Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = halogenated monoterpenes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1354 KiB  
Article
Profiling of Volatile Organic Compounds, Including Halogenated Substances, in Okinawan Red Alga Portieria hornemannii
by Kazuki Tani, Yu Sasaki, Takahiro Ishii and Yonathan Asikin
Molecules 2025, 30(12), 2534; https://doi.org/10.3390/molecules30122534 - 10 Jun 2025
Viewed by 510
Abstract
The exploitation of underutilised resources is critical for achieving a sustainable society, and non-edible seaweeds are promising candidates. This study focused on the red alga Portieria hornemannii from Okinawa, Japan, a seaweed with a distinctive aroma, and determined its volatile organic compounds (VOCs) [...] Read more.
The exploitation of underutilised resources is critical for achieving a sustainable society, and non-edible seaweeds are promising candidates. This study focused on the red alga Portieria hornemannii from Okinawa, Japan, a seaweed with a distinctive aroma, and determined its volatile organic compounds (VOCs) and halogenated secondary metabolites using headspace solid-phase microextraction gas chromatography–mass spectrometry (HS-SPME-GC-MS) at various extraction temperatures. HS-SPME-GC-MS analysis revealed 52 VOCs in Okinawan P. hornemannii, including predominant compounds α-pinenyl bromide (IUPAC name: 2-bromomethyl-6,6-dimethylbicyclo [3.1.1]hept-2-ene; halogenated monoterpene), myrcene disulfide (3-(6-methyl-2-methylidenehept-5-enylidene)dithiirane), and 5,6-dimethyl-1H-benzimidazole, the content of which in the extract increased with increasing extraction temperature from 30 to 60 °C. On the other hand, the β-myrcene (7-methyl-3-methyleneocta-1,6-diene) content, which likely contributes majorly to the distinct fresh odour of the algae, declined as the temperature increased. Furthermore, the proportion of β-myrcene obtained using SPME was significantly higher than that extracted using solvent liquid extraction (SLE) (7.20% in SPME at 30 °C vs. 0.09%, respectively). However, SLE-GC-MS provided a different P. hornemannii volatile profile, allowing for the acquisition of more furan-, alcohol-, ester-, and carboxylic acid-containing compounds. These data provide valuable information, such as a systematic analytical framework for volatiles profiling in the marine macroalgae P. hornemannii, with potential applicability in the development of food and fragrance products. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Figure 1

11 pages, 1505 KiB  
Article
Anti-Inflammatory Halogenated Monoterpenes from the Red Alga Portieria hornemannii
by Yuan-Jhong Wu, Tzu-Yin Huang, Chiung-Yao Huang, Chi-Chen Lin, Wei-Lung Wang, Hui-Chi Huang, Shang-Yin Vanson Liu, Chih-Hua Chao and Jyh-Horng Sheu
Mar. Drugs 2023, 21(9), 493; https://doi.org/10.3390/md21090493 - 14 Sep 2023
Cited by 7 | Viewed by 2449
Abstract
The chemical investigation of a red alga Portieria hornemannii enabled the identification of three new halogenated monoterpenes (13) along with two previously identified metabolites (4 and 5). Their structures were determined by spectroscopic analysis and also by [...] Read more.
The chemical investigation of a red alga Portieria hornemannii enabled the identification of three new halogenated monoterpenes (13) along with two previously identified metabolites (4 and 5). Their structures were determined by spectroscopic analysis and also by utilizing single-crystal diffraction analysis and quantum chemical calculation, as well as by comparison with literature data. Further corrections for dichloro and dibromo carbons using the sorted training set (STS) method were established in this study to significantly improve the accuracy in GIAO 13C NMR calculation of compounds 13. To discover the potential bioactive metabolites from P. hornemannii, the anti-inflammatory activities of all compounds were examined. Compounds 1 and 35 showed significant anti-inflammatory activity to inhibit the production of pro-inflammatory cytokines in the LPS-stimulated mature dendritic cells. Full article
(This article belongs to the Special Issue Bio-Active Compounds from Algae)
Show Figures

