Novel DNA Barcoding and Multiplex PCR Strategy for the Molecular Identification and Mycotoxin Gene Detection of Fusarium spp. in Maize from Bulgaria
Abstract
1. Introduction
2. Experimental Design
2.1. Sample Collection
2.2. Culture Media and Morphological Characterization of Fusarium spp. Isolates
3. Procedure
3.1. DNA Extraction, PCR Amplification and Sequencing
3.2. Molecular Identification of Mycotoxigenic Potential of Identified Fusarium spp.
3.3. Bioinformatics and Phylogenetic Analysis
4. Results
4.1. Molecular Identification of Fusarium spp. Using Four-Locus Barcoding
4.2. Phylogenetic Resolution and Geographic Patterns
4.3. Mycotoxigenic Gene Detection by Multiplex PCR
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palacios-Rojas, N.; McCulley, L.; Kaeppler, M.; Titcomb, T.J.; Gunaratna, N.S.; Lopez-Ridaura, S.; Tanumihardjo, S.A. Mining maize diversity and improving its nutritional aspects within agro-food systems. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1809–1834. [Google Scholar] [CrossRef] [PubMed]
- Tanumihardjo, S.A.; McCulley, L.; Roh, R.; Lopez-Ridaura, S.; Palacios-Rojas, N.; Gunaratna, N.S. Maize agro-food systems to ensure food and nutrition security in reference to the Sustainable Development Goals. Glob. Food Secur. 2020, 25, 100327. [Google Scholar] [CrossRef]
- Grote, U.; Fasse, A.; Nguyen, T.T.; Erenstein, O. Food security and the dynamics of wheat and maize value chains in Africa and Asia. Front. Sustain. Food Syst. 2021, 4, 617009. [Google Scholar] [CrossRef]
- United States Department of Agriculture. National Agricultural Statistics Service. 2018. Available online: https://www.nass.usda.gov/Newsroom/archive/2018/index.php (accessed on 23 March 2024).
- Delaunay, N.; Combès, A.; Pichon, V. Immunoaffinity extraction and alternative approaches for the analysis of toxins in environmental, food or biological matrices. Toxins 2020, 12, 795. [Google Scholar] [CrossRef]
- Milićević, D.; Udovički, B.; Petrović, Z.; Janković, S.; Radulović, S.; Gurinović, M.; Rajković, A. Current status of mycotoxin contamination of food and feeds and associated public health risk in Serbia. Meat Technol. 2020, 61, 1–36. [Google Scholar] [CrossRef]
- Ben Taheur, F.; Kouidhi, B.; Al Qurashi, Y.M.A.; Ben Salah-Abbès, J.; Chaieb, K. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 2019, 160, 12–22. [Google Scholar] [CrossRef]
- Chilaka, C.; De Boevre, M.; Atanda, O.; De Saeger, S. The status of Fusarium mycotoxins in sub-Saharan Africa: A review of emerging trends and post-harvest mitigation strategies towards food control. Toxins 2017, 9, 19. [Google Scholar] [CrossRef]
- Gamero-Estevez, E.; Baumholtz, A.I.; Ryan, A.K. Developing a link between toxicants, claudins and neural tube defects. Reprod. Toxicol. 2018, 81, 155–167. [Google Scholar] [CrossRef]
- Crous, P.W.; Lombard, L.; Sandoval-Denis, M.; Seifert, K.A.; Schroers, H.-J.; Chaverri, P.; Gené, J.; Guarro, J.; Hirooka, Y.; Bensch, K.; et al. Fusarium: More than a node or a footshaped basal cell. Stud. Mycol. 2021, 98, 100116. [Google Scholar] [CrossRef]
- Ekwomadu, T.I.; Mwanza, M. Fusarium Fungi Pathogens, Identification, Adverse Effects, Disease Management, and Global Food Security: A Review of the Latest Research. Agriculture 2023, 13, 1810. [Google Scholar] [CrossRef]
