana Gencheva, Georgi Radoslavov, Peter Hristov, Rozalina Yordanova and Georgi Beev
Methods Protoc. 2025, 8(4), 78; https://doi.org/10.3390/mps8040078 - 9 Jul 2025
Viewed by 234
Abstract
Fusarium spp. represent a critical threat to maize production and food safety due to their mycotoxin production. This study introduces a refined molecular identification protocol integrating four genomic regions—ITS1, IGS, TEF-1α, and β-TUB—for robust species differentiation of Fusarium spp. isolates from [...] Read more.
Fusarium spp. represent a critical threat to maize production and food safety due to their mycotoxin production. This study introduces a refined molecular identification protocol integrating four genomic regions—ITS1, IGS, TEF-1α, and β-TUB—for robust species differentiation of Fusarium spp. isolates from post-harvest maize in Bulgaria. The protocol enhances species resolution, especially for closely related taxa within the Fusarium fujikuroi species complex (FFSC). A newly optimized multiplex PCR strategy was developed using three primer sets, each designed to co-amplify a specific pair of toxigenic genes: fum6/fum8, tri5/tri6, and tri5/zea2. Although all five genes were analyzed, they were detected through separate two-target reactions, not in a single multiplex tube. Among 17 identified isolates, F. proliferatum (52.9%) dominated, followed by F. verticillioides, F. oxysporum, F. fujikuroi, and F. subglutinans. All isolates harbored at least one toxin biosynthesis gene, with 18% co-harboring genes for both fumonisins and zearalenone. This dual-protocol approach enhances diagnostic precision and supports targeted mycotoxin risk management strategies. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

13 pages, 2711 KiB  
Communication
Expanding the Cycad Horticulture Toolbox: Air Layer Protocols for Cycas Stems
by Thomas E. Marler and Gil N. Cruz
Horticulturae 2025, 11(7), 814; https://doi.org/10.3390/horticulturae11070814 - 9 Jul 2025
Viewed by 239
Abstract
Knowledge of propagation methods is crucial for conserving endangered plant species. Cycads are highly threatened, and propagation protocols using seeds and stem cuttings are well-understood. No air layer technique has been developed for cycad propagation, so the objective of this study was to [...] Read more.
Knowledge of propagation methods is crucial for conserving endangered plant species. Cycads are highly threatened, and propagation protocols using seeds and stem cuttings are well-understood. No air layer technique has been developed for cycad propagation, so the objective of this study was to develop a working protocol for adding this technique for cycad conservation. We opened wounds on mature Cycas edentata de Laub. stems to expose cortex and vascular tissue then installed an air layer medium to determine if adventitious roots would form. In one experiment, the peripheral vascular cylinder was exposed from 90° to 360°; in a second experiment, the use of auxin-promoting root stimulants was compared with a control group with no stimulants; and in a third experiment, the interior vascular cylinders were exposed in addition to the peripheral vascular cylinder. Every replication in every experiment developed adventitious roots beginning about 8 weeks and were ready to harvest with 10 cm roots by 14 weeks. The robust roots were about 1 cm in diameter, geotropic, and restricted to the outermost vascular cylinder exposed on the upper surface of the wounds. The number of roots and total root length per propagule increased by more than 300% as the percentage of exposed vascular tissue increased from 90° to 360°. Air layer techniques can be added to the cycad conservation toolbox, and its use may aid in conserving this threatened group of plants. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

17 pages, 13222 KiB  
Article
Limited Myelination Capacity in Human Schwann Cells in Experimental Models in Comparison to Rodent and Porcine Schwann Cells
by Tak-Ho Chu and Rajiv Midha
Int. J. Mol. Sci. 2025, 26(13), 6457; https://doi.org/10.3390/ijms26136457 - 4 Jul 2025
Viewed by 301
Abstract
Schwann cells (SCs) play a crucial role in peripheral nerve repair by supporting axonal regeneration and remyelination. While extensive research has been conducted using rodent SCs, increasing attention is being directed toward human SCs due to species-specific differences in phenotypical and functional properties, [...] Read more.
Schwann cells (SCs) play a crucial role in peripheral nerve repair by supporting axonal regeneration and remyelination. While extensive research has been conducted using rodent SCs, increasing attention is being directed toward human SCs due to species-specific differences in phenotypical and functional properties, and accessibility of human SCs derived from diverse sources. A major challenge in translating SC-based therapies for nerve repair lies in the inability to replicate human SC myelination in vitro, posing a significant obstacle to drug discovery and preclinical research. In this study, we compared the myelination capacity of human, rodent, and porcine SCs in various co-culture conditions, including species-matched and cross-species neuronal environments in a serum-free medium. Our results confirmed that rodent and porcine SCs readily myelinate neurites under standard culture conditions after treatment with ascorbic acid for two weeks, whereas human SCs, at least within the four-week observation period, failed to show myelin staining in all co-cultures. Furthermore, we investigated whether cell culture manipulation impairs human SC myelination by transplanting freshly harvested and predegenerated human nerve segments into NOD-SCID mice for four weeks. Despite supporting host axonal regeneration into the grafts, human SCs exhibited very limited myelination, suggesting an intrinsic species-specific restriction rather than a cell culture-induced defect. These observations suggest fundamental differences between human and rodent SCs and highlight the need for human-specific models and protocols to advance our understanding of SC myelination. Full article
(This article belongs to the Special Issue Plasticity of the Nervous System after Injury: 2nd Edition)
Show Figures

