Factors Shaping Phenotypic Variation in Thymus saturejoides
Abstract
:1. Introduction
1.1. Environmental and Human Factors Shaping Phytochemical Variation in MAP
1.2. Thyme and Thymus Saturejoides
2. Results
2.1. Thymus Saturejoides’s Chemical Diversity and Variation
2.2. Environmental Factors and Individual Phytochemicals
2.3. Principal Component Analysis (PCA) of Chemical Composition
3. Discussion
4. Materials and Methods
4.1. Systematic Literature Review and Data Extraction
4.2. Environmental Variables
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Latitude | Longitude | Chemotype | Yield (%) | Altitude (m) | Soil Carbon (%) | Soil Texture * | Rainfall (mm) | Temperature (°C) | References |
---|---|---|---|---|---|---|---|---|---|
30.90000 | −8.28333 | CrB | 2.58 ± 0.03 | 1670 | 23 | 6 | 487 | 12.1 | [60] |
31.23333 | −7.68333 | CrB | 2.40 ± 0.03 | 2018 | 30 | 6 | 496 | 12.6 | [61] |
29.77541 | −9.16638 | BT | 2.66 (Av) | 940 | 14 | 6 | 240 | 16.5 | [28] |
30.68202 | −9.49552 | BCm | 1.7 ± 0.4 | 936 | 17 | 6 | 334 | 14.6 | [62] |
30.95000 | −8.30000 | CrB | 2.40 ± 0.03 | 1937 | 18 | 6 | 524 | 11.4 | [29] |
32.26666 | −4.59999 | Cr | 2.07 ± 0.05 | 1392 | 5 | 6 | 148 | 16.3 | [29] |
30.80588 | −8.38700 | BTe | 2.7 | 1093 | 12 | 6 | 421 | 15.6 | [63] |
30.55588 | −9.57455 | BTe | 1.85 | 210 | 10 | 6 | 233 | 18.2 | [63] |
30.62897 | −9.50933 | BTe | 2.33 | 927 | 13 | 6 | 310 | 15.5 | [63] |
30.63716 | −9.39225 | BTe | 2.28 | 1178 | 15 | 6 | 329 | 15.2 | [63] |
30.63758 | −9.39297 | BTe | 1.94 | 1201 | 15 | 6 | 329 | 15.2 | [63] |
31.16777 | −8.17250 | BCr | -- | 1210 | 31 | 4 | 498 | 13.4 | [64] |
30.95000 | −8.11000 | B | 1.65 | 2040 | 32 | 4 | 476 | 12.8 | [65] |
31.11481 | −8.85653 | BCm | -- | 1221 | 18 | 4 | 416 | 13.7 | [66] |
30.63400 | −8.90542 | BT | -- | 247 | 14 | 6 | 285 | 18.1 | [67] |
31.16777 | −8.17250 | BCm | 1.05 | 1289 | 31 | 4 | 498 | 13.4 | [68] |
31.16277 | −8.10083 | BCr | 1.02 | 1542 | 12 | 6 | 406 | 16.2 | [68] |
31.16138 | −8.10361 | BCr | 1.04 | 1526 | 13 | 6 | 406 | 16.2 | [68] |
31.12944 | −8.23722 | BCm | 1.59 | 1577 | 21 | 6 | 541 | 11.4 | [68] |
31.04861 | −8.11777 | BCr | 0.65 | 1766 | 20 | 6 | 503 | 12.1 | [68] |
31.02999 | −8.36527 | BCm | -- | 1839 | 26 | 9 | 573 | 7.9 | [68] |
31.18833 | −8.30777 | BCm | 0.48 | 1457 | 21 | 6 | 514 | 12.8 | [68] |
31.17777 | −8.29416 | BCm | 0.98 | 1515 | 15 | 4 | 481 | 13.9 | [68] |
31.16944 | −8.28055 | BCm | 0.67 | 1549 | 28 | 4 | 498 | 13.3 | [68] |
31.16944 | −8.28055 | BCm | 0.44 | 1648 | 28 | 4 | 498 | 13.3 | [68] |
31.06305 | −8.21527 | BCr | 0.78 | 1695 | 40 | 6 | 527 | 10.9 | [68] |
31.04777 | −8.20333 | BCm | 0.2 | 1713 | 27 | 5 | 542 | 10.9 | [68] |
31.05055 | −8.25222 | BCm | 0.37 | 1791 | 34 | 6 | 617 | 6.7 | [68] |
31.04138 | −8.26277 | BCm | 1.47 | 2181 | 39 | 6 | 610 | 7.1 | [68] |
31.09694 | −8.27138 | BCm | 0.66 | 1742 | 26 | 6 | 508 | 12.2 | [68] |
30.99000 | −8.26027 | BCm | 0.7 | 2162 | 15 | 6 | 494 | 12.5 | [68] |
30.98055 | −8.31361 | BCm | 0.86 | 2146 | 19 | 6 | 472 | 12.6 | [68] |
