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Abstract: A search for the microorganisms responsible for the anaerobic degradation of osmoprotec-
tants in soda lakes resulted in the isolation of a novel halophilic and alkalitolerant strain, designated
Z-7514T. The cells were Gram-stain-negative and non-endospore-forming rods. Optimal growth
occurs at 1.6–2.1 M Na+, pH 8.0–8.5, and 31–35 ◦C. The strain utilized mainly sugars, low molecular
polyols, and ethanolamine as well. The G+C content of the genomic DNA of strain Z-7514T was
33.3 mol%. Phylogenetic and phylogenomic analyses revealed that strain Z-7514T belongs to the
genus Halanaerobium. On the basis of phenotypic properties and the dDDH and ANI values with close
validly published species, it was proposed to evolve strain Z-7514T within the genus Halanaerobium
into novel species, for which the name Halanaerobium polyolivorans sp. nov. was proposed. The type
strain was Z-7514T (=KCTC 25405T = VKM B-3577T). For species of the genus Halanaerobium, the
utilization of ethylene glycol, propylene glycol, and ethanolamine were shown for the first time.
The anaerobic degradation of glycols and ethanolamine by strain Z-7514T may represent a novel
metabiotic pathway within the alkaliphilic microbial community. Based on a detailed genomic
analysis, the main pathways of catabolism of most of the used substrates have been identified.

Keywords: Halanaerobium; polyol degradation; glycerol; ethanolamine; alkaliphilic microbial community

1. Introduction

Soda lakes are closed basins with a progressive evaporative concentration of inorganic
salts, where sodium carbonates are prevailing, thereby providing a constantly alkaline pH
of lake water. Soda lakes harbor diverse communities of haloalkaliphilic microbes, mostly
prokaryotes that are well adapted to survive and grow in these extreme environments [1].
In addition to tropical and subtropical areas, they are widespread in the arid zone of Central
Asia and, particularly, in southern Siberia. Similar to freshwater microbial communities,
alkaline ones have a complete set of functionally significant microbes that are linked
together via metabiotic (i.e., substances circulating extracellularly) interrelations [2,3].
Despite the good knowledge of the main pathways in alkaline communities [1,3,4], a
number of trophic interactions remain unexplored to date. This may include the anaerobic
decomposition of polyols.

Polyols are organic compounds which contain two and more hydroxyl groups and
include liquid low molecular compounds ethylene glycol, 1,2-propanediol (propylene
glycol), 1,3-propanediol, glycerol, and the others so-called sugar alcohols, solid substances
starting with four-carbon compounds. Low molecular polyols are bulk chemical products
and widely used in food, chemical, and pharmaceutical industries and, hence, can be
regarded as organic pollutants. In addition to industry, the release of polyols into the
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environment may be due to biological activity. This is a matter of interest for reconstruction
of intracommunity metabiotic pathways. The only exception here is ethylene glycol, for
which, so far, the natural producers are unknown.

The occurrence of polyols in nature is quite wide, which is explained by the variety of
their functions in the cells of organisms. As pointed out in [5], they can serve several roles
in living organisms: act as carbohydrate reserves, as translocatory compounds, as a storage
of reducing power, take part in osmoregulation and in coenzyme regulation. Glycerol
is a well-known eukaryotic osmoprotectant that many, but especially aquatic, organisms
accumulate to protect against osmotic stress [6,7]. A classic example, unicellular green algae
Dunaliella, varies in its intracellular concentration of glycerol according to direct proportion
of the extracellular salt concentration and, at saturation, can reach up to 50% of the total dry
weight of the cell [8]. After dying off, the accumulated glycerol is released and becomes
available to heterotrophs harbor the community. Wide distribution of Dunaliella spp. is
shown for microbial communities of Kulunda steppe region where Tanatar soda lakes are
located [9]. The latter are the object of our long-term research [10,11].

Propylene glycol is formed as a by-product in the course of anaerobic fermentations
of sugars, mainly mono- and deoxy- sugars, rhamnose, and fucose [12,13]. The latter are
structural fragments of glycosides and polysaccharides of terrestrial plants, algae, and
fungi. Solid polyols, erythritol, mannitol, sorbitol, and the others are widely distributed
in fungi [14], especially in halotolerant and halophilic ones [15], where they function
as osmoprotectants similar to glycerol and sometimes together with glycerol. Once in
the anaerobic conditions of a salt (and/or alkaline) lake, they also become available for
utilization by heterotrophic microflora.

In saline conditions, there are many taxonomically diverse groups of bacteria capable
of anaerobic fermentation. One of them belongs to the genus Halanaerobium (Halanaero-
biaceae, Halanaerobiales, Clostridia, Bacillota). The type species of the genus was isolated
from the deep sediments of Great Salt Lake, Utah, USA, and was effectively published
in 1983 as Halanaerobium praevalens GSLT [16]. It was later validly published and by now,
according to the web resource LPSN (https://lpsn.dsmz.de), the genus includes 10 validly
published species and one effectively published species ‘H. hydrogeniformans’ isolated out
of haloalkaline Soap Lake, WA, USA [17]. The detailed characteristics of the species of
the genus was collected in Bergey’s Manual [18] by Oren and the original publications
cited there.

