Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = hIAPP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2921 KiB  
Article
Coenzyme Q10 Enhances Resilience of Mitochondrial-like Membranes Against Amyloidogenic Peptides
by Raina Marie Seychell, Adam El Saghir, Gianluca Farrugia and Neville Vassallo
Membranes 2025, 15(5), 148; https://doi.org/10.3390/membranes15050148 - 13 May 2025
Viewed by 839
Abstract
Mitochondria possess a double-membrane envelope which is susceptible to insult by pathogenic intracellular aggregates of amyloid-forming peptides, such as the amyloid-beta (1-42) (Aβ42) peptide and the human islet amyloid polypeptide (hIAPP). The molecular composition of membranes plays a pivotal role in regulating peptide [...] Read more.
Mitochondria possess a double-membrane envelope which is susceptible to insult by pathogenic intracellular aggregates of amyloid-forming peptides, such as the amyloid-beta (1-42) (Aβ42) peptide and the human islet amyloid polypeptide (hIAPP). The molecular composition of membranes plays a pivotal role in regulating peptide aggregation and cytotoxicity. Therefore, we hypothesized that modifying the physicochemical properties of mitochondrial model membranes with a small molecule might act as a countermeasure against the formation of, and damage by, membrane-active amyloid peptides. To investigate this, we inserted the natural ubiquinone Coenzyme Q10 (CoQ10) in model mito-mimetic lipid vesicles, and studied how they interacted with Aβ42 and hIAPP peptide monomers and oligomers. Our results demonstrate that the membrane incorporation of CoQ10 significantly attenuated fibrillization of the peptides, whilst also making the membranes more resilient against peptide-induced permeabilization. Furthermore, these protective effects were linked with the ability of CoQ10 to enhance membrane packing in the inner acyl chain region, which increased the mechanical stability of the vesicle membranes. Based on our collective observations, we propose that mitochondrial resilience against toxic biomolecules implicit in protein misfolding disorders such as Alzheimer’s disease and type-2 diabetes, could potentially be enhanced by increasing CoQ10 levels within mitochondria. Full article
(This article belongs to the Special Issue Composition and Biophysical Properties of Lipid Membranes)
Show Figures

Figure 1

14 pages, 6818 KiB  
Communication
UTRs and Ago-2/miR-335 Complex Restricts Amylin Translation in Insulinoma and Human Pancreatic β-Cells
by Zhanar Kudaibergenova, Satyabrata Pany, Elizabeth Placheril and Aleksandar M. Jeremic
Int. J. Mol. Sci. 2024, 25(17), 9614; https://doi.org/10.3390/ijms25179614 - 5 Sep 2024
Cited by 1 | Viewed by 1231
Abstract
Amylin promoter and transcriptional factors are well-established, inducible factors in the production of the main amyloidogenic pancreatic hormone, human islet amyloid peptide (hIAPP) or amylin. However, posttranscriptional mechanisms driving hIAPP expression in pancreas remain enigmatic, and hence were explored here. The translational assay [...] Read more.
Amylin promoter and transcriptional factors are well-established, inducible factors in the production of the main amyloidogenic pancreatic hormone, human islet amyloid peptide (hIAPP) or amylin. However, posttranscriptional mechanisms driving hIAPP expression in pancreas remain enigmatic, and hence were explored here. The translational assay revealed that both 5′ and 3′ untranslated regions (UTRs) of hIAPP restricted expression of the luciferase constructs only in constructs driven by the hIAPP promoter. Bioinformatics analysis revealed several putative seed sequences for a dozen micro RNAs (miRNAs) in hIAPP’s 3′ UTR. miR-182, miR-335, and miR-495 were the most downregulated miRNAs in stressed human islets exposed to endoplasmic reticulum (ER) or metabolic stressors, thapsigargin (TG) or high glucose (HG). Correspondingly, miR-335 mimics alone or in combination with miR-495 and miR-182 mimics significantly and potently (>3-fold) reduced hIAPP protein expression in HG-treated cultured human islets. siRNA-mediated silencing of Ago2 but not Ago1 significantly stimulated hIAPP expression and secretion from transfected, HG-treated human islets. Conversely, ectopic expression of Ago2 in hIAPP-expressing RIN-m5F cell line driven by CMV promoter reduced hIAPP intracellular protein levels. Collectively, the results point to a novel and synergistic role for hIAPP promoter, 5/3′ UTRs and Ago-2/miR-335 complex in post-transcriptional regulation of hIAPP gene expression in normal and metabolically active β-cells. Full article
(This article belongs to the Special Issue Molecular Research on Diabetes)
Show Figures