30.96777 | −8.29638 | BCm | 0.97 | 1718 | 30 | 6 | 496 | 12.2 | [68] |
31.04888 | −8.28500 | BCm | 1.67 | 1882 | 21 | 7 | 542 | 9.5 | [68] |
30.96583 | −9.15555 | BCm | 0.38 | 1643 | 19 | 4 | 438 | 12.6 | [68] |
30.95333 | −8.30666 | BCm | 1.47 | 2013 | 29 | 6 | 543 | 10.6 | [68] |
31.17694 | −8.25388 | BCm | 0.85 | 1496 | 15 | 6 | 471 | 14.3 | [68] |
30.98694 | −8.31138 | BCm | 1.4 | 2146 | 20 | 6 | 484 | 12.3 | [68] |
30.94833 | −8.11805 | BCm | 2.29 | 1964 | 31 | 6 | 480 | 12.6 | [68] |
30.96916 | −8.28388 | BCm | 0.9 | 1942 | 23 | 4 | 467 | 13.5 | [68] |
31.13305 | −8.28527 | BCr | 0.81 | 1528 | 19 | 6 | 508 | 12.6 | [68] |
31.04916 | −8.33194 | BCm | -- | 1485 | 27 | 6 | 560 | 8.8 | [68] |
29.71014 | −8.88659 | CrB | 1.78 | 1270 | 12 | 6 | 254 | 15.6 | [69] |
31.23955 | −7.96436 | BCr | -- | 1369 | 18 | 6 | 458 | 15.1 | [70] |
32.11373 | −6.47671 | BT | -- | 906 | 20 | 5 | 490 | 15.4 | [70] |
30.62583 | −9.03619 | BCm | 2.02 | 1020 | 13 | 6 | 291 | 17.8 | [71] |
30.77411 | −8.56908 | BTe | 1.35 | 850 | 13 | 6 | 346 | 17.2 | [71] |
29.21425 | −9.56369 | BTe | 2.16 | 1050 | -- | -- | 172 | 16.7 | [71] |
30.63708 | −8.00808 | BTe | 2.32 | 1240 | 19 | 6 | 362 | 17.1 | [71] |
30.71628 | −9.44237 | BTe | 3.3 ± 0.02 | 1568 | 25 | 6 | 399 | 13 | [72] |
References
- Thuiller, W. Climate Change and the Ecologist. Nature 2007, 448, 550–552. [Google Scholar] [CrossRef] [PubMed]
- Suseela, V.; Tharayil, N. Decoupling the Direct and Indirect Effects of Climate on Plant Litter Decomposition: Accounting for Stress-induced Modifications in Plant Chemistry. Glob. Change Biol. 2018, 24, 1428–1451. [Google Scholar] [CrossRef] [PubMed]
- Top, S.M.; Filley, T.R. Effects of Elevated CO2 on the Extractable Amino Acids of Leaf Litter and Fine Roots. New Phytol. 2014, 202, 1257–1266. [Google Scholar] [CrossRef]
- Moura, J.C.M.S.; Bonine, C.A.V.; De Oliveira Fernandes Viana, J.; Dornelas, M.C.; Mazzafera, P. Abiotic and Biotic Stresses and Changes in the Lignin Content and Composition in Plants. J. Integr. Plant Biol. 2010, 52, 360–376. [Google Scholar] [CrossRef]
- Ahmed, S.; Stepp, J.R.; Orians, C.; Griffin, T.; Matyas, C. Effects of Extreme Climate Events on Tea (Camellia sinensis) Functional Quality Validate. PLoS ONE 2014, 9, 10. [Google Scholar] [CrossRef]
- Rapp, J.; Ahmed, S.; Lutz, D.; Huish, R. The Shifting Sweet Spot of Maple Syrup pro Duction: Climate Change Impact on Sugar Maple Sap. Maple Syrup Dig. 2019, 58, 17–25. [Google Scholar]
- Taleb, M.S. Aromatic and Medicinal Plants in Morocco: Diversity and Socio-Economic Role. Int. J. Agric. Biosyst. Eng. 2017, 11, 812–816. [Google Scholar]
- El Houssine Bouiamrine, L.B.; Ibijbijen, J.; Nassiri, L. Fresh Medicinal Plants in Middle Atlas of Morocco: Trade and Threats to the Sustainable Harvesting. J. Med. Plants 2017, 5, 123–128. [Google Scholar]
- The Observatory of Economic Complexity. Essential Oils in Morocco. Available online: https://oec.world/en/profile/bilateral-product/essential-oils/reporter/mar (accessed on 26 December 2024).