While searching for glycerol degrading bacteria from soda lakes, we focused on
anaerobic conditions, since in this case, decomposition products can be used by other
members of the microbial community, giving rise to the corresponding trophic chains.
Here, we described a novel representative of genus Halanaerobium, H. polyolivorans Z-
7514T, capable of anaerobic utilization of hydroxyl compounds, i.e., glycols, glycerol, sugar
alcohols, and ethanolamine as well.

2. Materials and Methods
2.1. Enrichment and Isolation

The characteristics of the natural sample, the composition of the media, and the
techniques for their preparation have been described previously [11] except that betaine
was replaced with 3 g/L of glycerol. For routine transfers and maintenance, after finding
pH and Na+ optima, the following optimal medium was compiled (g/L): glycerol, 3;
NaHCO3, 8; Na2CO3, 1.5; NaCl, 100; NH4Cl, 0.25. Other constituents were the same as for
the enrichment medium. Apart from mineral constituents, the medium was supplemented
with 0.1–0.2 g/L of yeast extract as an essential additive. pH value of optimal medium
was 8.55.

2.2. Morphological Characterization

Cell morphology was examined using an Axio Imager D1 light microscope (Zeiss,
Oberkochen, Germany) equipped with a phase-contrast unit. Electron micrographs were
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obtained by using a JEOL model JEM-100C transmission electron microscope and negative
staining with 2% (w/v) sodium phosphotungstate. Gram reaction was determined using
the Gram-staining kit (Deltalab, Barcelona, Spain).

2.3. Physiological Characterization

Growth of the strain was monitored by optical density at 600 nm measured directly
in Hungate tubes using a Unico 2100 (Dayton, NJ, USA) spectrophotometer or by hydro-
gen production. Physicochemical parameters of growth (pH, salinity, and temperature
ranges; sodium, chloride, and carbonate requirement) were determined as described pre-
viously [11] with glycerol as a substrate. The optimal medium was used for testing of
substrates and electron acceptors. For media with polyols and ethanolamine, vitamin B12
(125 µg/L) was added. Substrates were tested at concentration of 3 g/L except for polymers
(2 g/L). Thermally unstable in alkaline conditions substances, such as sugars, were added
into the medium after sterilization. Most electron acceptors (sulfate, thiosulfate, DMSO,
nitrate, pyruvate, fumarate, TMAO, acetone, acetoin, crotonate, and AQDS) were tested at
concentration of 10 mM each except for betaine (20 mM), nitrite (5 mM), sulfite (5 mM),
and sulfur (10 g/L). Tolerance for ethylene and propylene glycols was tested in the range
of 25 to 200 mM.

2.4. Analytical Assays

Sugars, polyols, and organic acids were assayed using a Stayer HPLC chromatograph
(Aquilon, Moscow, Russia) equipped with refractometric and UV detectors connected in
series. Separations were carried out on Aminex HPX-87H column (Bio-Rad, Hercules, CA,
USA), operated isocratically with 5 mM H2SO4 as eluent at flow rate 0.6 mL/min. Hydrogen
was quantified on a Crystal 5000.2 GC chromatograph (Chromatek, Yoshkar-Ola, Mari El,
Russia) equipped with a glass column (1 m × 3 mm) filled with Carboxen 1000 (Supelco,
Bellefonte, PA, USA) operating at 140 ◦C, and a thermal conductivity detector at 180 ◦C.
The carrier gas was argon at 40 mL/min. Ethanolamine was assayed by colorimetrically
by the OPA method specific for primary amino groups [19]. The formation of sulfide was
tested by the methylene blue formation reaction [20]. Ammonium was determined with
Nessler’s reagent after isothermal microdistillation of free ammonia.

2.5. Genome Sequencing and Bioinformatic Analyses

The 16S rRNA gene sequence for strain Z-7514T, which is nearly complete at 1435 bp,
was derived using primers 8-27f (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492r (5′-
TACGGYTACCTTGTTACGACTT-3′) as described in [21]. The 3730 DNA Analyzer from
Applied Biosystems, Waltham, MA, USA, was used for sequencing with the Big Dye
Terminator reagent kit, version 3.1. The GenBank/EMBL/DDBJ recorded the sequence
for strain Z-7514T under the accession number OK643887. To taxonomically classify the
strain, a phylogenetic tree was constructed using 16S rRNA gene sequences from strains
of the genus Halanaerobium and adjacent genera. The sequences were first aligned using
MUSCLE [22], and the maximum likelihood tree was constructed using the GTR+F+I+G4
model proposed by ModelFinder [23] and implemented in IQ-Tree [24]. Branch supports
were determined using 10000 ultrafast bootstraps [25].

Isolation of genomic DNA, instrumentation for sequencing, and software for quality
check and assembly was performed as reported earlier [11]. A total of 4,304,511 paired-end
reads were obtained from strain Z-7514T. Phylogenomic analysis of strain Z-7514T was
performed using a concatenated alignment of 120 single-copy phylogenetic marker genes
obtained using the software GTDB-Tk version 1.0.2 [26]. Maximum likelihood phyloge-
nomic tree was inferred using IQ-Tree [24] with model recommended by ModelFinder [23]
and branch support was estimated using UFBoot2 [25]. AAI values were determined using
CompareM version 0.0.23, available at https://github.com/donovan-h-parks/CompareM
(accessed on 9 September 2023). The default parameters for blastp were used, which include
an e-value of ≤ 0.001, a minimum percent identity of ≥30%, and an alignment length of
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≥70%. POCP values were calculated using the script runPOCP.sh [27], which follows the
methodology previously described in [28]. The digital DNA–DNA hybridization (dDDH)
and average nucleotide identity (ANI) values were performed by Genome-to-Genome
Distance Calculator 3.0 (GGDC) [29] and FastANI 1.3 [30], respectively. The dDDH results
were based on recommended formula 2 (identities/HSP length).

