Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = halophilic degraders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1769 KiB  
Article
Isolation and Characterization of a Crude Oil-Tolerant Obligate Halophilic Bacterium from the Great Salt Lake of the United States of America
by Jonathan Oakes, Johurimam Noah Kuddus, Easton Downs, Clark Oakey, Kristina Davis, Laith Mohammad, Kiara Whitely, Carl E. Hjelmen and Ruhul Kuddus
Microorganisms 2025, 13(7), 1568; https://doi.org/10.3390/microorganisms13071568 - 3 Jul 2025
Viewed by 409
Abstract
Most large-scale crude oil spills occur in marine environments. We screened easily propagable/maintainable halophiles to develop agents for the bioremediation of marine spills. A bacterial strain isolated from a polluted region of the Great Salt Lake was characterized and tested for its ability [...] Read more.
Most large-scale crude oil spills occur in marine environments. We screened easily propagable/maintainable halophiles to develop agents for the bioremediation of marine spills. A bacterial strain isolated from a polluted region of the Great Salt Lake was characterized and tested for its ability to degrade crude oil. The strain (Salinivibrio costicola) is motile, catalase- and lipase-positive, a facultative anaerobe, and an obligate halophile. Its growth optimum and tolerance ranges are: NaCl (5%, 1.25–10%), pH (8, 6–10), and temperature (22 °C, 4–45 °C). Its genome (3,166,267 bp) consists of two circular chromosomes and a plasmid, containing 3197 genes, including some genes potentially relevant to hydrocarbon metabolism. The strain forms a biofilm but is considered nonpathogenic and is sensitive to some common antibiotics. Lytic bacteriophages infecting the strain are rare in the water samples we tested. The strain survived on desiccated agar media at room temperature for a year, grew optimally in complex media containing 0.1–1% crude oil, but failed to reduce total recoverable petroleum hydrocarbons from crude oil. Thus, a recalcitrant halophile may endure crude oil without mineralizing. Due to some of their advantageous attributes, such strains can be considered for genetic manipulation to develop improved agents for bioremediation. Full article
(This article belongs to the Special Issue Marine Microbes, Biocontamination and Bioremediation)
Show Figures

Figure 1

19 pages, 4323 KiB  
Article
A Halophilic Bacterium for Bioremediation of Saline–Alkali Land: The Triadic and Synergetic Response Mechanism of Oceanobacillus picturae DY09 to Salt Stress
by Tianying Nie, Liuqing Wang, Yilan Liu, Siqi Fu, Jiahui Wang, Kunpeng Cui and Lu Wang
Microorganisms 2025, 13(7), 1474; https://doi.org/10.3390/microorganisms13071474 - 25 Jun 2025
Cited by 1 | Viewed by 502
Abstract
The strain of Oceanobacillus picturae DY09, as a typical halophilic microorganism, possesses distinctive salt adaptation mechanisms that hold significant application value in the fields of agriculture, industry, and biomedicine. To deeply analyze the salt-tolerance molecular mechanism of this strain, this research disclosed its [...] Read more.
The strain of Oceanobacillus picturae DY09, as a typical halophilic microorganism, possesses distinctive salt adaptation mechanisms that hold significant application value in the fields of agriculture, industry, and biomedicine. To deeply analyze the salt-tolerance molecular mechanism of this strain, this research disclosed its salt-tolerance strategies under diverse salt concentrations through transcriptomics. In a low-salt environment, the DY09 strain adopted a “metabolic simplification” strategy, significantly reducing the metabolic load by promoting lysine degradation and inhibiting the biosynthesis of branched-chain amino acids and glycine betaine (GB) but upregulating the expression of the GB transporter gene betH and preferentially utilizing exogenous GB to maintain basic osmotic balance. When exposed to high-salt stress, this strain activated multiple regulatory mechanisms: it upregulated the expression of Na+/K+ antiporter proteins to maintain ionic homeostasis; the synthesis genes of amino acids such as arginine and proline were significantly upregulated, and the GB synthesis genes betA/B and the transporter gene betH were upregulated concurrently, which realized the synergistic operation of endogenous synthesis and exogenous uptake of osmoprotective substances. The expression level of the antioxidant enzyme systems is upregulated to scavenge reactive oxygen species. Simultaneously, the molecular chaperones groES/groEL and GB cooperate to maintain the functional stability of the protein. In this study, a trinity salt-tolerance-integrated strategy of “dynamic perception–hierarchical response–system synergy” of halophilic bacteria was initially proposed, which provided a research idea for exploring the salt–alkali-tolerant mechanism of halophilic bacteria and a theoretical basis for the further development and application of this strain. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