- Camargo, J.; Barcena, I.; Soares, P.M.; Schmidt, L.; Andaluz, J. Mind the Climate Policy Gaps: Climate Change Public Policy and Reality in Portugal, Spain and Morocco. Clim. Change 2020, 161, 151–169. [Google Scholar] [CrossRef]
- Tuel, A.; Kang, S.; Eltahir, E.A. Understanding Climate Change over the Southwestern Mediterranean Using High-Resolution Simulations. Clim. Dyn. 2021, 56, 985–1001. [Google Scholar] [CrossRef]
- Thompson, J.D.; Manicacci, D.; Tarayre, M. Thirty-Five Years of Thyme: A Tale of Two Polymorphisms. BioScience 1998, 48, 805–815. [Google Scholar] [CrossRef]
- Barra, A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 2009, 4, 8. [Google Scholar] [CrossRef]
- El-Alam, I.; Zgheib, R.; Iriti, M.; El Beyrouthy, M.; Hattouny, P.; Verdin, A.; Fontaine, J.; Chahine, R.; Lounès-Hadj Sahraoui, A.; Makhlouf, H. Origanum Syriacum Essential Oil Chemical Polymorphism According to Soil Type. Foods 2019, 8, 90. [Google Scholar] [CrossRef] [PubMed]
- Keefover-Ring, K. The Chemical Biogeography of a Widespread Aromatic Plant Species Shows Both Spatial and Temporal Variation. Ecol. Evol. 2022, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Wolf, V.C.; Gassmann, A.; Clasen, B.M.; Smith, A.G.; Müller, C. Genetic and Chemical Variation of Tanacetum Vulgare in Plants of Native and Invasive Origin. Biol. Control. 2012, 61, 240–245. [Google Scholar] [CrossRef]
- Butcher, P.A.; Doran, J.C.; Slee, M.U. Intraspecific Variation in Leaf Oils of Melaleuca Alternifolia (Myrtaceae). Biochem. Syst. Ecol. 1994, 22, 419–430. [Google Scholar] [CrossRef]
- Van Dam, N.M.; Vrieling, K. Genetic Variation in Constitutive and Inducible Pyrrolizidine Alkaloid Levels in Cynoglossum officinale L. Oecologia 1994, 99, 374–378. [Google Scholar] [CrossRef]
- Homer, L.E.; Leach, D.N.; Lea, D.; Slade Lee, L.; Henry, R.J.; Baverstock, P.R. Natural Variation in the Essential Oil Content of Melaleuca Alternifolia Cheel (Myrtaceae). Biochem. Syst. Ecol. 2000, 28, 367–382. [Google Scholar] [CrossRef]
- Binns, S.E.; Arnason, J.T.; Baum, B.R. Phytochemical Variation within Populations of Echinacea Angustifolia (Asteraceae). Biochem. Syst. Ecol. 2002, 30, 837–854. [Google Scholar] [CrossRef]
- Ahmed, S.; Peters, C.M.; Chunlin, L.; Meyer, R.; Unachukwu, U.; Litt, A.; Kennelly, E.; Stepp, J.R. Biodiversity and Phytochemical Quality in Indigenous and State-supported Tea Management Systems of Yunnan, China. Conserv. Lett. 2013, 6, 28–36. [Google Scholar] [CrossRef]
- Rahmani, M. Examen National de l’Export Vert Du Maroc: Produits Oléicoles, Romarin et Thym, United Nations, Geneva. 2017. Available online: https://unctad.org/publication/examen-national-de-lexport-vert-du-maroc-produits-oleicoles-romarin-et-thym (accessed on 3 December 2023).