Identification of protein-coding sequences and primary annotation were performed
using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP) [31]. To identify the
Clusters of Ortholog Groups (COGs) [32] and Pfam domains [33] in the predicted pro-
tein sequences, the reCOGnizer 1.9.1 tool was used [34]. Gene search and overview of the
whole-genome were performed using the RAST annotation server [35] and the BlastKOALA
annotation tool at the KEGG database [36]. Gene maps were constructed using the Gizmo-
Gene (http://www.gizmogene.com) web resource. A search for appropriate enzymes was
performed at the BRENDA database [37].

3. Results
3.1. Isolation

Strain Z-7514T was isolated as a contaminant in the course of isolation of betaine-
degrading Halonatronomonas betaini Z-7014T [11]. Although the isolation medium for strain
Z-7014T did not contain glycerol, another 16S RNA was consistently present in betaine
grown Z-7014T as detected by molecular methods. We hypothesized that a contaminant
used small amounts (50 mg/L) of yeast extract, which was necessary for the growth of
strain Z-7014T. Success in the separation of strains was achieved by plating on a medium
without betaine, but with an increased content (5 g/L) of yeast extract as a sole substrate for
both strains. Visually, grown colonies were very similar and could only be distinguished by
molecular methods. Picked up colonies were transferred to liquid medium with glycerol
and those that had growth were plated again on solid medium with glycerol. To be
sure in purity, several rounds of “liquid culture—solid culture” on glycerol containing
medium were performed. The strain was designated Z-7514T and selected for further
characterization.

3.2. Colonies and Cell Morphology

On the fifth day of incubation in solid medium with glycerol, the strain formed colonies
reached 0.5–1.5 mm in diameter. In the depth of agar, they were disc-shaped, milky-white
opal colored with a granular structure and a denser protrusion in the center. The deep
colonies were about 0.5–1.0 mm in diameter. The surface colonies were round and slightly
larger (1.0–1.5 mm in diameter) than those in deep and had a smooth transparent edge,
radiating with a bluish-pink color and white center. Cells from deep and surface colonies
were morphologically uniform and genetically homogeneous.

In optimal liquid medium, cells were small, straight, or slightly curved rods 1–2 µm in
length and 0.4–0.8 µm in width, sometimes close to cocci in shape, occurring singly or in
short chains of 2–3 cells (Figure 1A) and less often up to 5–6 cells.

Reproduction occurs by binary fission. Motility was observed very rarely, only in
single cells and not at every viewing. Endospores were not observed and the cells were
Gram-stain negative, which is typical for species of Halanaerobium [18]. In cells grown on
glycerol-containing medium, the electron micrograph revealed the presence of bacterial
microcompartments (metabolosomes, in this case), which is typical for polyol grown
organisms (Figure 1B).

3.3. Phylogenetic and Genomic Characterization

Phylogenetic analysis based on the 16S rRNA gene sequences revealed that Z-7514T

clustered with members of the genus Halanaerobium (Figure 2).
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Scale bar, 1 µm.



Microorganisms 2023, 11, 2325 6 of 17

Microorganisms 2023, 11, x FOR PEER REVIEW 6 of 18 
 

 

microcompartments (metabolosomes, in this case), which is typical for polyol grown or-
ganisms (Figure 1B). 

3.3. Phylogenetic and Genomic Characterization 
Phylogenetic analysis based on the 16S rRNA gene sequences revealed that Z-7514T 

clustered with members of the genus Halanaerobium (Figure 2). 

 
Figure 2. Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences (1435 nucleo-
tide sites) reconstructed with evolutionary model GTR+I+G4+F, showing the position of strain Z-
7514T with closely related members of the genus Halanaerobium. Bootstrap values (>50%) are listed 
as percentages at the branching points. GenBank accession numbers for 16S rRNA genes are indi-
cated in brackets. Bar, 0.05 substitutions per nucleotide position. 

The closest to strain Z-7514T was turned ‘H. hydrogeniformans’ with 98.6% similarity. 
According to the tree, the 16S rRNA gene sequence of Z-7514T shared 97.5, 97.5, and 97.2% 
similarity to the sequences with H. kushnerii ATCC 700103T, H. saccharolyticum subsp. sac-
charolyticum Z-7787T, and H. praevalens GSLT, respectively. A high similarity to the closely 
related sequences supports the identification of the strain Z-7514T as belonging to a genus 
Halanaerobium. In addition to Z-7514T, the other 16S rRNA gene sequences were clustered 
with the same genus with a similarity of >98%. They were found in saline alkaline inter-
tidal soils of the Gulf of Cambay, India (clones JX240593-JX240713) [38], and haloalkaline 
laboratory biogas reactor using algae Spirulina as a substrate (clone KR476501) [39]. 