15 pages, 4062 KiB  
Article
New Halophilic Community Degrades Plastics: A Metagenomic Study
by Nikolay Krumov, Nikolina Atanasova, Ivanka Boyadzhieva, Tsvetelina Paunova-Krasteva, Kaloyan Berberov, Kaloyan Petrov and Penka Petrova
Fermentation 2025, 11(4), 227; https://doi.org/10.3390/fermentation11040227 - 18 Apr 2025
Viewed by 776
Abstract
Biodegradation is an advanced method for reducing plastic waste in the environment, involving the participation of microbial communities with plastic-degrading properties. Our study presents a novel halophilic community isolated from the plastic-contaminated region in Burgas Lake, Bulgaria. In a medium containing 15% sodium [...] Read more.
Biodegradation is an advanced method for reducing plastic waste in the environment, involving the participation of microbial communities with plastic-degrading properties. Our study presents a novel halophilic community isolated from the plastic-contaminated region in Burgas Lake, Bulgaria. In a medium containing 15% sodium chloride, the community can degrade a significant amount of polycaprolactone (PCL) as a sole carbon source, as well as the plastics polystyrene (PS) and polypropylene (PP), albeit to a lesser extent. The community showed high hydrophobicity and the ability to form a biofilm on PCL beads, as well as high esterase activity and significant biodegradation capacity, as demonstrated by measuring the weight of the PCL material after cultivation for 4 and 8 weeks. Moreover, a scanning electron microscopy (SEM) analysis revealed visible cracks, craters, and holes in the surface of the polymer particles. The metagenomic study revealed that Halomonas profundus dominated the community with a proportion of 95.13%, followed by Alloalcanivorax venustensis (2.73%), Chromohalobacter marismortui (0.72%), and Halomonas caseinilytica (0.78%). However, most of the species in the community were not previously known as PCL-degrading. Thus, studying the diversity of the halophile community can significantly improve our fundamental understanding and clarify their potential applications for environmental and water–plastic remediation. Full article
(This article belongs to the Special Issue Microbial and Enzymatic Degradation of Plastics)
Show Figures

Figure 1

15 pages, 4338 KiB  
Article
Multi-Functional Alginate Lyase AlgVR7 from Vibrio rumoiensis: Structural Insights and Catalytic Mechanisms
by Zhe Huang, Shuai Liang, Wulong Jiang, Li Wang, Yuan Wang, Hua Wang, Lianshun Wang, Yuting Cong, Yanan Lu and Guojun Yang
Mar. Drugs 2025, 23(3), 124; https://doi.org/10.3390/md23030124 - 13 Mar 2025
Cited by 2 | Viewed by 975
Abstract
In this study, we identified AlgVR7, a novel bifunctional alginate lyase from Vibrio rumoiensis and characterized its biochemical properties and substrate specificity. Sequence alignment analysis inferred the key residues K267, H162, N86, E189, and T244 for AlgVR7 catalysis, and it is derived [...] Read more.
In this study, we identified AlgVR7, a novel bifunctional alginate lyase from Vibrio rumoiensis and characterized its biochemical properties and substrate specificity. Sequence alignment analysis inferred the key residues K267, H162, N86, E189, and T244 for AlgVR7 catalysis, and it is derived from the PL7 family; exhibited high activity towards sodium alginate, polyM (PM), and polyG (PG); and can also degrade polygalacturonic acid (PGA) efficiently, with the highest affinity and catalytic efficiency for the MG block of the substrate. The optimal temperature and pH for AlgVR7 were determined to be 40 °C and pH 8, respectively. The enzyme activity of AlgVR7 was maximum at 40 °C, 40% of the enzyme activity was retained after incubation at 60 °C for 60 min, and enzyme activity was still present after 60 min incubation. AlgVR7 activity was stimulated by 100 Mm NaCl, indicating a halophilic nature and suitability for marine environments. Degradation products analyzed using ESI-MS revealed that the enzyme primarily produced trisaccharides and tetrasaccharides. At 40 °C and pH 8.0, its Km values for sodium alginate, PM, and PG were 16.67 μmol, 13.12 μmol, and 22.86 μmol, respectively. Structural analysis and molecular docking studies unveiled the key catalytic residues involved in substrate recognition and interaction. Glu167 was identified as a critical residue for the PL7_5 subfamily, uniquely playing an essential role in alginate decomposition. Overall, AlgVR7 exhibits great potential as a powerful bifunctional enzyme for the efficient preparation of alginate oligosaccharides, with promising applications in biotechnology and industrial fields. Full article
(This article belongs to the Special Issue Advances of Marine-Derived Enzymes)
Show Figures