- Tridge—Global Food Sourcing & Data Hub. Thyme Export Company and Exporters in Morocco. Available online: https://www.tridge.com/intelligences/thyme1/MA/export (accessed on 26 December 2024).
- Chemonics International Inc. Projet Filiere des Plantes Aromatiques et Medicinales. United States Agency for International Development, June 2006. Available online: https://www.franceagrimer.fr/filiere-plantes-a-parfum-aromatiques-et-medicinales (accessed on 3 December 2023).
- Fennane, M.; Ibn Tattou, M. Flore Pratique Du Maroc (Manuel de Détermination Des Plantes Vasculaires. 2, Angiospermae (Leguminosae-Lentibulariaceae)); l’Institut Scientifique, Universitè Mohammad V-Agdal: Rabat, Morocco, 1999; ISBN 9954-0-1456-X. [Google Scholar]
- Pavela, R.; Bartolucci, F.; Desneux, N.; Lavoir, A.-V.; Canale, A.; Maggi, F.; Benelli, G. Chemical Profiles and Insecticidal Efficacy of the Essential Oils from Four Thymus Taxa Growing in Central-Southern Italy. Ind. Crops Prod. 2019, 138, 111460. [Google Scholar] [CrossRef]
- Nabissi, M.; Marinelli, O.; Morelli, M.B.; Nicotra, G.; Iannarelli, R.; Amantini, C.; Santoni, G.; Maggi, F. Thyme Extract Increases Mucociliary-Beating Frequency in Primary Cell Lines from Chronic Obstructive Pulmonary Disease Patients. Biomed. Pharmacother. 2018, 105, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Boubaker, H.; Karim, H.; El Hamdaoui, A.; Msanda, F.; Leach, D.; Bombarda, I.; Vanloot, P.; Abbad, A.; Boudyach, E.H.; Aoumar, A.A.B. Chemical Characterization and Antifungal Activities of Four Thymus Species Essential Oils against Postharvest Fungal Pathogens of Citrus. Ind. Crops Prod. 2016, 86, 95–101. [Google Scholar] [CrossRef]
- Kasrati, A.; Jamali, C.A.; Fadli, M.; Bekkouche, K.; Hassani, L.; Wohlmuth, H.; Leach, D.; Abbad, A. Antioxidative Activity and Synergistic Effect of Thymus Saturejoides Coss. Essential Oils with Cefixime against Selected Food-Borne Bacteria. Ind. Crops Prod. 2014, 61, 338–344. [Google Scholar] [CrossRef]
- Laghzaoui, E.-M.; Aglagane, A.; Soulaimani, B.; Abbad, I.; Kimdil, L.; Er-Rguibi, O.; Abbad, A.; El Mouden, E.H. Insecticidal Activity of Some Plant Essential Oils against the Opuntia Cochineal Scale Insect, Dactylopius Opuntiae Cockerell (Hemiptera: Dactylopiidae). Phytoparasitica 2022, 50, 901–911. [Google Scholar] [CrossRef]
- Rankou, H.; M’Sou, S.; Ait Babahmad, R.A.; Diarra, A. Thymus Saturejoides. IUCN Red List. Threat. Species 2020, 2020, e-T139600868A139601223. [Google Scholar]
- Fennane, M.; Ibn Tattou, M.; Mathez, J.; Ouyahya, A.; El Oualidi, J. Flore pratique du Maroc: Manuel de détermination des plantes vasculaires. Angiospermae (Leguminosae-Lentibulariaceae); l’Institut Scientifique, Universitè Mohammad V-Agdal: Rabat, Morocco, 2007; ISBN 9954-8347-4-5. [Google Scholar]
- The WFO Plant List. Available online: https://wfoplantlist.org/taxon/wfo-0000324708-2024-12?page=1&hide_syns=true (accessed on 7 March 2025).