Figure 1

13 pages, 6359 KiB  
Article
The Inhibition Effect of Epigallocatechin-3-Gallate on the Co-Aggregation of Amyloid-β and Human Islet Amyloid Polypeptide Revealed by Replica Exchange Molecular Dynamics Simulations
by Xuhua Li, Yu Zhang, Zhiwei Yang, Shengli Zhang and Lei Zhang
Int. J. Mol. Sci. 2024, 25(3), 1636; https://doi.org/10.3390/ijms25031636 - 29 Jan 2024
Cited by 3 | Viewed by 2337
Abstract
Alzheimer’s disease and Type 2 diabetes are two epidemiologically linked diseases which are closely associated with the misfolding and aggregation of amyloid proteins amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP), respectively. The co-aggregation of the two amyloid proteins is regarded as the [...] Read more.
Alzheimer’s disease and Type 2 diabetes are two epidemiologically linked diseases which are closely associated with the misfolding and aggregation of amyloid proteins amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP), respectively. The co-aggregation of the two amyloid proteins is regarded as the fundamental molecular mechanism underlying their pathological association. The green tea extract epigallocatechin-3-gallate (EGCG) has been extensively demonstrated to inhibit the amyloid aggregation of Aβ and hIAPP proteins. However, its potential role in amyloid co-aggregation has not been thoroughly investigated. In this study, we employed the enhanced-sampling replica exchange molecular dynamics simulation (REMD) method to investigate the effect of EGCG on the co-aggregation of Aβ and hIAPP. We found that EGCG molecules substantially diminish the β-sheet structures within the amyloid core regions of Aβ and hIAPP in their co-aggregates. Through hydrogen-bond, π–π and cation–π interactions targeting polar and aromatic residues of Aβ and hIAPP, EGCG effectively attenuates both inter-chain and intra-chain interactions within the co-aggregates. All these findings indicated that EGCG can effectively inhibit the co-aggregation of Aβ and hIAPP. Our study expands the potential applications of EGCG as an anti-amyloidosis agent and provides therapeutic options for the pathological association of amyloid misfolding disorders. Full article
Show Figures

Figure 1

18 pages, 2604 KiB  
Article
The Effect of Calcium Ions on hIAPP Channel Activity: Possible Implications in T2DM
by Daniela Meleleo, Giuseppe Cibelli, Anna Valenzano, Maria Mastrodonato and Rosanna Mallamaci
Membranes 2023, 13(11), 878; https://doi.org/10.3390/membranes13110878 - 9 Nov 2023
Cited by 1 | Viewed by 2327
Abstract
The calcium ion (Ca2+) has been linked to type 2 diabetes mellitus (T2DM), although the role of Ca2+ in this disorder is the subject of intense investigation. Serum Ca2+ dyshomeostasis is associated with the development of insulin resistance, reduced [...] Read more.
The calcium ion (Ca2+) has been linked to type 2 diabetes mellitus (T2DM), although the role of Ca2+ in this disorder is the subject of intense investigation. Serum Ca2+ dyshomeostasis is associated with the development of insulin resistance, reduced insulin sensitivity, and impaired glucose tolerance. However, the molecular mechanisms involving Ca2+ ions in pancreatic β-cell loss and subsequently in T2DM remain poorly understood. Implicated in the decline in β-cell functions are aggregates of human islet amyloid polypeptide (hIAPP), a small peptide secreted by β-cells that shows a strong tendency to self-aggregate into β-sheet-rich aggregates that evolve toward the formation of amyloid deposits and mature fibrils. The soluble oligomers of hIAPP can permeabilize the cell membrane by interacting with bilayer lipids. Our study aimed to evaluate the effect of Ca2+ on the ability of the peptide to incorporate and form ion channels in zwitterionic planar lipid membranes (PLMs) composed of palmitoyl-oleoyl-phosphatidylcholine (POPC) and on the aggregation process of hIAPP molecules in solution. Our results may help to clarify the link between Ca2+ ions, hIAPP peptide, and consequently the pathophysiology of T2DM. Full article
Show Figures

Graphical abstract

15 pages, 3237 KiB  
Article
Tat-CIAPIN1 Prevents Pancreatic β-Cell Death in hIAPP-Induced RINm5F Cells and T2DM Animal Model
by Hyeon Ji Yeo, Min Jea Shin, Ki-Yeon Yoo, Bo Hyun Jung, Won Sik Eum and Soo Young Choi
Int. J. Mol. Sci. 2023, 24(13), 10478; https://doi.org/10.3390/ijms241310478 - 22 Jun 2023
Cited by 6 | Viewed by 2047
Abstract
It is well known that the cytokine-induced apoptosis inhibitor 1 (CIAPIN1) protein plays an important role in biological progresses as an anti-apoptotic protein. Human islet amyloid peptide (hIAPP), known as amylin, is caused to pancreatic β-cell death in type 2 diabetes mellitus (T2DM). [...] Read more.
It is well known that the cytokine-induced apoptosis inhibitor 1 (CIAPIN1) protein plays an important role in biological progresses as an anti-apoptotic protein. Human islet amyloid peptide (hIAPP), known as amylin, is caused to pancreatic β-cell death in type 2 diabetes mellitus (T2DM). However, the function of CIAPIN1 protein on T2DM is not yet well studied. Therefore, we investigated the effects of CIAPIN1 protein on a hIAPP-induced RINm5F cell and T2DM animal model induced by a high-fat diet (HFD) and streptozotocin (STZ). The Tat-CIAPIN1 protein reduced the activation of mitogen-activated protein kinase (MAPK) and regulated the apoptosis-related protein expression levels including COX-2, iNOS, Bcl-2, Bax, and Caspase-3 in hIAPP-induced RINm5F cells. In a T2DM mice model, the Tat-CIAPIN1 protein ameliorated the pathological changes of pancreatic β-cells and reduced the fasting blood glucose, body weight and hemoglobin Alc (HbAlc) levels. In conclusion, the Tat-CIAPIN1 protein showed protective effects against T2DM by protection of β-cells via inhibition of hIAPP toxicity and by regulation of a MAPK signal pathway, suggesting CIAPIN1 protein can be a therapeutic protein drug candidate by beneficial regulation of T2DM. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