Figure 1

22 pages, 3116 KiB  
Article
Biodegradation of S-Triazine Herbicides Under Saline Conditions by Paenarthrobacter ureafaciens PC, a New Halotolerant Bacterial Isolate: Insights into Both the Degradative Pathway and Mechanisms of Tolerance to High Salt Concentrations
by Chunqing Fu, Yifan Jiang, Bingwen Xu, Xinmei Fu, Liang Tan and Mei Jin
Microorganisms 2025, 13(3), 649; https://doi.org/10.3390/microorganisms13030649 - 12 Mar 2025
Viewed by 836
Abstract
In this study, a halotolerant bacterial strain was isolated and identified. This bacterium was confirmed to efficiently degrade s-triazine herbicides under saline conditions. The optimal conditions for the metabolism and growth of this strain were determined through single-factor tests. Furthermore, the biodegradation pathways [...] Read more.
In this study, a halotolerant bacterial strain was isolated and identified. This bacterium was confirmed to efficiently degrade s-triazine herbicides under saline conditions. The optimal conditions for the metabolism and growth of this strain were determined through single-factor tests. Furthermore, the biodegradation pathways of prometryne (the target compound) by this strain were proposed based on the detection of possible degradation intermediates and genome sequencing analysis. Additionally, a possible halotolerance mechanisms of this strain were also revealed through screening halotolerance-related genes in its genome. The results demonstrated that a halotolerant bacterial strain (designated PC), which completely degraded 20.00 mg/L prometryne within 12 h under saline conditions (30.0 g/L NaCl), was isolated and identified as Paenarthrobacter ureafaciens. The optimal conditions for the metabolism and growth of the strain PC were identified as follows: yeast extract as the additional carbon source with the concentration of ≥0.1 g/L, NaCl concentration of ≤30.0 g/L, initial pH of 7.0, temperature of 35.0 °C, and shaking speed of ≥160 rpm. Furthermore, the strain PC demonstrated efficient removal of other s-triazine herbicides, including atrazine, ametryne, simetryne, and cyanazine. The strain PC might degrade prometryne through a series of steps, including demethylthiolation, deisopropylamination, deamination, dealkalation, decarboxylation, etc., relying on the relevant functional genes involved in the degradation of s-triazine compounds. Furthermore, the strain PC might tolerate high salinity through the excessive uptake of K+ into cells, intracellular accumulation of compatible solutes, and production of halophilic enzymes. This study is expected to provide a potentially effective halotolerant bacterium for purifying s-triazine pollutants in saline environments. Full article
(This article belongs to the Collection Biodegradation and Environmental Microbiomes)
Show Figures

Figure 1

20 pages, 2139 KiB  
Article
Beneficial Microorganisms: Sulfur-Oxidizing Bacteria Modulate Salt and Drought Stress Responses in the Halophyte Plantago coronopus L.
by Aleksandra Koźmińska, Mohamad Al Hassan, Wiktor Halecki, Cezary Kruszyna and Ewa Hanus-Fajerska
Sustainability 2024, 16(24), 10866; https://doi.org/10.3390/su162410866 - 11 Dec 2024
Cited by 3 | Viewed by 1455
Abstract
Land degradation due to salinity and prolonged drought poses significant global challenges by reducing crop yields, depleting resources, and disrupting ecosystems. Halophytes, equipped with adaptive traits for drought and soil salinity, and their associations with halotolerant microbes, offer promising solutions for restoring degraded [...] Read more.
Land degradation due to salinity and prolonged drought poses significant global challenges by reducing crop yields, depleting resources, and disrupting ecosystems. Halophytes, equipped with adaptive traits for drought and soil salinity, and their associations with halotolerant microbes, offer promising solutions for restoring degraded areas sustainably. This study evaluated the effects of halophilic sulfur-oxidizing bacteria (SOB), specifically Halothiobacillus halophilus, on the physiological and biochemical responses of the halophyte Plantago coronopus L. under drought and salt stress. We analyzed the accumulation of ions (Na, Cl, K) and sulfur (S), along with growth parameters, glutathione levels, photosynthetic pigments, proline, and phenolic compounds. Drought significantly reduced water content (nearly 10-fold in plants without SOB and 4-fold in those with SOB). The leaf growth tolerance index improved by 70% in control plants and 30% in moderately salt-stressed plants (300 mM NaCl) after SOB application. SOB increased sulfur content in all treatments except at high salinity (600 mM NaCl), reduced toxic sodium and chloride ion accumulation, and enhanced potassium levels under drought and moderate salinity. Proline, total phenolic, and malondialdehyde (MDA) levels were highest in drought-stressed plants, regardless of SOB inoculation. SOB inoculation increased GSH levels in both control and 300 mM NaCl-treated plants, while GSSG levels remained constant. These findings highlight the potential of SOB as beneficial microorganisms to enhance sulfur availability and improve P. coronopus tolerance to moderate salt stress. Full article
Show Figures