Graphical abstract

13 pages, 3847 KiB  
Article
Hidden Diversity in an Antarctic Algal Forest: Metabolomic Profiling Linked to Patterns of Genetic Diversification in the Antarctic Red Alga Plocamium sp.
by Andrew J. Shilling, Sabrina Heiser, Charles D. Amsler, James B. McClintock and Bill J. Baker
Mar. Drugs 2021, 19(11), 607; https://doi.org/10.3390/md19110607 - 27 Oct 2021
Cited by 13 | Viewed by 3299
Abstract
The common Antarctic red alga Plocamium sp. is rich in halogenated monoterpenes with known anticancer and antimicrobial properties and extracts of Plocamium sp. have strong ecological activity in deterring feeding by sympatric herbivores. Plocamium sp. collected near Anvers Island, Antarctica showed a high [...] Read more.
The common Antarctic red alga Plocamium sp. is rich in halogenated monoterpenes with known anticancer and antimicrobial properties and extracts of Plocamium sp. have strong ecological activity in deterring feeding by sympatric herbivores. Plocamium sp. collected near Anvers Island, Antarctica showed a high degree of secondary metabolite diversity between separate individuals. GC/MS results revealed 15 different combinations of metabolites (chemogroups) across individuals, which were apparent at 50% or greater Bray–Curtis similarity and also clearly distinguishable by eye when comparing chromatographic profiles of the secondary metabolomes. Sequencing of the mitochondrial cox1 gene revealed six distinct haplotypes, of which the most common two had been previously reported (now referred to as Haplotypes 1 and 2). With the exception of one individual, three of the chemogroups were only produced by individuals in Haplotype 1. All the other 12 chemogroups were produced by individuals in Haplotype 2, with five of these chemogroups also present in one of the four new, less common haplotypes that only differed from Haplotype 2 by one base pair. The functional relevance of this metabolomic and genetic diversity is unknown, but they could have important ecological and evolutionary ramifications, thus potentially providing a foundation for differential selection. Full article
Show Figures

Figure 1

41 pages, 641 KiB  
Review
Ionic Liquids Toxicity—Benefits and Threats
by Jolanta Flieger and Michał Flieger
Int. J. Mol. Sci. 2020, 21(17), 6267; https://doi.org/10.3390/ijms21176267 - 29 Aug 2020
Cited by 281 | Viewed by 12435
Abstract
Ionic liquids (ILs) are solvents with salt structures. Typically, they contain organic cations (ammonium, imidazolium, pyridinium, piperidinium or pyrrolidinium), and halogen, fluorinated or organic anions. While ILs are considered to be environmentally-friendly compounds, only a few reasons support this claim. This is because [...] Read more.
Ionic liquids (ILs) are solvents with salt structures. Typically, they contain organic cations (ammonium, imidazolium, pyridinium, piperidinium or pyrrolidinium), and halogen, fluorinated or organic anions. While ILs are considered to be environmentally-friendly compounds, only a few reasons support this claim. This is because of high thermal stability, and negligible pressure at room temperature which makes them non-volatile, therefore preventing the release of ILs into the atmosphere. The expansion of the range of applications of ILs in many chemical industry fields has led to a growing threat of contamination of the aquatic and terrestrial environments by these compounds. As the possibility of the release of ILs into the environment s grow systematically, there is an increasing and urgent obligation to determine their toxic and antimicrobial influence on the environment. Many bioassays were carried out to evaluate the (eco)toxicity and biodegradability of ILs. Most of them have questioned their “green” features as ILs turned out to be toxic towards organisms from varied trophic levels. Therefore, there is a need for a new biodegradable, less toxic “greener” ILs. This review presents the potential risks to the environment linked to the application of ILs. These are the following: cytotoxicity evaluated by the use of human cells, toxicity manifesting in aqueous and terrestrial environments. The studies proving the relation between structures versus toxicity for ILs with special emphasis on directions suitable for designing safer ILs synthesized from renewable sources are also presented. The representants of a new generation of easily biodegradable ILs derivatives of amino acids, sugars, choline, and bicyclic monoterpene moiety are collected. Some benefits of using ILs in medicine, agriculture, and the bio-processing industry are also presented. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