Figure 1

21 pages, 1558 KiB  
Article
In Vitro Germination of the Mediterranean Xerophytes Thymelaea hirsuta and Thymelaea tartonraira ssp. tartonraira as Affected by Scarification, Temperature, Photoperiod and Storage
by Aikaterini N. Martini and Maria Papafotiou
Seeds 2025, 4(3), 31; https://doi.org/10.3390/seeds4030031 - 4 Jul 2025
Viewed by 375
Abstract
With the aim of developing an efficient propagation method for the exploitation of Thymelaea hirsuta and T. artonraira ssp. tartonraira in the xeriscaping and pharmaceutical industry, the effects of the following were examined on the in vitro germination of their seeds: (i) pretreatment [...] Read more.
With the aim of developing an efficient propagation method for the exploitation of Thymelaea hirsuta and T. artonraira ssp. tartonraira in the xeriscaping and pharmaceutical industry, the effects of the following were examined on the in vitro germination of their seeds: (i) pretreatment (mechanical and chemical scarification or immersion in hot water; (ii) incubation temperature (5–30 °C); (iii) incubation light conditions (16 h photoperiod or continuous darkness); (iv) storage period at room temperature and darkness (up to 24 months). Seeds collected for two years from the same wild plants in Greece were surface-sterilized with a 15% commercial bleach solution for 15 min after the abovementioned treatments and placed for germination in Petri dishes containing a half-strength MS medium in growth chambers. The rate and final percentage of germination were recorded. For both species, scarification after immersion in concentrated H2SO4, preferably for 20 min, was necessary for seed germination, which indicates coat dormancy. Higher germination percentages were observed at temperatures of 10–20 °C, under continuous darkness for T. hirsuta (79–100%) and regardless of photoperiod for T. tartonraira (73–90%). Long storage reduced germination of only T. tartonraira (54–68% at optimum temperatures, 23 months after harvest), while T. hirsuta seeds stored for 5 months germinated at significantly lower percentages (40% maximum) compared to seeds stored for 9–24 months, revealing a dry after-ripening process. Seeds of both species harvested at different years showed stable behavior in terms of germination. For both species, an effective seed propagation protocol suitable for their exploitation as ornamental and landscape plants was developed. Full article
Show Figures

Figure 1

14 pages, 2762 KiB  
Article
Highly Efficient Regeneration of Bombax ceiba via De Novo Organogenesis from Hypocotyl and Bud Explants
by Yamei Li, Qionghai Jiang, Lisha Cha, Fei Lin, Fenling Tang, Yong Kang, Guangsui Yang, Surong Huang, Yuhua Guo and Junmei Yin
Plants 2025, 14(13), 2033; https://doi.org/10.3390/plants14132033 - 2 Jul 2025
Viewed by 263
Abstract
Bombax ceiba is an important medicinal and ornamental tree widely distributed in tropical and subtropical areas. However, its seeds lose viability rapidly after harvest, which has created hurdles in large-scale propagation. Here, we describe the development of a rapid and efficient de novo [...] Read more.
Bombax ceiba is an important medicinal and ornamental tree widely distributed in tropical and subtropical areas. However, its seeds lose viability rapidly after harvest, which has created hurdles in large-scale propagation. Here, we describe the development of a rapid and efficient de novo organogenesis system for Bombax ceiba, incorporating both indirect and direct regeneration pathways. The optimal basal medium used throughout the protocol was ½ MS supplemented with 30 g/L glucose, with all cultures maintained at 26–28 °C. For the indirect pathway, callus was induced from both ends of each hypocotyl on basal medium supplemented with 0.2 mg·L−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg·L−1 6-Benzylaminopurine (6-BA) under dark conditions. The induced calluses were subsequently differentiated into adventitious shoots on basal media containing 0.5 mg·L−1 Indole-3-butyric acid (IBA), 0.15 mg·L−1 Kinetin (KIN), and 1 mg·L−1 6-BA under a 16 h photoperiod, resulting in a callus induction rate of 140% and a differentiation rate of 51%. For the direct regeneration pathway, shoot buds cultured on medium with 0.5 mg·L−1 IBA and 1 mg·L−1 6-BA achieved a 100% sprouting rate with a regeneration coefficient of approximately 3.2. The regenerated adventitious shoots rooted successfully on medium supplemented with 0.5 mg·L−1 Naphthylacetic acid (NAA) and were acclimatized under greenhouse conditions to produce viable plantlets. This regeneration system efficiently utilizes sterile seedling explants, is not limited by seasonal or environmental factors, and significantly improves the propagation efficiency of Bombax ceiba. These optimized micropropagation methods also provide a robust platform for future genetic transformation studies using hypocotyls and shoot buds as explants. Full article
Show Figures