Figure 1

23 pages, 2936 KiB  
Article
Degradation Potential of Xerophilic and Xerotolerant Fungi Contaminating Historic Canvas Paintings
by Amela Kujović, Cene Gostinčar, Katja Kavkler, Natalija Govedić, Nina Gunde-Cimerman and Polona Zalar
J. Fungi 2024, 10(1), 76; https://doi.org/10.3390/jof10010076 - 18 Jan 2024
Cited by 11 | Viewed by 3171
Abstract
Fungi are important contaminants of historic canvas paintings worldwide. They can grow on both sides of the canvas and decompose various components of the paintings. They excrete pigments and acids that change the visual appearance of the paintings and weaken their structure, leading [...] Read more.
Fungi are important contaminants of historic canvas paintings worldwide. They can grow on both sides of the canvas and decompose various components of the paintings. They excrete pigments and acids that change the visual appearance of the paintings and weaken their structure, leading to flaking and cracking. With the aim of recognizing the most dangerous fungal species to the integrity and stability of paintings, we studied 55 recently isolated and identified strains from historic paintings or depositories, including 46 species from 16 genera. The fungi were categorized as xero/halotolerant or xero/halophilic based on their preference for solutes (glycerol or NaCl) that lower the water activity (aw) of the medium. Accordingly, the aw value of all further test media had to be adjusted to allow the growth of xero/halophilic species. The isolates were tested for growth at 15, 24 °C and 37 °C. The biodeterioration potential of the fungi was evaluated by screening their acidification properties, their ability to excrete pigments and their enzymatic activities, which were selected based on the available nutrients in paintings on canvas. A DNase test was performed to determine whether the selected fungi could utilize DNA of dead microbial cells that may be covering surfaces of the painting. The sequestration of Fe, which is made available through the production of siderophores, was also tested. The ability to degrade aromatic and aliphatic substrates was investigated to consider the potential degradation of synthetic restoration materials. Xerotolerant and moderately xerophilic species showed a broader spectrum of enzymatic activities than obligate xerophilic species: urease, β-glucosidase, and esterase predominated, while obligate xerophiles mostly exhibited β-glucosidase, DNase, and urease activity. Xerotolerant and moderately xerophilic species with the highest degradation potential belong to the genus Penicillium, while Aspergillus penicillioides and A. salinicola represent obligately xerophilic species with the most diverse degradation potential in low aw environments. Full article
(This article belongs to the Special Issue Fungal Biodeterioration)
Show Figures