- Thompson, K.; Gilbert, F. Spatiotemporal Variation in the Endangered Thymus decussatus in a Hyper-Arid Environment. J. Plant Ecol. 2015, 8, 79–90. [Google Scholar] [CrossRef]
- Hancı, S.; Sahin, S.; Yılmaz, L. Isolation of Volatile Oil from Thyme (Thymbra Spicata) by Steam Distillation. Food Nahrung 2003, 47, 252–255. [Google Scholar] [CrossRef]
- Hudaib, M.; Speroni, E.; Di Pietra, A.M.; Cavrini, V. GC/MS Evaluation of Thyme (Thymus vulgaris L.) Oil Composition and Variations during the Vegetative Cycle. J. Pharm. Biomed. Anal. 2002, 29, 691–700. [Google Scholar] [CrossRef]
- Horwath, A.B.; Grayer, R.J.; Keith-Lucas, D.M.; Simmonds, M.S.J. Chemical Characterisation of Wild Populations of Thymus from Different Climatic Regions in Southeast Spain. Biochem. Syst. Ecol. 2008, 36, 117–133. [Google Scholar] [CrossRef]
- Torras, J.; Grau, M.D.; López, J.F.; De Las Heras, F.X.C. Analysis of Essential Oils from Chemotypes of Thymus vulgaris in Catalonia. J. Sci. Food Agric. 2007, 87, 2327–2333. [Google Scholar] [CrossRef]
- Gherairia, N.; Boukerche, S.; Mustapha, M.A.; Chefrour, A. Effects of Biotic and Abiotic Factors on the Yield and Chemical Composition of Essential Oils from Four Thymus Species Wild-Growing in Northeastern Algeria. Jordan J. Biol. Sci. 2022, 15, 173–181. [Google Scholar]
- El-Jalel, L.F.; Elkady, W.M.; Gonaid, M.H.; El-Gareeb, K.A. Difference in Chemical Composition and Antimicrobial Activity of Thymus Capitatus L. Essential Oil at Different Altitudes. Future J. Pharm. Sci. 2018, 4, 156–160. [Google Scholar] [CrossRef]
- Thompson, J.; Charpentier, A.; Bouguet, G.; Charmasson, F.; Roset, S.; Buatois, B.; Vernet, P.; Gouyon, P.-H. Evolution of a Genetic Polymorphism with Climate Change in a Mediterranean Landscape. Proc. Natl. Acad. Sci. USA 2013, 110, 2893–2897. [Google Scholar] [CrossRef]
- Franks, S.J.; Weber, J.J.; Aitken, S.N. Evolutionary and Plastic Responses to Climate Change in Terrestrial Plant Populations. Evol. Appl. 2014, 7, 123–139. [Google Scholar] [CrossRef]
- Amiot, J.; Salmon, Y.; Collin, C.; Thompson, J.D. Differential Resistance to Freezing and Spatial Distribution in a Chemically Polymorphic Plant Thymus vulgaris. Ecol. Lett. 2005, 8, 370–377. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gauthier, P.; Amiot, J.; Ehlers, B.K.; Collin, C.; Fossat, J.; Barrios, V.; Arnaud-Miramont, F.; Keefover-Ring, K.E.N.; Linhart, Y.B. Ongoing Adaptation to Mediterranean Climate Extremes in a Chemically Polymorphic Plant. Ecol. Monogr. 2007, 77, 421–439. [Google Scholar] [CrossRef]
- Gouyon, P.H.; Vernet, P.; Guillerm, J.L.; Valdeyron, G. Polymorphisms and Environment: The Adaptive Value of the Oil Polymorphisms in Thymus vulgaris L. Heredity 1986, 57, 59–66. [Google Scholar] [CrossRef]
- Eriksson, Ä. Regional Distribution of Thymus serpyllum: Management History and Dispersal Limitation. Ecography 1998, 21, 35–43. [Google Scholar] [CrossRef]