- Normand, A.; Imbert, S.; Brun, S.; Al-Hatmi, A.S.; Chryssanthou, E.; Cassaing, S.; Schuttler, C.; Hasseine, L.; Mahinc, C.; Costa, D.; et al. Clinical origin and species distribution of Fusarium spp. Isolates identified by molecular sequencing and mass spectrometry: A European multicenter hospital prospective study. J. Fungi 2021, 7, 246. [Google Scholar] [CrossRef]
- O’Donnell, K.; Whitaker, B.K.; Laraba, I.; Proctor, R.H.; Brown, D.W.; Broders, K.; Broders, K.; Kim, H.; McCormick, S.P.; Busman, M.; et al. DNA sequence-based identification of Fusarium: A work in progress. Plant Dis. 2022, 106, 1597–1609. [Google Scholar] [CrossRef]
- Moussa, T.A.A.; Al-Zahrani, H.S.; Kadasa, N.M.S.; Ahmed, S.A.; De Hoog, G.S.; Al-Hatmi, A.M.S. Two new species of the Fusarium fujikuroi species complex isolated from the natural environment. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2017, 110, 819–832. [Google Scholar] [CrossRef]
- Jurado, M.; Vázquez, C.; Patiño, B.; Teresa González-Jaén, M. PCR detection assays for the trichothecene-producing species Fusarium graminearum, Fusarium culmorum, Fusarium poae, Fusarium equiseti and Fusarium sporotrichioides. Syst. Appl. Microbiol. 2005, 28, 562–568. [Google Scholar] [CrossRef]
- Jurado, M.; Vázquez, C.; Marín, S.; Sanchis, V.; Teresa González-Jaén, M. PCR-based strategy to detect contamination with mycotoxigenic Fusarium species in maize. Syst. Appl. Microbiol. 2006, 29, 681–689. [Google Scholar] [CrossRef] [PubMed]
- Dawidziuk, A.; Koczyk, G.; Popiel, D.; Kaczmarek, J.; Buśko, M. Molecular diagnostics on the toxigenic potential of Fusarium spp. plant pathogen. J. Appl. Microbiol. 2014, 116, 1607–1620. [Google Scholar] [CrossRef]
- ISO 24333:2009; Cereals and Cereal Products—Sampling. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2009. Available online: https://bds-bg.org/bg/project/show/bds:proj:72848 (accessed on 9 June 2022).
- Bulgarian Institute for Standardization. Combined Feed, Protein Concentrates and Raw Materials for Them. Sampling Rules and Test Methods. 1986. Available online: https://bds-bg.org/en/project/show/bds:proj:26905 (accessed on 4 August 2022).
- Burgess, L.W.; Summerell, B.A. Mycogeography of Fusarium: Survey of Fusarium species in subtropical and semi-arid grassland soils from Queensland, Australia. Mycol. Res. 1992, 96, 780–784. [Google Scholar] [CrossRef]
- Gerlach, W.; Nirenberg, H. The Genus Fusarium, a Pictorial Atlas; Taylor & Francis, Ltd.: Berlin, Germany, 1983. [Google Scholar] [CrossRef]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual; Blackwell Publishing: Ames, IA, USA, 2006; ISBN 9780813819198. [Google Scholar]
- Pitt, J.I.; Hocking, A.D. Hocking Fungi and Food Spoilage, 3rd ed.; Springer: New York, NY, USA, 2009; p. 520. [Google Scholar] [CrossRef]
- White, T.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR ProtocolsA Guide to Methods and Applications; Innis, M., Gelfand, D., Sninsky, J., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 1990; pp. 315–322. [Google Scholar] [CrossRef]
- O’Donnell, K.; Cigelnik, E.; Nirenberg, H.I. Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 1998, 90, 465–493. [Google Scholar] [CrossRef]