Figure 1

13 pages, 1325 KiB  
Article
Effects of Bacterioruberin-Rich Haloarchaeal Carotenoid Extract on the Thermal and Oxidative Stabilities of Fish Oil
by Fevziye Işıl Kesbiç, Hilal Metin, Francesco Fazio, Vincenzo Parrino and Osman Sabri Kesbiç
Molecules 2023, 28(24), 8023; https://doi.org/10.3390/molecules28248023 - 9 Dec 2023
Cited by 10 | Viewed by 1820
Abstract
This study aimed to assess the efficacy of a bacterioruberin-rich carotenoid extract (HAE) derived from the halophilic archaea Halorubrum ezzemoulense DSM 19316 in protecting crude fish oil against thermal oxidation. The research used fish oil derived from anchovies, which had a peroxide value [...] Read more.
This study aimed to assess the efficacy of a bacterioruberin-rich carotenoid extract (HAE) derived from the halophilic archaea Halorubrum ezzemoulense DSM 19316 in protecting crude fish oil against thermal oxidation. The research used fish oil derived from anchovies, which had a peroxide value (PV) of 6.44 ± 0.81 meq O2 kg−1. To assess the impact of HAE on the thermal stability and post-oxidation characteristics of fish oil, several concentrations of HAE were added to the fish oil samples: 0 ppm (no additive) (HAE0), 50 ppm (HAE50), 100 ppm (HAE100), 500 ppm (HAE500), and 1000 ppm (HAE1000). Furthermore, a control group was established with the addition of 100 ppm butylated hydroxytoluene (BHT100) in order to evaluate the effectiveness of HAE with a synthetic antioxidant that is commercially available. Prior to the fast oxidation experiment, thermogravimetric analysis was conducted on samples from all experimental groups. At the conclusion of the examination, it was seen that the HAE500 and HAE1000 groups exhibited a delay in the degradation temperature. The experimental groups underwent oxidation at a temperature of 55.0 ± 0.5 °C for a duration of 96 h. The measurement of PV was conducted every 24 h during this time. PV in all experimental groups exhibited a time-dependent rise (p < 0.05). However, the HAE500 group had the lowest PV measurement at the conclusion of the 96 h period (p < 0.05). Significant disparities were detected in the fatty acid compositions of the experimental groups at the completion of the oxidation experiment. The HAE500 group exhibited the highest levels of EPA, DHA, and ΣPUFA at the end of oxidation, with statistical significance (p < 0.05). Through the examination of volatile component analysis, specifically an oxidation marker, it was shown that the HAE500 group exhibited the lowest level of volatile components (p < 0.05). Consequently, it was concluded that the addition of HAE to fish oil provided superior protection compared to BHT at an equivalent rate. Moreover, the group that used 500 ppm HAE demonstrated the highest level of performance in the investigation. Full article
Show Figures

Figure 1

17 pages, 3835 KiB  
Article
Halanaerobium polyolivorans sp. nov.—A Novel Halophilic Alkalitolerant Bacterium Capable of Polyol Degradation: Physiological Properties and Genomic Insights
by Yulia Boltyanskaya, Tatjana Zhilina, Denis Grouzdev, Ekaterina Detkova, Nikolay Pimenov and Vadim Kevbrin
Microorganisms 2023, 11(9), 2325; https://doi.org/10.3390/microorganisms11092325 - 15 Sep 2023
Cited by 3 | Viewed by 1657
Abstract
A search for the microorganisms responsible for the anaerobic degradation of osmoprotectants in soda lakes resulted in the isolation of a novel halophilic and alkalitolerant strain, designated Z-7514T. The cells were Gram-stain-negative and non-endospore-forming rods. Optimal growth occurs at 1.6–2.1 M [...] Read more.
A search for the microorganisms responsible for the anaerobic degradation of osmoprotectants in soda lakes resulted in the isolation of a novel halophilic and alkalitolerant strain, designated Z-7514T. The cells were Gram-stain-negative and non-endospore-forming rods. Optimal growth occurs at 1.6–2.1 M Na+, pH 8.0–8.5, and 31–35 °C. The strain utilized mainly sugars, low molecular polyols, and ethanolamine as well. The G+C content of the genomic DNA of strain Z-7514T was 33.3 mol%. Phylogenetic and phylogenomic analyses revealed that strain Z-7514T belongs to the genus Halanaerobium. On the basis of phenotypic properties and the dDDH and ANI values with close validly published species, it was proposed to evolve strain Z-7514T within the genus Halanaerobium into novel species, for which the name Halanaerobium polyolivorans sp. nov. was proposed. The type strain was Z-7514T (=KCTC 25405T = VKM B-3577T). For species of the genus Halanaerobium, the utilization of ethylene glycol, propylene glycol, and ethanolamine were shown for the first time. The anaerobic degradation of glycols and ethanolamine by strain Z-7514T may represent a novel metabiotic pathway within the alkaliphilic microbial community. Based on a detailed genomic analysis, the main pathways of catabolism of most of the used substrates have been identified. Full article
Show Figures