To clarify the taxonomic position of strain Z-7514T according to the modern stand-
ards, a complete genomic sequencing was performed. The final assembled 2,522,622-bp-
long genome comprised 53 scaffolds, with an N50 value of 125,414 bp, a G+C content of 
33.3%, and a coverage of 467.9×. The 16S rRNA gene sequence out of genome was identical 
to the sequence obtained by PCR. The inferred phylogenomic tree also indicates that the 
strain belongs to the genus Halanaerobium (Figure 3). The detailed genome statistics of 
strain is shown in Table 1.  

Figure 2. Maximum-likelihood phylogenetic tree based on 16S rRNA gene sequences (1435 nucleotide
sites) reconstructed with evolutionary model GTR+I+G4+F, showing the position of strain Z-7514T

with closely related members of the genus Halanaerobium. Bootstrap values (>50%) are listed as
percentages at the branching points. GenBank accession numbers for 16S rRNA genes are indicated
in brackets. Bar, 0.05 substitutions per nucleotide position.

The closest to strain Z-7514T was turned ‘H. hydrogeniformans’ with 98.6% similarity.
According to the tree, the 16S rRNA gene sequence of Z-7514T shared 97.5, 97.5, and
97.2% similarity to the sequences with H. kushnerii ATCC 700103T, H. saccharolyticum subsp.
saccharolyticum Z-7787T, and H. praevalens GSLT, respectively. A high similarity to the
closely related sequences supports the identification of the strain Z-7514T as belonging
to a genus Halanaerobium. In addition to Z-7514T, the other 16S rRNA gene sequences
were clustered with the same genus with a similarity of >98%. They were found in saline
alkaline intertidal soils of the Gulf of Cambay, India (clones JX240593-JX240713) [38],
and haloalkaline laboratory biogas reactor using algae Spirulina as a substrate (clone
KR476501) [39].

To clarify the taxonomic position of strain Z-7514T according to the modern standards,
a complete genomic sequencing was performed. The final assembled 2,522,622-bp-long
genome comprised 53 scaffolds, with an N50 value of 125,414 bp, a G+C content of 33.3%,
and a coverage of 467.9×. The 16S rRNA gene sequence out of genome was identical to the
sequence obtained by PCR. The inferred phylogenomic tree also indicates that the strain
belongs to the genus Halanaerobium (Figure 3). The detailed genome statistics of strain is
shown in Table 1.

The G+C content of strain Z-7514T was within the range of 27–37 mol% characteristic
for the species of Halanaerobium [18]. The genomic indices of strain Z-7514T in relation to
species of the genus Halanaerobium whose genomes were accessible are shown in Table 2.
All of them were below the cut-off value 70% for dDDH [40,41] and of 95% for ANI species
identity [41]. The AAI and POCP values also were below the statistical threshold for species
delineation, but not for genera [28,42], and confirmed that strain Z-7514T represents a new
species in the genus Halanaerobium.
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Table 1. Genome statistics of strain Z-7514T.

Attribute Value % of Total

Genome size (bp) 2,522,622 100.0
DNA coding (bp) 2,266,477 89.9
DNA G+C (bp) 839,862 33.3
DNA scaffolds 53 100.0

Total genes 2457 100.0
Protein coding genes 2364 96.2

RNA genes 63 2.6
Pseudo genes 30 1.2

Genes with function prediction 2215 90.2
Genes assigned to COGs 1974 80.3

Genes with Pfam domains 2116 86.1
Genes with signal peptides 185 7.5

Genes with transmembrane helices 615 25.0
CRISPR repeats 2 -

3.4. Physiological Properties
3.4.1. Physicochemical Characteristics of Growth

Strain Z-7514T appeared to be a moderate halophile with growth range at 0.6–3.9 M
Na+ and optimum at 1.6–2.1 M Na+. The optimal pH for growth was 8.0–8.5 while the
growth interval was 6.7–10.1. Due to the lower limit of the pH range less than 7, the strain
should not be considered as a true alkaliphile but alkalitolerant instead. Strain Z-7514T

possessed an obligate requirement in sodium and chloride ions, and it could grow in three
consecutive transfers on a carbonate-free medium. No growth was found in chloride-free
medium buffered with bicarbonate/carbonate, equimolar to sodium. The requirement for
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chloride was characteristic of Halonatronomonas betaini [11] and some other bacteria isolated
by us from Tanatar lakes. In relation to temperature, strain Z-7514T was mesophilic, at
optimal pH and salinity, it grew at 14–51 ◦C with optimum at 31–35 ◦C. The strain did
not tolerate oxygen being unable to grow under cotton plug, but it was able to grow in
anaerobic medium lacking reducing agent.

Table 2. The genomic indices (%) of strain Z-7514T and some species of the genus Halanaerobium.