- Tooley, P.; Goley, E.; Carras, M.; Frederick, R.; Weber, E.; Kuldau, G. Characterization of Claviceps species pathogenic on sorghum by sequence analysis of the β-tubulin gene intron 3 region and EF-1α gene intron 4. Mycologia 2019, 93, 541–551. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Gálvez, L.; Palmero, D. Fusarium dry rot of garlic bulbs caused by Fusarium proliferatum: A review. Horticulturae 2022, 8, 628. [Google Scholar] [CrossRef]
- Chandra, N.S.; Wulff, E.G.; Udayashankar, A.C.; Nandini, B.P.; Niranjana, S.R.; Mortensen, C.N.; Prakash, H.S. Prospects of molecular markers in Fusarium species diversity. Appl. Microbiol. Biotechnol. 2011, 90, 1625–1639. [Google Scholar] [CrossRef]
- Tamura, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol. Biol. Evol. 1992, 9, 678–687. [Google Scholar] [CrossRef]
- Qin, P.W.; Xu, J.; Jiang, Y.; Hu, L.; Van Der Lee, T.; Waalwijk, C.; Zhang, W.M.; Xu, X.D. Survey for toxigenic Fusarium species on maize kernels in China. WMJ 2020, 13, 213–224. [Google Scholar] [CrossRef]
- Wang, B.B.; Guo, C.; Sun, S.L.; Zhu, Z.D.; Duan, C.X. First report of maize ear rot caused by Fusarium sporotrichioides in China. Plant Dis. 2020, 104, 567. [Google Scholar] [CrossRef]
- Ma, Z.; Wang, J.; Wen, S.; Ren, J.; Hui, H.; Huang, Y.; Yang, J.; Zhao, B.; Liu, B.; Gao, Z. Evaluation of maize hybrids for resistance to ear rot caused by dominant Fusarium species in Northeast China. Agronomy 2024, 14, 855. [Google Scholar] [CrossRef]
- Molto, G.A.; Gonzalez, H.H.L.; Resnik, S.L.; Gonzalez, A.P. Production of trichothecenes and zearalenone by isolates of Fusarium spp. from Argentinian maize. Food Addit. Contam. 1997, 14, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Alexander, N.J.; Proctor, R.H.; McCormick, S.P. Genes, Gene Clusters, and Biosynthesis of Trichothecenes and Fumonisins in Fusarium. Toxin Rev. 2009, 28, 198–215. [Google Scholar] [CrossRef]
- Bidartondo, M.I. Preserving accuracy in GenBank. Science 2008, 319, 1616. [Google Scholar] [CrossRef]
- Beev, G.; Denev, S.; Bakalova, D. Zearalenone-producing activity of Fusarium graminearum and Fusarium oxysporum isolated from Bulgarian wheat. Bulg. J. Agric. Sci. 2013, 19, 255–259. [Google Scholar]
- Jiménez, M.; Máñez, M.; Hernández, E. Influence of water activity and temperature on the production of zearalenone in corn by three Fusarium species. Int. J. Food Microbiol. 1996, 29, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Proctor, R.H.; Brown, D.W.; Plattner, R.D.; Desjardins, A.E. Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal. Genet. Biol. 2003, 38, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Waalwijk, C.; van der Lee, T.; de Vries, I.; Hesselink, T.; Arts, J.; Kema, G.H. Synteny in toxigenic Fusarium species: The fumonisin gene cluster and the mating type region as examples. In Molecular Diversity and PCR-Detection of Toxigenic Fusarium Species and Ochratoxigenic Fungi: Under the Aegis of COST Action 835 ‘Agriculturally Important Toxigenic Fungi 1998–2003’, EU Project (QLK1-CT-1998-01380) and the ISPP ‘Fusarium Committee’; Springer Nature: Berlin/Heidelberg, Germany, 2004; pp. 533–544. [Google Scholar] [CrossRef]
- Glenn, A.E.; Zitomer, N.C.; Zimeri, A.M.; Williams, L.D.; Riley, R.T.; Proctor, R.H. Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin HGT of Fungal Gene Clusters Conferring Xenobiotic Metabolism. Mol. Plant. Microbe Interact. 2008, 21, 87–97. [Google Scholar] [PubMed]