Figure 1

23 pages, 4106 KiB  
Article
Deep Isolated Aquifer Brines Harbor Atypical Halophilic Microbial Communities in Quebec, Canada
by Jean-Christophe Gagnon, Samuel Beauregard-Tousignant, Jean-Sébastien Marcil and Cassandre Sara Lazar
Genes 2023, 14(8), 1529; https://doi.org/10.3390/genes14081529 - 26 Jul 2023
Cited by 3 | Viewed by 2668
Abstract
The deep terrestrial subsurface, hundreds of meters to kilometers below the surface, is characterized by oligotrophic conditions, dark and often anoxic settings, with fluctuating pH, salinity, and water availability. Despite this, microbial populations are detected and active, contributing to biogeochemical cycles over geological [...] Read more.
The deep terrestrial subsurface, hundreds of meters to kilometers below the surface, is characterized by oligotrophic conditions, dark and often anoxic settings, with fluctuating pH, salinity, and water availability. Despite this, microbial populations are detected and active, contributing to biogeochemical cycles over geological time. Because it is extremely difficult to access the deep biosphere, little is known about the identity and metabolisms of these communities, although they likely possess unknown pathways and might interfere with deep waste deposits. Therefore, we analyzed rock and groundwater microbial communities from deep, isolated brine aquifers in two regions dating back to the Ordovician and Devonian, using amplicon and whole genome sequencing. We observed significant differences in diversity and community structure between both regions, suggesting an impact of site age and composition. The deep hypersaline groundwater did not contain typical halophilic bacteria, and genomes suggested pathways involved in protein and hydrocarbon degradation, and carbon fixation. We identified mainly one strategy to cope with osmotic stress: compatible solute uptake and biosynthesis. Finally, we detected many bacteriophage families, potentially indicating that bacteria are infected. However, we also found auxiliary metabolic genes in the viral genomes, probably conferring an advantage to the infected hosts. Full article
(This article belongs to the Special Issue Genetics and Genomics of Halophilic Microorganisms)
Show Figures

Figure 1

17 pages, 3214 KiB  
Article
Saline Sediments as a Suitable Source for Halophilic Inoculums to Degrade Azo Dyes in Synthetic and Real Textile Wastewaters by Microbial Electrochemical Systems
by Sirine Saadaoui, Benjamin Erable, Nesrine Saidi, Luc Etcheverry, Mohamed Neifar, Ahmed Salaheddine Masmoudi, Rim Driouech, Ameur Cherif and Habib Chouchane
Appl. Sci. 2023, 13(9), 5581; https://doi.org/10.3390/app13095581 - 30 Apr 2023
Cited by 3 | Viewed by 2149
Abstract
The treatment of textile wastewater (TWW) loaded with recalcitrant azo dyes in bioelectrochemical systems (BES) rather than in physicochemical processes is a low-cost and environmentally friendly process. The main objective of this study is to investigate the potential of different saline sediments collected [...] Read more.
The treatment of textile wastewater (TWW) loaded with recalcitrant azo dyes in bioelectrochemical systems (BES) rather than in physicochemical processes is a low-cost and environmentally friendly process. The main objective of this study is to investigate the potential of different saline sediments collected from extreme Tunisian environments for the formation of bioanodes capable ofsimultaneous azo dyes degradation and electric current generation in synthetic (STWW) and real textile wastewaters (RTWW) characterized by a varied composition of azo dyes and a high salinity. The obtained bioanodes and anolytes were studied comparatively by electrochemical, microscopic, analytical, and molecular tools.Based on the UV–visible spectra analysis, the breakdown of the azo bond was confirmed. With RTWW, the BES achieved a chemical oxygen demand (COD) abatement rate of 85%with a current density of 2.5 A/m2. Microbial community analysis indicated that a diverse community of bacteria was active for effluent treatment coupled with energy production. At the phylum level, the electrodes were primarily colonized by proteobacteria and firmicutes, which are the two phyla most involved in bioremediation. The analysis of the microbial community also showed the abundance of Marinobacter hydrocarbonoclasticus and Marinobacter sp. species characterized by their high metabolic capacity, tolerance to extremophilic conditions, and role in hydrocarbon degradation. Full article
(This article belongs to the Special Issue Extremophiles and Their Peptides, Proteins and Enzymes)
Show Figures