Species of Halanaerobium dDDH ANI AAI POCP

‘H. hydrogeniformans’ SL-HP
GCF_000166415.1 29.9 84.8 88.4 86.8

H. congolense DSM 11287T

GCF_004366375.1
19.2 77.0 71.1 69.0

H. saccharolyticum DSM 6643T

GCF_000350165.1
18.7 77.2 70.9 72.2

H. kushneri ATCC 700103T

GCF_900156285.1
18.5 77.0 70.9 64.9

H. praevalens_DSM 2228T

GCF_000165465.1
18.8 77.0 69.3 63.7

H. salsuginis ATCC 51327T

GCF_900114545.1
18.8 77.0 68.2 61.9

3.4.2. Substrates, Electron Acceptors and Phenotypical Comparisons

Strain Z-7514T has mostly a fermentative type of metabolism, particularly saccharolytic.
No protein or proteinaceous substrates were used except for yeast extract. It grew on a
range of carbohydrates, a complete list of which is given in the species description. The
other used substrates included N-acetyl-D-glucosamine, acetoin, pyruvate, meso-erythritol,
mannitol, glycerol, glycerol 3-phosphate, yeast extract, ethylene glycol, propylene glycol,
and ethanolamine. Some substrates, unusual for Halanaerobium species (polyols, except
for glycerol, and ethanolamine), were decided to be added to the list of tested substrates
in the course of genomic analysis (see below), when the corresponding genes were found.
Depending on the substrate, fermentation products included mainly acetate, hydrogen,
and often but not always lactate. Propylene glycol fermented to propionate, n-propanol,
and hydrogen; no acetate was found. Ethylene glycol fermented to acetate and hydrogen
only. Of any of the substrates, neither formate nor ethanol was found. For some substrates,
the fermentation products were quantified (Table 3).

Table 3. Carbon balance of some substrates utilized by strain Z-7514T.

Substrate
End Products,

mol/mol Substrate
Carbon

Recovery, %
Acetate Lactate H2

Pyruvate 0.96 0 0.7 96
D-ribose 0.46 0.05 0.6 51

D-glucose 0.53 0.56 0.8 109
D-fructose 0.22 0.93 0.4 115
Erythritol 0.77 0.05 0.9 82
Mannitol 0.38 0.74 0.9 111
Glycerol 1 0.46 0.11 7.0 81

Ethanolamine 2 1.12 0 3.3 112
1 plus 0.24 mol 1,3-propanediol per mol glycerol is formed. 2 plus 1.11 mol NH3 per mol ethanolamine is formed.

The growth on ethanolamine turned out to be very slow but reproducible in five
successive transfers. The maximal optical density about 0.03 was reached by the 30th day
of growth. The addition of vitamin B12 increased optical density twice; maximum was
already achieved by the 8th day of growth. This is consistent with the data that the use of
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ethanolamine both as a carbon or as a nitrogen source requires a derivative of vitamin B12
(Ado-B12, adenosylcobalamine) which is a cofactor of ethanolamine lyase [43,44].

No electron acceptors, except elemental sulfur, were used. Sulfur was reduced to
sulfide (about 7 mM is formed). To date, the ability to reduce sulfur was reported only
for two Halanaerobium species, H. saccharolyticum subsp. saccharolyticum [45] and H. con-
golense [46]. The main phenotypic features distinguishing the strain Z-7514T from close
species of Halanaerobium with validly published names are shown in Table 4.

Table 4. Differential characteristics of strain Z-7514T, some close species, and type species of the
genus Halanaerobium.

Z-7514T
1 H. kushneri

VS-751T

2 H. saccharolyticum
Z-7787T

3 H. praevalens
GSLT

Cell size, µm 0.4–0.8 × 1.0–2.0 0.7 × 2.0–3.3 0.5–0.7 × 1.0–1.5 0.9–11.0 × 2.0–2.6
Na+, M, range/opt 0.6–3.9/1.6–2.1 1.5–3.1/2.1 0.5–5.1/1.7 0.3–5.1/2.1

pH, range/opt 6.7–10.1/8.0–8.5 6.0–8.0/6.5–7.5 6.0–8.0/7.5 6.0–9.0/7.0–7.4
T, ◦C, range/opt 14–51/31–35 20–45/40 15–47/37–40 5–50/37

Utilization of
L-arabinose – + + ND
Cellobiose + + + −

D-galactose +/− + + −
Glycerol + 4 var + −
Lactose − + + −

Pyruvate + + + −
Starch − − ND −

Sucrose + + + −
D-xylose +/− − + −

Trypticase − + ND +
Amino acids − − − +

N-acetylglucosamine + ND − +

Fermentation products
from sugars

Acetate, lactate, H2,
CO2

Acetate, formate,
ethanol, H2, CO2

Acetate, H2, CO2

Acetate, formate,
lactate, ethanol, H2,

CO2
G+C, mol % from

genome 33.3 34.2 34.8 30.3

Habitat
Alkaline sediments of a
collector at Tanatar III

soda lake, Russia

Hypersaline petroleum
reservoir fluid, OK,

USA

Hypersaline lagoons of
Sivash Lake, Russia

Deep bottom sediment
of Great Salt Lake,

Utah, USA.

+ means positive, − means negative, ND means not determined. All strains were positive for D-mannose, D-
fructose, D-glucose, and maltose utilization and negative for L-sorbose utilization. 1 Data are from [18,47]. 2 H.
saccharolyticum subsp. saccharolyticum Z-7787T [45]. 3 Data are from [16,18]. 4 The trait is variable among the
strains [47].

Differences from closely related species included a different set of used substrates,
the pH optimum was shifted to the alkaline side, and the absence of formate and ethanol
among the fermentation products.