20 pages, 3047 KiB  
Review
Update on Monoterpenes from Red Macroalgae: Isolation, Analysis, and Bioactivity
by Ana-Marija Cikoš, Mladenka Jurin, Rozelindra Čož-Rakovac, Stela Jokić and Igor Jerković
Mar. Drugs 2019, 17(9), 537; https://doi.org/10.3390/md17090537 - 16 Sep 2019
Cited by 20 | Viewed by 6138
Abstract
Macroalgae produce a wide range of monoterpenes as secondary metabolites of mevalonate (MVA) and/or methylerythritol phosphate (MEP) pathway (often including haloperoxidase action). Great biodiversity of macroalgal monoterpenes was reported including acyclic, monocyclic, and bicyclic structures. Halogenated monoterpenes exhibited significant biological activity (e.g., anticancer, [...] Read more.
Macroalgae produce a wide range of monoterpenes as secondary metabolites of mevalonate (MVA) and/or methylerythritol phosphate (MEP) pathway (often including haloperoxidase action). Great biodiversity of macroalgal monoterpenes was reported including acyclic, monocyclic, and bicyclic structures. Halogenated monoterpenes exhibited significant biological activity (e.g., anticancer, antiplasmodial, and insecticidal) that is influenced by the number of present halogens (higher halogen content is preferable, especially bromine) and their position within the monoterpene skeleton. In distinction from the existing reviews, the present review provides novelty with respect to: (a) exclusively monoterpenes from red macroalgae are targeted; (b) biosynthesis, isolation, and analysis, as well as bioactivity of monoterpenes are represented; (c) the methods of their isolation, analysis, and structure elucidation are summarized; (d) the bioactivity of macroalgal monoterpenes is systematically presented with emphasis on anticancer activity; (e) the literature references were updated. Full article
Show Figures

Figure 1

11 pages, 1607 KiB  
Article
Costatone C—A New Halogenated Monoterpene from the New Zealand Red Alga Plocamium angustum
by Joe Bracegirdle, Zaineb Sohail, Michael J. Fairhurst, Monica L. Gerth, Giuseppe C. Zuccarello, Muhammad Ali Hashmi and Robert A. Keyzers
Mar. Drugs 2019, 17(7), 418; https://doi.org/10.3390/md17070418 - 19 Jul 2019
Cited by 9 | Viewed by 4360
Abstract
Red algae of the genus Plocamium have been a rich source of halogenated monoterpenes. Herein, a new cyclic monoterpene, costatone C (7), was isolated from the extract of P. angustum collected in New Zealand, along with the previously reported (1E [...] Read more.
Red algae of the genus Plocamium have been a rich source of halogenated monoterpenes. Herein, a new cyclic monoterpene, costatone C (7), was isolated from the extract of P. angustum collected in New Zealand, along with the previously reported (1E,5Z)-1,6-dichloro-2-methylhepta-1,5-dien-3-ol (8). Elucidation of the planar structure of 7 was achieved through conventional NMR and (−)-HR-APCI-MS techniques, and the absolute configuration by comparison of experimental and DFT-calculated ECD spectra. The absolute configuration of 8 was determined using Mosher’s method. Compound 7 showed mild antibacterial activity against Staphylococcus aureus and S. epidermidis. The state of Plocamium taxonomy and its implications upon natural product distributions, especially across samples from specimens collected in different countries, is also discussed. Full article
Show Figures