Figure 1

18 pages, 2707 KiB  
Article
Impact of Bioaugmentation on the Bioremediation of Saline-Produced Waters Supplemented with Anaerobic Digestate
by Aurélien Parsy, Cecilia Sambusiti, Claire Gassie, Patrick Baldoni-Andrey, Frédéric Périé and Rémy Guyoneaud
Sustainability 2023, 15(3), 2166; https://doi.org/10.3390/su15032166 - 24 Jan 2023
Cited by 6 | Viewed by 2800
Abstract
Bioremediation of produced waters has been widely investigated in the last decades. More recently, microalgae-based treatments have been developed to produce biomass. The objective of this study was to determine, at lab scale, the remediation efficiency of three origin of microorganisms: a consortium [...] Read more.
Bioremediation of produced waters has been widely investigated in the last decades. More recently, microalgae-based treatments have been developed to produce biomass. The objective of this study was to determine, at lab scale, the remediation efficiency of three origin of microorganisms: a consortium of three halotolerant and halophilic microalgae and their associated bacteria, bacteria from liquid digestate, and aromatic-degrading bacteria selected to perform bioaugmentation. The medium was composed of artificial oil-produced water and seawater, and contained nutrients from liquid digestate. In order to identify what plays a role in nitrogen, chemical oxygen demand, and aromatics compounds elimination, and to determine the effectiveness of bioaugmentation to treat this mix of waters, 16S rRNA analyses were performed. Combination of microorganisms from different origins with the selected aromatic-degrading bacteria were also realized, to determine the effectiveness of bioaugmentation to treat these waters. Each population of microorganisms achieved similar percentage of removal during the biological treatment, with 43–76%, 59–77%, and 86–93% of elimination for ammonium, chemical oxygen demand, and aromatic compounds (with 50% of volatilization), respectively, after 7 days, and up to with 100%, 77%, and 99% after 23 days, demonstrating that in the case of this produced water, bioaugmentation with the specialized aromatic-degrading bacteria had no significant impact on the treatment. Regarding in detail the populations present and active during the tests, those from genus Marinobacter always appeared among the most active microorganisms, with some strains of this genus being known to degrade aromatic compounds. Full article
(This article belongs to the Special Issue Microalgae-Based Wastewater Treatment Processes and Biorefineries)
Show Figures

Figure 1

15 pages, 2746 KiB  
Article
Fermentation of Abelmoschus manihot Extract with Halophilic Bacillus licheniformis CP6 Results in Enhanced Anti-Inflammatory Activities
by Mi Hwa Park, Yu Jeong Yeom, Dariimaa Ganbat, Min Kyeong Kim, Seong-Bo Kim, Yong-Jik Lee and Sang-Jae Lee
Nutrients 2023, 15(2), 309; https://doi.org/10.3390/nu15020309 - 7 Jan 2023
Cited by 6 | Viewed by 3402
Abstract
Microbial fermentation provides a valorization strategy, through biotransformation, to convert plant-derived raw materials into health-promoting agents. In this study, we have investigated the antioxidative activity of Abelmoschus manihot fermented with various Bacillaceae strains from specific environments and demonstrated the anti-inflammatory effects of Bacillus [...] Read more.
Microbial fermentation provides a valorization strategy, through biotransformation, to convert plant-derived raw materials into health-promoting agents. In this study, we have investigated the antioxidative activity of Abelmoschus manihot fermented with various Bacillaceae strains from specific environments and demonstrated the anti-inflammatory effects of Bacillus licheniformis CP6 fermented A. manihot extract (FAME) in lipopolysaccharide (LPS)-stimulated Raw264.7 macrophages. Of 1500 bacteria isolated from various specific environments, 47 extracellular protease- and amylase-producing strains with qualified presumption safety status, belonging to the family Bacillaceae, were selected for A. manihot fermentation. Among them, strain CP6, a halophilic bacterium isolated from Tongyeong seawater in Korea and identified as B. licheniformis, showed the highest antioxidant activity. In particular, FAME exerted anti-inflammatory effects on LPS-stimulated Raw264.7 macrophages. Consequently, FAME had a potent inhibitory effect on nitric oxide (NO) production in LPS-stimulated macrophages, without cytotoxicity. Moreover, FAME downregulated LPS-induced pro-inflammatory mediator and enzyme levels in LPS-induced Raw264.7 cells, including IL-1β, IL-6, TNF-α, iNOS, and COX-2, compared to levels when cells were incubated in A. manihot extract (IAME). Further detailed characterization indicated that FAME suppresses inflammation by blocking NF-κB via IKK phosphorylation inhibition and IκB-α degradation and by downregulating NO production, and inflammatory mediators also decreased NF-κB translocation. Furthermore, FAME inhibited LPS-stimulated activation of MAPKs, including ERK1/2, JNK, and p38, compared to that with either IAME. Therefore, we suggest that FAME could be used for inflammation-related disorders. Full article
(This article belongs to the Special Issue Oxidative Stress and Protective Effects of Natural Products in Health)
Show Figures