3.4.3. Utilization of Polyols

Despite the strain being isolated on glycerol, the maximum utilization efficiency was
noted for propylene glycol, which was almost completely consumed by the 6th day of
incubation (Supplementary Figure S1A). On the contrary, the utilization of glycerol was
rather slow and amounted to only 37% after 30 days of incubation. Ethylene glycol occupied
an intermediate position. The most probable explanation of this phenomenon is that the
propanediol dehydratase encoded in genome has different affinity towards different polyols
as transporters of facilitated diffusion, neither glycerol nor propylene glycol were found
(see below), and polyols were directly delivered to the dehydratase. The stimulating effect
of vitamin B12 in the course of growth on propylene glycol was manifested by an increase
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in the biomass yield (increase in OD), but not in the growth rate. Interestingly, B12 had no
effect on the ethylene glycol grown culture.

Considering the possibility of using the strain Z-7514T to remove ethylene and propy-
lene glycol from the environment, it was decided to test the strain towards elevated
concentrations of polyols. Growth occurred on both polyols in the range of 25–200 mM
given initial concentrations. Residual contents of polyols were measured for propylene
glycol in stationary step of growth (10 days) and for ethylene glycol in 30 days of incubation.
The utilization value calculated as a difference between initial and final concentration and
was plotted versus initial concentration (Supplementary Figure S1B). As can be seen, the
utilization of ethylene glycol gradually increased with an increase in its initial concentration
in the medium, although depletion was uncomplete. On the contrary, the utilization of
propylene glycol at first increased with an increase in its concentration, reached its maxi-
mum at 50 mM, and then further decreased. Unlike ethylene glycol, exhaustion was almost
complete at 25 mM but, hereinafter, residual concentration increased. In both cases, strain
Z-7514T showed a good tendency to reduce glycol content at elevated concentrations.

3.5. Physiology and Functional Genes

The general functional annotation of the genome of strain Z-7514T is presented in
Figure 4. Complete results are presented in Supplementary Table S1.
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Positive tests for substrates correlated with the genes found in course of genome
analysis. Particularly, the genome contained the genes encoding all enzymes of the Embden–
Meyerhof–Parnas (EMP) pathway except for a canonical hexokinase (EC 2.7.1.1), which
was substituted for glucokinase (EC 2.7.1.2) encoded by glk operon and fructokinase
(EC 2.7.1.4) encoded by scrK. Also, all four enzymes of the Leloir pathway for galactose
utilization encoded by galM, galK, galT, galE were present. Pentose phosphate pathway
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(PPP) was represented only by the non-oxidative branch, since the operon pgl encoding
6-phosphogluconolactonase was absent. In addition to common sugars, the utilization of
the other substrates also correlated with the presence of appropriate genes. For mannitol,
an operon mtlABC encoding a mannitol phosphotransferase system along with mannitol-
1-phosphate dehydrogenase (EC 1.1.1.17, mtlD) was found. The product of the latter, D-
fructose 6-phosphate, fed the EMP pathway. A similar phosphotransferase system was also
available for N-acetyl-D-glucosamine (EC 2.7.1.193, nagE). The genome of Z-7514T lacked
both specialized erythritol catabolic genes ery firstly discovered in the Brucella species [48]
and erythritol kinases EC 2.7.1.27 and EC 2.7.1.215. A genome and enzyme search showed
that two enzymes may possibly be responsible for the catabolism of erythritol, namely
glycerol dehydrogenase (EC 1.1.1.6, gldA) [49] and L-iditol (D-sorbitol) 2-dehydrogenase
(EC 1.1.1.14, gutB). For the last one, the transformation of erythritol to erythrulose for
enzyme isolated from Gluconobacter suboxidans [50] was observed. Its activity toward
erythritol was 1.7 times higher than sorbitol. For Z-7514T, however, when sorbitol was
added, there was neither growth nor the formation of any products.

Three low molecular polyols were used by strain Z-7514T, namely ethylene glycol,
propylene glycol, and glycerol. The anaerobic degradation all of them is controlled by a
known pdu gene cluster [51–53] (not always in case of glycerol, see below), which is found
in genome. For clarity, this cluster of Z-7514T was aligned with the well-characterized pdu
proteins of Salmonella enterica subsp. Enterica serovar Thyphimurium LT2 (Figure 5A).
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Figure 5. Genetic organization of the pdu (A) and eut (B) gene clusters in strain Z-7514T and Salmonella
enterica subsp. Enterica LT2. Colors: red—a pin protein used as a query in the GizmoGene server;
white—hypothetical protein; the others—the same color in sequences identifies the protein members
of the same family. The functions of some encoded proteins are indicated. The letters between
gene sequences refer to pdu and eut genes, i.e A, B, C, etc., means pduA, pduB, pduC, etc. (panel
(A)) and eutA, eutB, eutC, etc. (panel (B)), respectively. Designations outside sequences are: BMC,
bacterial microcompartment; ADH, alcohol dehydrogenase; ACK, acetate kinase; PDF, propanediol
diffusion facilitator.

The pdu cluster of Z-7514T encodes for seven proteins with putative enzymatic function
in polyol degradation, seven putative structural proteins (metabolosomes), one protein
with a putative regulatory function (pduGH), and three proteins with unknown/unclear
(eutJ) function. The cluster, as well as in S. enterica, contained a core operon pduCDE
encoding three subunits of propanediol dehydratase (EC 4.2.1.28) along with the genes
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that ensure further reactions of polyol degradation. Also, the cluster included the genes
encoding proteins of metabolosome (Figure 1B).