- Popke, J.; Curtis, S.; Gamble, D.W. A Social Justice Framing of Climate Change Discourse and Policy: Adaptation, Resilience and Vulnerability in a Jamaican Agricultural Landscape. Geoforum 2016, 73, 70–80. [Google Scholar] [CrossRef]
- Ouahzizi, B.; Elbouny, H.; Sellam, K.; Alem, C.; Bakali, A.H. Effect of Salinity and Drought Stresses on Seed Germination of Thymus satureioides. J. Rangel. Sci. 2023, 13, 1. [Google Scholar]
- Oublid, H.; Hamza, M.A.; Boubaker, H.; El Hamdaoui, A.; El Yaagoubi, M.; Abbad, I.; El Moutaouakil, M.; Msanda, F. Effect of Temperature, Pretreatments, Gibberellin (GA3), Salt and Drought Stress on Germination of Thymus satureioides Coss of Morocco. J. Appl. Res. Med. Aromat. Plants 2024, 38, 100524. [Google Scholar] [CrossRef]
- Laftouhi, A.; Eloutassi, N.; Ech-Chihbi, E.; Rais, Z.; Abdellaoui, A.; Taleb, A.; Beniken, M.; Nafidi, H.-A.; Salamatullah, A.M.; Bourhia, M.; et al. The Impact of Environmental Stress on the Secondary Metabolites and the Chemical Compositions of the Essential Oils from Some Medicinal Plants Used as Food Supplements. Sustainability 2023, 15, 7842. [Google Scholar] [CrossRef]
- Nefzaoui, A.; Ketata, H.; El Mourid, M. Changes in North Africa Production Systems to Meet Climate Uncertainty and New Socio-Economic Scenarios with a Focus on Dryland Areas. Options Méditerranéennes Série A. Séminaires Méditerranéens 2012, 102, 403–421. [Google Scholar]
- Zhao, X.; Dupont, L.; Cheddadi, R.; Kölling, M.; Reddad, H.; Groeneveld, J.; Ain-Lhout, F.Z.; Bouimetarhan, I. Recent Climatic and Anthropogenic Impacts on Endemic Species in Southwestern Morocco. Quat. Sci. Rev. 2019, 221, 105889. [Google Scholar] [CrossRef]
- Rather, Z.A.; Ahmad, R.; Dar, A.R.; Dar, T.U.H.; Khuroo, A.A. Predicting Shifts in Distribution Range and Niche Breadth of Plant Species in Contrasting Arid Environments under Climate Change. Environ. Monit. Assess. 2021, 193, 427. [Google Scholar] [CrossRef]
- Cavaliere, C. The Effects of Climate Change on Medicinal and Aromatic Plants. Herb. Gram 2009, 81, 44–57. [Google Scholar]
- Liancourt, P.; Boldgiv, B.; Song, D.S.; Spence, L.A.; Helliker, B.R.; Petraitis, P.S.; Casper, B.B. Leaf-trait Plasticity and Species Vulnerability to Climate Change in a Mongolian Steppe. Glob. Change Biol. 2015, 21, 3489–3498. [Google Scholar] [CrossRef]
- ISRIC, Africa Soil Grids-Textural Class Aggregated at Top 30Cm. Available online: https://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/4f0daec9-4c10-4906-a778-43a8fa2251c3/ (accessed on 7 June 2022).
- USGS, Earthexplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 7 June 2022).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Historical Climate Data-WorldClim 1 Documentation. Available online: https://www.worldclim.org/data/worldclim21.html (accessed on 5 January 2025).