Figure 1

24 pages, 11665 KiB  
Article
Error Performance Analysis and PS Factor Optimization for SWIPT AF Relaying Systems over Rayleigh Fading Channels: Interpretation SWIPT AF Relay as Non-SWIPT AF Relay
by Kyunbyoung Ko and Changick Song
Electronics 2025, 14(13), 2597; https://doi.org/10.3390/electronics14132597 - 27 Jun 2025
Viewed by 261
Abstract
This paper presents an analytical study of the bit error rate (BER) and signal-to-noise ratio (SNR) performance in simultaneous wireless information and power transfer (SWIPT) amplify-and-forward (AF) relaying systems over Rayleigh fading channels. A power-splitting (PS) protocol is employed at the energy-constrained relay [...] Read more.
This paper presents an analytical study of the bit error rate (BER) and signal-to-noise ratio (SNR) performance in simultaneous wireless information and power transfer (SWIPT) amplify-and-forward (AF) relaying systems over Rayleigh fading channels. A power-splitting (PS) protocol is employed at the energy-constrained relay to divide the received signal for concurrent energy harvesting and information processing. Closed-form and asymptotic BER expressions are derived based on exact and bounded moment-generating functions (MGFs), offering insights into how the SNR balance between the source–relay (SR) and relay–destination (RD) links influences system performance. An asymptotic BER expression further reveals that a SWIPT AF relay system can be interpreted as a generalized AF relaying model, sharing the same diversity order as conventional AF systems. Based on this interpretation, an optimization method for the PS factor is proposed, effectively reducing the BER by reinforcing the weaker link. Simulation results confirm the tightness of the derived expressions and the effectiveness of the optimization strategy. Moreover, the analytical framework is extended to multiple SWIPT relaying systems, where multiple relays operate with individually optimized PS ratios. For such configurations, approximations for the system BER, outage probability, and channel capacity are derived and validated. Results demonstrate that increasing the number of relays significantly improves system performance, and the proposed analysis accurately captures these performance gains under varying channel conditions. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

13 pages, 658 KiB  
Article
Optimizing Sulfur Fertilization for Yield and Aroma Enhancement in Fragrant Rice Under Varying Soil Sulfur Conditions
by Sirilak Chaiboontha, Chananath Chanauksorn, Choochad Santasup, Fapailin Chaiwan and Chanakan Prom-u-thai
Agronomy 2025, 15(7), 1569; https://doi.org/10.3390/agronomy15071569 - 27 Jun 2025
Viewed by 588
Abstract
Sulfur (S) fertilizer is routinely applied together with other macronutrients by farmers across all regions to improve grain yield and quality, but its distinct effects on grain yield and aroma intensity in fragrant rice remain inadequately studied, especially when applied under varying existing [...] Read more.
Sulfur (S) fertilizer is routinely applied together with other macronutrients by farmers across all regions to improve grain yield and quality, but its distinct effects on grain yield and aroma intensity in fragrant rice remain inadequately studied, especially when applied under varying existing soil S levels. This study aimed to determine the effects of S fertilizer application on grain yield and aroma intensity (2-Acetyl-1-Pyrroline, 2AP) in fragrant rice grown under varying soil S levels (very low, low, and medium). The premium Thai fragrant rice cultivar KDML105 was grown under field conditions during two cropping seasons in 2021 and 2022 in Surin province, northeastern Thailand. Sulfur fertilizer in the form of (NH4)2SO4 was applied at 0, 30, 60, 90, and 120 kg S ha−1 at one time with the basal fertilizers phosphorus (P) and potassium (K) under varying soil S levels, using the same protocol in both cropping seasons. Plant growth parameters were evaluated at the tillering stage, and grain samples were harvested at maturity to evaluate grain yield and aroma intensity. The results showed that applying S at rates between 60 and 90 kg ha−1 to soils with very low and low S increased grain yield from 4 to 20% compared to no S application, while no effect of S application was observed for the medium soil S level. The results were primarily attributed to the number of tillers and panicles per hill and the 1000-grain weight in both cropping seasons. Dissimilar effects of S application rates and soil S level were found for grain 2AP content. There was a higher grain 2AP content in the low and medium soil S levels compared to very low S, but the pattern varied according to the S application rate. Applying the appropriate rate of S fertilizer can significantly improve rice productivity, especially when cultivated under S-deficient soil, and higher soil S levels can promote the grain 2AP content of fragrant rice. Full article
Show Figures