In a general way, the pdu cluster of Z-7514T was somewhat similar with that of
S. enterica but had some differences. Homologs of the genes encoding a facilitated diffusion
of polyols into the cell (pdf or glpF), propanol dehydrogenase (pduQ), phosphate propanoyl-
transferase (EC 2.3.1.222, pduL), and propionate kinase (EC 2.7.2.15, pduW) were absent
in the gene cluster of Z-7514T. The last three genes are involved in the propylene glycol
degradation pathway in enteric bacteria [54]. Obviously, their functions are carried out by
other enzymes.

The ability to use ethanolamine by strain Z-7514T was due to the presence of ethanolamine
ammonia lyase (EC 4.3.1.7) encoding by eutBC operon. The enzyme split ethanolamine
into acetaldehyde and ammonia. As for polyols, S. enterica also served as a model object
for comparison. The eut cluster of Z-7514T was aligned with the homological one, and
was present in S. enterica (Figure 5B). Unlike S. enterica, the eut genes of Z-7514T were
not concatenated in one operon but distributed among the eut and pdu clusters. The eut
cluster of Z-7514T turned out to be significantly less than in S. enterica and encoded for two
subunits of ethanolamine ammonia lyase, two structural proteins (eutL, proteinpgf), and
one protein with a putative regulatory function (eutA). The other eut genes were located
in the pdu cluster and included mainly the BMC proteins except for eutP which encodes
acetate kinase functionally similar but structurally differed from ackA [55]. It is noteworthy
that the key ethanolamine catabolite gene encoding acetaldehyde dehydrogenase (eutE)
was absent, but growth proceeded, therefore, similar to enzymes of the pdu cluster, and its
function was performed by the other enzyme.

4. Discussion

Siberian soda lakes, including the Tanatar lakes, are inhabited by bacteria, the diversity
of which is not inferior to those living in freshwater lakes. A detailed metagenomic study
found all representatives required to form an autonomous microbial community, namely
prime producers, hydrolytic microorganisms, secondary utilizers, and mineralizers like
sulfate reducers and methanogens [56]. It is noteworthy that the Halanaerobiales-related
OTUs, particularly the genus Halanaerobium, were the second most abundant among the
filum Bacillota (Firmicutes in the reference), and we confirmed these results by isolating the
representative of the genus.

The data obtained from genomic analysis made it possible to draw a hypothetical
scheme for the metabolism of some substrates of strain Z-7514T (Figure 6).

Sugars are catabolized via the EMP and PPP pathways, yet ribose entry into the PPP
pathway remains unclear, since ribokinase (EC 2.7.1.15), which is common to most bacteria
growing on ribose, is absent. The initial steps of polyol degradation are carried out by non-
specific B12-dependent propanediol dehydratase encoded by operon pduCDE. It performs
the dehydration step with formation of the corresponding aldehyde. The product of de-
hydration depends on particular polyol: acetaldehyde, propanal, and 3-hydroxypropanal
from ethylene glycol, propylene glycol, and glycerol, respectively. Then, three-carbon
aldehydes are reduced to the corresponding alcohols by 1,3-propanediol dehydrogenase.
For glycerol, in addition to the reductive way described above, the oxidative way also
exists starting with glycerol dehydrogenase and glycerol kinase and further feeds the
EMP pathway. Not all glycerol-utilizing bacteria have a reductive way and those bacteria
do not possess propanediol or glycerol dehydratase and, respectively, do not produce
1,3-propanediol.
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ucts are marked in bold. Intermediates are marked in italic. Abbreviations for substances: EA—
ethanolamine, EG—ethylene glycol, 1,2-PD—propylene glycol, 3-HPA—3-hydroxypropanal, 1,3-PD—
1,3-propanediol. Genes and enzymes: pduCDE—1,2-propanediol dehydratase (EC 4.2.1.28), gldA—
glycerol dehydrogenase (EC 1.1.1.6), glpK—glycerol kinase (EC 2.7.1.30), gutB—L-iditol (D-sorbitol)
2-dehydrogenase (EC 1.1.1.14), eutBC—ethanolamine ammonia lyase (EC 4.3.1.7), tktA—transketolase
(EC 2.2.1.1), pduP—propionaldehyde dehydrogenase (EC 1.2.1.87), dhaT—1,3-propanediol dehydro-
genase (EC 1.1.1.202), ldh—lactate dehydrogenase (EC 1.1.1.27), nif J—pyruvate/ferredoxin oxidore-
ductase (EC:1.2.7.1), pta—phosphate acetyltransferase (EC 2.3.1.8), ackA—acetate kinase (EC 2.7.2.1),
fakAB—nonspecific fatty acid kinase (EC 2.7.2.18). *—NAD+ dependent reaction.

For propylene glycol, its entry into the EMP pathway through glycerol dehydrogenase
is also potentially possible because, for example, the enzyme from Cellulomonas sp. had
almost the same activity to propylene glycol as for glycerol [57], but it did not work in
case of Z-7514T, since acetate was not formed during growth on propylene glycol. The
lack of phosphate propanoyltransferase and propionate kinase, encoded by genes pduL
and pduW, is probably replenished by phosphate acetyltransferase (EC 2.3.1.8, pta) and
acetate kinase (EC 2.7.2.1, ackA), respectively, as was shown earlier [54]. For acetate kinase,
activity data in relation to propionate vary in the literature, but can reach 93% for Cereibacter
(former Rhodobacter) sphaeroides [58]. In addition, an operon fakAB encoding nonspecific
fatty acid kinase (EC 2.7.2.18) was found in the genome and it can also contribute to the
formation of propionate from propionyl-CoA. Fewer data are available to substrate speci-
ficity of phosphate acetyltransferase but, for example, for Thermotoga maritima, phosphate
acetyltransferase accepted propionyl-CoA with 60% activity lower than acetyl-CoA [59].
The functions of the missing propanol dehydrogenase (pduQ) are probably performed by
alcohol dehydrogenase (EC 1.1.1.1, adh) or 1,3-propanediol dehydrogenase (EC 1.1.1.202,
dhaT). The last one is less probable, because for the enzyme from Citrobacter freundii, its
activity towards propanal was five times worse compared to 3-HPA [60]. Of course, further
biochemical work is required to confirm our assumptions.