Figure 1

10 pages, 1536 KiB  
Article
Anverenes B–E, New Polyhalogenated Monoterpenes from the Antarctic Red Alga Plocamium cartilagineum
by Andrew J. Shilling, Jacqueline L. von Salm, Anthony R. Sanchez, Younghoon Kee, Charles D. Amsler, James B. McClintock and Bill J. Baker
Mar. Drugs 2019, 17(4), 230; https://doi.org/10.3390/md17040230 - 17 Apr 2019
Cited by 21 | Viewed by 6517
Abstract
The subtidal red alga Plocamium cartilagineum was collected from the Western Antarctic Peninsula during the 2011 and 2017 austral summers. Bulk collections from specific sites corresponded to chemogroups identified by Young et al. in 2013. One of the chemogroups yielded several known acyclic [...] Read more.
The subtidal red alga Plocamium cartilagineum was collected from the Western Antarctic Peninsula during the 2011 and 2017 austral summers. Bulk collections from specific sites corresponded to chemogroups identified by Young et al. in 2013. One of the chemogroups yielded several known acyclic halogenated monoterpenes (25) as well as undescribed compounds of the same class, anverenes B–D (68). Examination of another chemogroup yielded an undescribed cyclic halogenated monoterpene anverene E (9) as its major secondary metabolite. Elucidation of structures was achieved through one-dimensional (1D) and 2D nuclear magnetic resonance (NMR) spectroscopy and negative chemical ionization mass spectrometry. Compounds 19 show moderate cytotoxicity against cervical cancer (HeLa) cells. Full article
(This article belongs to the Special Issue Terpenoids from Marine Organisms)
Show Figures

Figure 1

27 pages, 3163 KiB  
Review
Seaweed Secondary Metabolites In Vitro and In Vivo Anticancer Activity
by Djenisa H. A. Rocha, Ana M. L. Seca and Diana C. G. A. Pinto
Mar. Drugs 2018, 16(11), 410; https://doi.org/10.3390/md16110410 - 26 Oct 2018
Cited by 94 | Viewed by 11473
Abstract
Isolation, finding or discovery of novel anticancer agents is very important for cancer treatment, and seaweeds are one of the largest producers of chemically active metabolites with valuable cytotoxic properties, and therefore can be used as new chemotherapeutic agents or source of inspiration [...] Read more.
Isolation, finding or discovery of novel anticancer agents is very important for cancer treatment, and seaweeds are one of the largest producers of chemically active metabolites with valuable cytotoxic properties, and therefore can be used as new chemotherapeutic agents or source of inspiration to develop new ones. Identification of the more potent and selective anticancer components isolated from brown, green and red seaweeds, as well as studies of their mode of action is very attractive and constitute a small but relevant progress for pharmacological applications. Several researchers have carried out in vitro and in vivo studies in various cell lines and have disclosed the active metabolites among the terpenoids, including carotenoids, polyphenols and alkaloids that can be found in seaweeds. In this review the type of metabolites and their cytotoxic or antiproliferative effects will be discussed additionally their mode of action, structure-activity relationship and selectivity will also be revealed. The diterpene dictyolactone, the sterol cholest-5-en-3β,7α-diol and the halogenated monoterpene halomon are among the reported compounds, the ones that present sub-micromolar cytotoxicity. Additionally, one dimeric sesquiterpene of the cyclolaurane-type, three bromophenols and one halogenated monoterpene should be emphasized because they exhibit half maximal inhibitory concentration (IC50) values between 1–5 µM against several cell lines. Full article
(This article belongs to the Special Issue Discovery and Application of Macroalgae-Derived Natural Products)
Show Figures