- Jamali, C.A.; El Bouzidi, L.; Bekkouche, K.; Lahcen, H.; Markouk, M.; Wohlmuth, H.; Leach, D.; Abbad, A. Chemical Composition and Antioxidant and Anticandidal Activities of Essential Oils from Different Wild Moroccan Thymus Species. Chem. Biodivers. 2012, 9, 1188–1197. [Google Scholar] [CrossRef]
- Zerrifi, S.E.A.; Kasrati, A.; Tazart, Z.; El Khalloufi, F.; Abbad, A.; Oudra, B.; Campos, A.; Vasconcelos, V. Essential Oils from Moroccan Plants as Promising Ecofriendly Tools to Control Toxic Cyanobacteria Blooms. Ind. Crops Prod. 2020, 143, 111922. [Google Scholar] [CrossRef]
- El Asbahani, A.; Jilale, A.; Voisin, S.N.; Aït Addi, E.H.; Casabianca, H.; El Mousadik, A.; Hartmann, D.J.; Renaud, F.N.R. Chemical Composition and Antimicrobial Activity of Nine Essential Oils Obtained by Steam Distillation of Plants from the Souss-Massa Region (Morocco). J. Essent. Oil Res. 2015, 27, 34–44. [Google Scholar] [CrossRef]
- Ramzi, H.; Ismaili, M.R.; Aberchane, M.; Zaanoun, S. Chemical Characterization and Acaricidal Activity of Thymus Satureioides C. & B. and Origanum Elongatum E. & M.(Lamiaceae) Essential Oils against Varroa Destructor Anderson & Trueman (Acari: Varroidae). Ind. Crops Prod. 2017, 108, 201–207. [Google Scholar]
- Chraibi, M.; Farah, A.; Lebrazi, S.; El Amine, O.; Houssaini, M.I.; Fikri-Benbrahim, K. Antimycobacterial Natural Products from Moroccan Medicinal Plants: Chemical Composition, Bacteriostatic and Bactericidal Profile of Thymus satureioides and Mentha Pulegium Essential Oils. Asian Pac. J. Trop. Biomed. 2016, 6, 836–840. [Google Scholar] [CrossRef]
- Ichrak, G.; Rim, B.; Loubna, A.S.; Khalid, O.; Abderrahmane, R.; Said, E.M. Chemical Composition, Antibacterial and Antioxidant Activities of the Essential Oils from Thymus satureioides and Thymus pallidus. Nat. Prod. Commun. 2011, 6, 10. [Google Scholar] [CrossRef]
- Tantaoui-Elaraki, A.; Lattaoui, N.; Errifi, A.; Benjilali, B. Composition and Antimicrobial Activity of the Essential Oils of Thymus broussonettii, T. zygis and T. satureioides. J. Essent. Oil Res. 1993, 5, 45–53. [Google Scholar] [CrossRef]
- Sbayou, H.; Boumaza, A.; Hilali, A.; Amghar, S. Chemical Composition and Antibacterial and Antioxidant Activities of Thymus satureioides Coss. Essential Oil. Int. J. Pharm. Pharm. Sci. 2016, 8, 183–187. [Google Scholar] [CrossRef]
- Zenasni, L.; Bakhy, K.; Gaboun, F.; Mousadak, R.; Benjouad, A.A.; Al Faiz, S.H. Essential Oil Composition and Biomass Productivity of Moroccan Endemic Thymus satureioides Coss. & Ball. Growing in the Agoundis Valley. J. Med. Plant Res 2014, 8, 504–512. [Google Scholar]
- El Hattabi, L.; Talbaoui, A.; Amzazi, S.; Bakri, Y.; Harhar, H.; Costa, J.; Tabyaoui, M. Chemical Composition and Antibacterial Activity of Three Essential Oils from South of Morocco (Thymus satureoides, Thymus vulgaris and Chamaelum Nobilis). J. Mater. Environ. Sci. 2016, 7, 3110–3117. [Google Scholar]
- Jaafari, A.; Mouse, H.A.; Rakib, E.M.; M’barek, L.A.; Tilaoui, M.; Benbakhta, C.; Boulli, A.; Abbad, A.; Zyad, A. Chemical Composition and Antitumor Activity of Different Wild Varieties of Moroccan Thyme. Rev. Bras. De Farmacognosia 2007, 17, 477–491. [Google Scholar] [CrossRef]