Figure 1

17 pages, 1610 KiB  
Article
Enhancing Coffee Quality and Traceability: Chemometric Modeling for Post-Harvest Processing Classification Using Near-Infrared Spectroscopy
by Mariana Santos-Rivera, Lakshmanan Viswanathan and Faris Sheibani
Spectrosc. J. 2025, 3(2), 20; https://doi.org/10.3390/spectroscj3020020 - 19 Jun 2025
Viewed by 432
Abstract
Post-harvest processing (PHP) is a key determinant of coffee quality, flavor profile, and market classification, yet verifying PHP claims remains a significant challenge in the specialty coffee industry. This study introduces near-infrared spectroscopy (NIRS) coupled with chemometrics as a rapid, non-destructive approach to [...] Read more.
Post-harvest processing (PHP) is a key determinant of coffee quality, flavor profile, and market classification, yet verifying PHP claims remains a significant challenge in the specialty coffee industry. This study introduces near-infrared spectroscopy (NIRS) coupled with chemometrics as a rapid, non-destructive approach to classify green coffee beans based on PHP. For the first time, seven distinct PHP categories—Alchemy, Anaerobic Processing (Deep Fermentation), Dry-Hulled, Honey, Natural, Washed, and Wet-Hulled—were discriminated using NIRS, encompassing 20 different processing protocols under varying environmental and fermentation conditions. The NIR spectra (350–2500 nm) of 524 green Arabica coffee samples were analyzed using PCA-LDA models (750–2450 nm), achieving classification accuracies up to 100% for underrepresented categories and strong performance (91–95%) for dominant PHP groups in an independent test set. These results demonstrate that NIRS can detect subtle chemical signatures associated with diverse PHP techniques, offering a scalable tool for quality assurance, fraud prevention, and traceability in global coffee supply chains. While limited sample sizes for some PHP categories may influence model generalization, this study lays the foundation for future work involving broader datasets and integration with digital traceability systems. The approach has direct implications for producers, traders, and certifying bodies seeking reliable, real-time PHP verification. Full article
(This article belongs to the Special Issue Feature Papers in Spectroscopy Journal)
Show Figures

Figure 1

13 pages, 375 KiB  
Systematic Review
A Literature Review of the Lubricants Used in Dermatome-Assisted Split-Thickness Skin Graft Harvest
by William Wright, Marc Ingram and Quentin Frew
J. Clin. Med. 2025, 14(12), 4336; https://doi.org/10.3390/jcm14124336 - 18 Jun 2025
Viewed by 341
Abstract
Background: Split-thickness skin grafts (STSGs) are utilised to close wounds which cannot be closed by primary closure. Dermatome-assisted STSG harvest utilises a lubricant to control friction, which facilitates graft harvest. Many different lubricants are used during graft harvest, although little research has been [...] Read more.
Background: Split-thickness skin grafts (STSGs) are utilised to close wounds which cannot be closed by primary closure. Dermatome-assisted STSG harvest utilises a lubricant to control friction, which facilitates graft harvest. Many different lubricants are used during graft harvest, although little research has been conducted to identify the optimal lubricant. Furthermore, new techniques such as Meek grafting are incompatible with commonly used oil-based lubricants. Method: A literature search was conducted, following the PRISMA protocol. 173 records were screened with 6 included in this study. We also reviewed the literature on lubricants in other biotribological systems including shaving. Results: We found support for numerous lubricants, including: mineral oil, catheter gel, chlorhexidine, saline and ultrasound gel. Evidence consisted of expert opinions, and one blinded comparative review. There was no consensus on the optimal lubricant, and we did not find evidence that lubricant compatibility with Meek grafting had been assessed. Conclusions: Presently, lubrication choice in STSG harvest lacks a scientific basis, and further research is needed to design a bespoke, Meek-compatible lubricant which considers only four of Engelhardt’s characteristics (1. cost-effectiveness; 4. lubrication; 6. no side effects; 8. practicability) to be essential. This should be followed by a blinded trial of lubricants. Full article
(This article belongs to the Special Issue Experimental and Clinical Advances in Skin Grafting)
Show Figures