Graphical abstract

14 pages, 2526 KiB  
Article
Mertensene, a Halogenated Monoterpene, Induces G2/M Cell Cycle Arrest and Caspase Dependent Apoptosis of Human Colon Adenocarcinoma HT29 Cell Line through the Modulation of ERK-1/-2, AKT and NF-κB Signaling
by Safa Tarhouni-Jabberi, Ons Zakraoui, Efstathia Ioannou, Ichrak Riahi-Chebbi, Meriam Haoues, Vassilios Roussis, Riadh Kharrat and Khadija Essafi-Benkhadir
Mar. Drugs 2017, 15(7), 221; https://doi.org/10.3390/md15070221 - 20 Jul 2017
Cited by 47 | Viewed by 5268
Abstract
Conventional treatment of advanced colorectal cancer is associated with tumor resistance and toxicity towards normal tissues. Therefore, development of effective anticancer therapeutic alternatives is still urgently required. Nowadays, marine secondary metabolites have been extensively investigated due to the fact that they frequently exhibit [...] Read more.
Conventional treatment of advanced colorectal cancer is associated with tumor resistance and toxicity towards normal tissues. Therefore, development of effective anticancer therapeutic alternatives is still urgently required. Nowadays, marine secondary metabolites have been extensively investigated due to the fact that they frequently exhibit anti-tumor properties. However, little attention has been given to terpenoids isolated from seaweeds. In this study, we isolated the halogenated monoterpene mertensene from the red alga Pterocladiella capillacea (S.G. Gmelin) Santelices and Hommersand and we highlight its inhibitory effect on the viability of two human colorectal adenocarcinoma cell lines HT29 and LS174. Interestingly, exposure of HT29 cells to different concentrations of mertensene correlated with the activation of MAPK ERK-1/-2, Akt and NF-κB pathways. Moreover, mertensene-induced G2/M cell cycle arrest was associated with a decrease in the phosphorylated forms of the anti-tumor transcription factor p53, retinoblastoma protein (Rb), cdc2 and chkp2. Indeed, a reduction of the cellular level of cyclin-dependent kinases CDK2 and CDK4 was observed in mertensene-treated cells. We also demonstrated that mertensene triggers a caspase-dependent apoptosis in HT29 cancer cells characterized by the activation of caspase-3 and the cleavage of poly (ADP-ribose) polymerase (PARP). Besides, the level of death receptor-associated protein TRADD increased significantly in a concentration-dependent manner. Taken together, these results demonstrate the potential of mertensene as a drug candidate for the treatment of colon cancer. Full article
Show Figures

Figure 1

14 pages, 603 KiB  
Article
Site-Specific Variability in the Chemical Diversity of the Antarctic Red Alga Plocamium cartilagineum
by Ryan M. Young, Jacqueline L. Von Salm, Margaret O. Amsler, Juan Lopez-Bautista, Charles D. Amsler, James B. McClintock and Bill J. Baker
Mar. Drugs 2013, 11(6), 2126-2139; https://doi.org/10.3390/md11062126 - 14 Jun 2013
Cited by 27 | Viewed by 8348
Abstract
Plocamium cartilagineum is a common red alga on the benthos of Antarctica and can be a dominant understory species along the western Antarctic Peninsula. Algae from this region have been studied chemically, and like “P. cartilagineum” from other worldwide locations where [...] Read more.
Plocamium cartilagineum is a common red alga on the benthos of Antarctica and can be a dominant understory species along the western Antarctic Peninsula. Algae from this region have been studied chemically, and like “P. cartilagineum” from other worldwide locations where it is common, it is rich in halogenated monoterpenes, some of which have been implicated as feeding deterrents toward sympatric algal predators. Secondary metabolites are highly variable in this alga, both qualitatively and quantitatively, leading us to probe individual plants to track the possible link of variability to genetic or other factors. Using cox1 and rbcL gene sequencing, we find that the Antarctic alga divides into two closely related phylogroups, but not species, each of which is further divided into one of five chemogroups. The chemogroups themselves, defined on the basis of Bray-Curtis similarity profiling of GC/QqQ chromatographic analyses, are largely site specific within a 10 km2 area. Thus, on the limited geographical range of this analysis, P. cartilagineum displays only modest genetic radiation, but its secondary metabolome was found to have experienced more extensive radiation. Such metabogenomic divergence demonstrated on the larger geographical scale of the Antarctic Peninsula, or perhaps even continent-wide, may contribute to the discovery of cryptic speciation. Full article
Show Figures

Graphical abstract

Back to TopTop