- Salhi, N.; Fidah, A.; Rahouti, M.; ISmalili, M.R.; Ramzi, H.; Kabouchi, B. Chemical Composition and Fungicidal Effects of Four Chemotypes of Thymus satureioides Cosson Essential Oils Originated from South-West of Morocco. J. Mater. Environ. Sci. 2018, 9, 514–519. [Google Scholar]
- Taoufik, F.; Anejjar, A.; Asdadi, A.; Salghi, R.; Chebli, B.; El Hadek, M.; Idrissi Hassani, L.M. Synergic Effect between Argania Spinosa Cosmetic Oil and Thymus satureioides Essential Oil for the Protection of the Carbon Steel against the Corrosion in Sulfuric Acid Medium. J. Mater. Environ. Sci. 2017, 8, 582–593. [Google Scholar]
Min | Max | Mean | SD | |
---|---|---|---|---|
Latitude | 29.21425 | 32.26666 | 30.93690 | 0.468 |
Longitude | −9.57455 | −4.59999 | −8.38886 | 0.787 |
Elevation (meters) | 247 | 2181 | 1483.5 | 451 |
Mean Precipitation (mm/yr) | 148 | 617 | 440 | 110 |
Mean Temp (°C) | 6.7 | 18.24 | 13.43 | 2.725 |
Carvacrol (%) | 0 | 45.3 | 10.33 | 9.903 |
Borneol (%) | 7.5 | 59.37 | 31.18 | 8.409 |
Camphene (%) | 0 | 27.4 | 10.83 | 5.829 |
Thymol (%) | 0 | 26.81 | 1.5 | 4.892 |
α-Terpineol (%) | 0 | 19.87 | 6.85 | 5.392 |
Chemotype | Chemical Traits | Sample Size (N) | Notes/Where It Is Commonly Found |
---|---|---|---|
B | High borneol | 1 | Commonly found in the Tiznit region |
BCm | High in borneol and moderately in camphene | 26 | Mostly found in Ijoukak, Agoundis, and Imintanoute |
BCr | High in borneol and carvacrol | 7 | Located in Asni, Ouirgane, and Agoundis |
BT | High in borneol and thymol | 3 | Found in the Azilal, Bin Ouidane, and Taroudant regions |
BTe | High in borneol and α-terpineol | 9 | Predominantly found in Imouzzar Ida Outanante |
Cr | High in carvacrol | 1 | Found in Tafraout and Midelt |
CrB | High in carvacrol and low level of borneol | 4 | Found Idni, Setti Fatma, Tafraout and Midelt |
Variable | Comp1 | Comp2 | Comp3 |
---|---|---|---|
carvacrol | −0.0579 | −0.1702 | 0.4853 |
borneol | 0.0162 | −0.1256 | −0.4179 |
camphene | −0.0860 | 0.4097 | −0.0911 |
thymol | 0.3172 | −0.1027 | −0.1249 |
α-terpineol | −0.1122 | −0941 | −0.3382 |
linalool | −0.0657 | 0.3964 | 0.0311 |
γ-terpinene | 0.0009 | −0.2163 | 0.4367 |
p-cymene | −0.0328 | 0.2896 | 0.3875 |
(E)-caryophyllene | −0.0046 | −0.3579 | 0.1821 |
α-pinene | −0.0352 | 0.4313 | 0.0431 |
carvacrol methyl ether | 0.3635 | −0.0303 | 0.0503 |
tricyclene | 0.4153 | 0.1024 | 0.0329 |
β-myrcene | 0.4153 | 0.1024 | 0.0329 |
β-pinene | 0.4153 | 0.1024 | 0.0329 |
α-thujene | 0.4153 | 0.1024 | 0.0329 |
(E)-β-caryophyllene | 0.0106 | −0.0781 | 0.1890 |
α-terpinyl acetate | 0.0569 | −0.1067 | −0.1358 |
delta-3-carene | −0.1111 | 0.3145 | 0.0629 |
β-caryophyllene | 0.1722 | −0.0834 | −0.0908 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouarghidi, A.; Abbad, I.; Mfuni, T. Factors Shaping Phenotypic Variation in Thymus saturejoides. Plants 2025, 14, 1772. https://doi.org/10.3390/plants14121772
Ouarghidi A, Abbad I, Mfuni T. Factors Shaping Phenotypic Variation in Thymus saturejoides. Plants. 2025; 14(12):1772. https://doi.org/10.3390/plants14121772
Chicago/Turabian StyleOuarghidi, Abderrahim, Imane Abbad, and Tiza Mfuni. 2025. "Factors Shaping Phenotypic Variation in Thymus saturejoides" Plants 14, no. 12: 1772. https://doi.org/10.3390/plants14121772
APA StyleOuarghidi, A., Abbad, I., & Mfuni, T. (2025). Factors Shaping Phenotypic Variation in Thymus saturejoides. Plants, 14(12), 1772. https://doi.org/10.3390/plants14121772