The anaerobic catabolism of ethylene glycol and ethanolamine proceeds expectedly
via acetaldehyde, since alternative pathways are currently unknown. The low yield of
biomass on ethanolamine, in addition to the need for B12, may be due to the absence of one
of the genes required for the assembly of the metabolosome. These intracellular protein
formations encapsulate the enzymes dealing with the toxic intermediates, aldehydes, and
widely distributed among polyol and ethanolamine degrading microorganisms [61]. The
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formation of the structure encoding at least five eut genes [62], of which the genome of
the strain contains only four and eutK, is absent and it may not be enough to build a
complete icosahedral structure. This gene encodes one of the major shell constituents
of a functionally complex ethanolamine utilization microcompartment [63]. The natural
precursor of ethanolamine is phosphatidylethanolamine, a lipid component of membranes
characteristic of both bacterial and eukaryotic cells. Under the action of phosphodiesterases,
this lipid is split into glycerol 3-phosphate and ethanolamine [64]. Both products can
be utilized by Z-7514T. Prokaryotic and eukaryotic cells are always present in modern
microbial communities; therefore, the ethanolamine pathway of biomass degradation, like
the proteolytic one, can be classified as a permanent one.

At the moment, it is difficult to say how widespread the use of polyols and ethanolamine
is among species of Halanaerobium. To date, complete genomes deposited in the publicly
available databases are available for only half of the 10 validly published species plus
effectively published ‘H. hydrogeniformans’ genome, which is not enough to generalize.
Nevertheless, we found the pdu genes only in two genomes, namely H. saccharolyticum
subsp. saccharolyticum and ‘H. hydrogeniformans’. At the same time, all six sequenced species
possessed glpK, glycerol kinase, and five species—gldA, glycerol dehydrogenase, although
the ability to grow on glycerol, with the exception of the above-mentioned species, was
shown only for H. kushneri [47]. This phenomenon requires further study. The eutBC operon
was found in three genomes, namely H. congolense, H. praevalens, and ‘H. hydrogeniformans’
but the authors of the publications have not tested whether these species can grow on
ethanolamine. So, the ability of species of the genus Halanaerobium to use polyols and
ethanolamine may be underestimated.

In summary, based on phylogenetic and phenotypic data, we assume that strain
Z-7514T represents a novel species in the Halanaerobium genus with a proposed name
Halanaerobium polyolivorans sp. nov.

5. Description of Halanaerobium polyolivorans sp. nov.

Halanaerobium polyolivorans (po.ly.o.li.vo’rans. N.L. neut. n. polyol, an organic com-
pound containing multiple hydroxyl groups; L. inf. v. vorare, to eat; N.L. part. adj.
polyolivorans, polyol-eating).

The cells are small straight or slightly curved rods that are 0.4–0.8 µm wide and 1–2
µm long, sometimes close to cocci. Growing cells appear singly, in pairs, or as short chains.
They are Gram-stain-negative, spores are not observed, and are catalase- and oxidase-
negative. Chemoheterotrophic growth occurs under anaerobic conditions. They contain
moderate levels of halophile, alkalitolerant, and mesophile. Growth occurs at 0.6–3.9 M Na+

(optimum, 1.6–2.1 M Na+), at pH 6.7–10.1 (optimum, pH 8.0–8.5), at 14–51 ◦C (optimum,
31–35 ◦C); they obligately depend on Na+ and chloride ions, but do not need carbonates
in medium. The following substrates support growth: D-fructose, D-ribose, D-glucose,
D-mannose, D-xylose, D-galactose, cellobiose, trehalose, sucrose, maltose, N-acetyl-D-
glucosamine, acetoin, pyruvate, meso-erythritol, mannitol, glycerol, glycerol 3-phosphate,
yeast extract, ethanolamine, ethylene glycol, and propylene glycol. No growth on melibiose,
melezitose, raffinose, lactulose, L-rhamnose, lactose, L-fucose, L-sorbose, L-arabinose, xyl-
itol, inositol, sorbitol, dulcitol, succinate, gluconate, formate, acetate, malate, fumarate,
lactate, glycolate, methanol, ethanol, 1-propanol, 2,3-butandiol, trypticase, tryptone, pep-
tone, soytone, casamino acids, and betaine. Caseinate, dextran, starch, and xylan are not
hydrolyzed. They reduce sulfur to sulfide. The G+C content from the DNA is 33.3 mol %.
The type-strain, Z-7514T (=KCTC25405T = VKM B-3577T), was isolated from sediments of a
collector at Tanatar III soda lake, Altai region, Russian Federation.
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