Figure 1

10 pages, 980 KiB  
Brief Report
Large-Scale Expansion of Suspension Cells in an Automated Hollow-Fiber Perfusion Bioreactor
by Eric Bräuchle, Maria Knaub, Laura Weigand, Elisabeth Ehrend, Patricia Manns, Antje Kremer, Hugo Fabre and Halvard Bonig
Bioengineering 2025, 12(6), 644; https://doi.org/10.3390/bioengineering12060644 - 12 Jun 2025
Viewed by 650
Abstract
Bioreactors enable scalable cell cultivation by providing controlled environments for temperature, oxygen, and nutrient regulation, maintaining viability and enhancing expansion efficiency. Automated systems improve reproducibility and minimize contamination risks, making them ideal for high-density cultures. While fed-batch bioreactors dominate biologics production, continuous systems [...] Read more.
Bioreactors enable scalable cell cultivation by providing controlled environments for temperature, oxygen, and nutrient regulation, maintaining viability and enhancing expansion efficiency. Automated systems improve reproducibility and minimize contamination risks, making them ideal for high-density cultures. While fed-batch bioreactors dominate biologics production, continuous systems like perfusion cultures offer superior resource efficiency and productivity. The Quantum hollow-fiber perfusion bioreactor supports cell expansion via semi-permeable capillary membranes and a closed modular design, allowing continuous media exchange while retaining key molecules. We developed a multiple-harvest protocol for suspension cells in the Quantum system, yielding 2.5 × 1010 MEL-745A cells within 29 days, with peak densities of 4 × 107 cells/mL—a 15-fold increase over static cultures. Viability averaged 91.3%, with biweekly harvests yielding 3.1 × 109 viable cells per harvest. Continuous media exchange required more basal media to maintain glucose and lactate levels but meaningfully less growth supplement than the 2D culture. Stable transgene expression suggested phenotypic stability. Automated processing reduced hands-on time by one-third, achieving target cell numbers 12 days earlier than 2D culture. Despite higher media use, total costs for the automated were lower compared to the manual process. Quantum enables high-density suspension cell expansion with cost advantages over conventional methods. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Figure 1

17 pages, 1458 KiB  
Article
Factors Shaping Phenotypic Variation in Thymus saturejoides
by Abderrahim Ouarghidi, Imane Abbad and Tiza Mfuni
Plants 2025, 14(12), 1772; https://doi.org/10.3390/plants14121772 - 10 Jun 2025
Viewed by 482
Abstract
Patterns of plant phytochemical composition vary between populations of any plant species and impact the cultural and economic value of important plant species. Phenotypic outcomes are a combination of genetic, environmental, and human influence. Thymus saturejoides is endemic to Morocco and Algeria and [...] Read more.
Patterns of plant phytochemical composition vary between populations of any plant species and impact the cultural and economic value of important plant species. Phenotypic outcomes are a combination of genetic, environmental, and human influence. Thymus saturejoides is endemic to Morocco and Algeria and part of a suite of economically important wild plants used to produce essential oils for the global market in the region. Currently, little is known about the human and ecological factors that shape T. saturejoides phenotypic traits. In this paper, we examine the factors that drive phenotypic variation in the species T. saturejoides through the chemical composition of essential oil. We used a systematic review protocol to identify 15 published sources, from which we obtained data on chemical composition (secondary metabolites and/or chemotype) for 51 samples, as well as information on the geographic location of harvest listed in the paper. We used the geographic location information to determine elevation, temperature, precipitation, soil type, and soil carbon. We ran linear regression models to determine if any of these environmental variables were associated with the content of key chemicals known to mark quality and value in T. saturejoides. Elevation was statistically significant in the models for thymol, linalool, p-cymene, carvacrol (p = 0.072), and borneol (p = 0.056). Other environmental variables were not statistically significantly related to the content of any of the chemicals. Although we did not find an association between chemical composition and temperature or precipitation, this does not exclude the possibility that a relationship exists at a finer spatial or temporal scale, such as days, weeks, or months. Our findings could also suggest that genetic and human-related factors, such as time of harvest, are more important than environmental factors. Full article
(This article belongs to the Special Issue Chemical Analysis and Biological Activities of Plant Essential Oils)
Show Figures

Figure 1

Back to TopTop