- Bryła, M.; Pierzgalski, A.; Zapaśnik, A.; Uwineza, P.A.; Ksieniewicz-Woźniak, E.; Modrzewska, M.; Waśkiewicz, A. Recent research on Fusarium mycotoxins in maize—A review. Foods 2022, 11, 3465. [Google Scholar] [CrossRef]
- Dinolfo, M.I.; Martínez, M.; Castañares, E.; Arata, A.F. Fusarium in maize during harvest and storage: A review of species involved, mycotoxins, and management strategies to reduce contamination. Eur. J. Plant Pathol. 2022, 164, 151–166. [Google Scholar] [CrossRef]
- Ji, F.; He, D.; Olaniran, A.O.; Mokoena, M.P.; Xu, J.; Shi, J. Occurrence, toxicity, production and detection of Fusarium mycotoxin: A review. Food Prod. Process. Nutr. 2019, 1, 6. [Google Scholar] [CrossRef]
Locus | Primer Sequence (5′-3′) | PCR Products Size (bp) | Primers Annealing T (°C) | Reference |
---|---|---|---|---|
Internal transcribed spacer 1 region (ITS1) | NS1: 5′-TCCGTAGGTGAACCTGCG G-3′ NS2: 5′-TCCTCCGCTTATTGATATGC-3′ | 544 | 52.5 | White et al. [24] |
Translational elongation factor 1α (TEF-1α) | EF1: 5′-ATGGGTAAGGAAGACAAGAC-3′ EF2: 5′-GGAAGTACCAGTGATCATGTT-3′ | 700 | 54.0 | O’Donnell et al. [25] |
β-tubulin (TUB) | BTAFR: 5′-CGTCTAGAGGTACCCATACCGGCA-3′ BT5: 5′-GCTCTAGACTGCTTTCTGGCAGACC-3′ | 600 | 51.1 | Tooley et al. [26] |
Intergenic spacer region (IGS) | CNL12: 5′-CGCACGTATAGATGGACAAG-3′ CNS1: 5′-GGCGAAGGACGGCTTAC-3′ | 200 | 56.6 | Jurado et al. [15,16] |
Target Gene | Primer Name | Sequences (5′-3′) | Product Length (bp) | Annealing T (°C) |
---|---|---|---|---|
Trichodiene synthase (tri5) | T5_am_fA1 | CTY MRR ACM ATY GTN GGC ATG | 468 | 54.0 |
T5_am_rA1 | AVA CCA TCC AGT TYT CCA TYT G | |||
Zinc finger transcription factor (tri6) | TRI6_dm_fA2 | TAT GAA TCA CCA ACW TTC GA | 526 | 54.0 |
TRI6_dm_rA1 | CGC CTR TAR TGA TCY CKC AT | |||
Zearalenone polyketide synthase (zea2) | ZEA2_dm_fA1 | ACM TCA CCA TCM AAR TTC TG | 340 | 51.9 |
ZEA2_dm_rA1 | GCR TCY CKG TAR TCR CTC AT | |||
Oxygenase (fum6) | FUM6_dm_fA2 | CRA CMG AGA TCA TGG TGA C | 672 | 51.4 |
FUM6_dm_rA1 | GTY TCR TGT CCK GCA ATG AG | |||
Oxoamine synthase (fum8) | F8_am_fA1 | GGY TCK TTT GAG TGG TGG C | 800 | 51.4 |
F8_am_rA1 | CRA CWG GAA ARC AKA YRA YGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoeva, D.; Gencheva, D.; Radoslavov, G.; Hristov, P.; Yordanova, R.; Beev, G. Novel DNA Barcoding and Multiplex PCR Strategy for the Molecular Identification and Mycotoxin Gene Detection of Fusarium spp. in Maize from Bulgaria. Methods Protoc. 2025, 8, 78. https://doi.org/10.3390/mps8040078
Stoeva D, Gencheva D, Radoslavov G, Hristov P, Yordanova R, Beev G. Novel DNA Barcoding and Multiplex PCR Strategy for the Molecular Identification and Mycotoxin Gene Detection of Fusarium spp. in Maize from Bulgaria. Methods and Protocols. 2025; 8(4):78. https://doi.org/10.3390/mps8040078
Chicago/Turabian StyleStoeva, Daniela, Deyana Gencheva, Georgi Radoslavov, Peter Hristov, Rozalina Yordanova, and Georgi Beev. 2025. "Novel DNA Barcoding and Multiplex PCR Strategy for the Molecular Identification and Mycotoxin Gene Detection of Fusarium spp. in Maize from Bulgaria" Methods and Protocols 8, no. 4: 78. https://doi.org/10.3390/mps8040078
APA StyleStoeva, D., Gencheva, D., Radoslavov, G., Hristov, P., Yordanova, R., & Beev, G. (2025). Novel DNA Barcoding and Multiplex PCR Strategy for the Molecular Identification and Mycotoxin Gene Detection of Fusarium spp. in Maize from Bulgaria. Methods and Protocols, 8(4), 78. https://doi.org/10.3390/mps8040078