Graphical abstract

18 pages, 2828 KiB  
Article
Bioprospecting for Novel Bacterial Sources of Hydrolytic Enzymes and Antimicrobials in the Romanian Littoral Zone of the Black Sea
by Robert Ruginescu, Paris Lavin, Lavinia Iancu, Selma Menabit and Cristina Purcarea
Microorganisms 2022, 10(12), 2468; https://doi.org/10.3390/microorganisms10122468 - 14 Dec 2022
Cited by 4 | Viewed by 3101
Abstract
Marine microorganisms have evolved a large variety of metabolites and biochemical processes, providing great opportunities for biotechnologies. In the search for new hydrolytic enzymes and antimicrobial compounds with enhanced characteristics, the current study explored the diversity of cultured and uncultured marine bacteria in [...] Read more.
Marine microorganisms have evolved a large variety of metabolites and biochemical processes, providing great opportunities for biotechnologies. In the search for new hydrolytic enzymes and antimicrobial compounds with enhanced characteristics, the current study explored the diversity of cultured and uncultured marine bacteria in Black Sea water from two locations along the Romanian coastline. Microbial cell density in the investigated samples varied between 65 and 12.7 × 103 CFU·mL−1. The total bacterial community identified by Illumina sequencing of 16S rRNA gene comprised 185 genera belonging to 46 classes, mainly Gammaproteobacteria, Alphaproteobacteria, Flavobacteriia, and 24 phyla. The 66 bacterial strains isolated on seawater-based culture media belonged to 33 genera and showed variable growth temperatures, growth rates, and salt tolerance. A great fraction of these strains, including Pseudoalteromonas and Flavobacterium species, produced extracellular proteases, lipases, and carbohydrases, while two strains belonging to the genera Aquimarina and Streptomyces exhibited antimicrobial activity against human pathogenic bacteria. This study led to a broader view on the diversity of microbial communities in the Black Sea, and provided new marine strains with hydrolytic and antimicrobial capabilities that may be exploited in industrial and pharmaceutical applications. Full article
Show Figures

Figure 1

16 pages, 3545 KiB  
Article
Marine Archaeal Extracellular Polymeric Substances from Halococcus AMS12, Their Characterization, and Biological Properties
by Kamala Kannan, Sivaperumal Pitchiah, Jeevankumar Guduri Joseph, Dhanraj Ganapathy, Subramanian Sundarrajan and Seeram Ramakrishna
J. Mar. Sci. Eng. 2022, 10(11), 1788; https://doi.org/10.3390/jmse10111788 - 21 Nov 2022
Cited by 3 | Viewed by 2902
Abstract
In the present study, halophilic archaea were isolated from a marine sediment sample. Totally, 15 isolates (AMS 1–15) were identified by molecular identification as belonging to the ten genera. Further, their extracellular polymeric substances (EPS) were extracted (3.172 g/L), and their bioactivity was [...] Read more.
In the present study, halophilic archaea were isolated from a marine sediment sample. Totally, 15 isolates (AMS 1–15) were identified by molecular identification as belonging to the ten genera. Further, their extracellular polymeric substances (EPS) were extracted (3.172 g/L), and their bioactivity was determined in terms of biosurfactant, emulsification, enzymatic and non-enzymatic antioxidants, and anticancer activity. The highest amount of EPS has been produced by Halococcus sp., AMS12. It is made up of 54.28% carbohydrates, 32.91% proteins, 2.41% lipids, and other compounds. Further, EPS has 43.69 ± 1.89 U/mg of gelatinase enzyme by degrading the substrate. The potential total antioxidant activity of 103.80 ± 0.02 (ascorbic acid equivalence (AAE)), total reducing power of 86.1 ± 0.25 AAE, 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity of 97.23 ± 0.21%, the hydrogen peroxide scavenging of 60.8 ± 0.21%, and nitric oxide scavenging activity of 89.37 ± 0.24% were observed at 100 μg/mL of EPS. Hence, we conclude that the archeal EPS is multifunctional and useful for developing natural polymers for industrial, food, and pharmaceutical applications. Full article
(This article belongs to the Special Issue Feature Papers in Marine Biology)
Show Figures

Figure 1

Back to TopTop