27 pages, 5696 KiB  
Article
Exploring the Role of Anionic Lipid Nanodomains in the Membrane Disruption and Protein Folding of Human Islet Amyloid Polypeptide Oligomers on Lipid Membrane Surfaces Using Multiscale Molecular Dynamics Simulations
by Ngoc Nguyen, Amber Lewis, Thuong Pham, Donald Sikazwe and Kwan H. Cheng
Molecules 2023, 28(10), 4191; https://doi.org/10.3390/molecules28104191 - 19 May 2023
Cited by 4 | Viewed by 2863
Abstract
The aggregation of human Islet Amyloid Polypeptide (hIAPP) on cell membranes is linked to amyloid diseases. However, the physio-chemical mechanisms of how these hIAPP aggregates trigger membrane damage are unclear. Using coarse-grained and all-atom molecular dynamics simulations, we investigated the role of lipid [...] Read more.
The aggregation of human Islet Amyloid Polypeptide (hIAPP) on cell membranes is linked to amyloid diseases. However, the physio-chemical mechanisms of how these hIAPP aggregates trigger membrane damage are unclear. Using coarse-grained and all-atom molecular dynamics simulations, we investigated the role of lipid nanodomains in the presence or absence of anionic lipids, phosphatidylserine (PS), and a ganglioside (GM1), in the membrane disruption and protein folding behaviors of hIAPP aggregates on phase-separated raft membranes. Our raft membranes contain liquid-ordered (Lo), liquid-disordered (Ld), mixed Lo/Ld (Lod), PS-cluster, and GM1-cluster nanosized domains. We observed that hIAPP aggregates bound to the Lod domain in the absence of anionic lipids, but also to the GM1-cluster- and PS-cluster-containing domains, with stronger affinity in the presence of anionic lipids. We discovered that L16 and I26 are the lipid anchoring residues of hIAPP binding to the Lod and PS-cluster domains. Finally, significant lipid acyl chain order disruption in the annular lipid shells surrounding the membrane-bound hIAPP aggregates and protein folding, particularly beta-sheet formation, in larger protein aggregates were evident. We propose that the interactions of hIAPP and both non-anionic and anionic lipid nanodomains represent key molecular events of membrane damage associated with the pathogenesis of amyloid diseases. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry)
Show Figures

Figure 1

23 pages, 3275 KiB  
Article
Novel Hominid-Specific IAPP Isoforms: Potential Biomarkers of Early Alzheimer’s Disease and Inhibitors of Amyloid Formation
by Qing-Rong Liu, Min Zhu, Qinghua Chen, Maja Mustapic, Dimitrios Kapogiannis and Josephine M. Egan
Biomolecules 2023, 13(1), 167; https://doi.org/10.3390/biom13010167 - 13 Jan 2023
Cited by 4 | Viewed by 3095
Abstract
(1) Background and aims: Amyloidosis due to aggregation of amyloid-β (Aβ42) is a key pathogenic event in Alzheimer’s disease (AD), whereas aggregation of mature islet amyloid polypeptide (IAPP37) in human islets leads to β-cell dysfunction. The aim of this [...] Read more.
(1) Background and aims: Amyloidosis due to aggregation of amyloid-β (Aβ42) is a key pathogenic event in Alzheimer’s disease (AD), whereas aggregation of mature islet amyloid polypeptide (IAPP37) in human islets leads to β-cell dysfunction. The aim of this study is to uncover potential biomarkers that might additionally point to therapy for early AD patients. (2) Methods: We used bioinformatic approach to uncover novel IAPP isoforms and developed a quantitative selective reaction monitoring (SRM) proteomic assay to measure their peptide levels in human plasma and CSF from individuals with early AD and controls, as well as postmortem cerebrum of clinical confirmed AD and controls. We used Thioflavin T amyloid reporter assay to measure the IAPP isoform fibrillation propensity and anti-amyloid potential against aggregation of Aβ42 and IAPP37. (3) Results: We uncovered hominid-specific IAPP isoforms: hIAPPβ, which encodes an elongated propeptide, and hIAPPγ, which is processed to mature IAPP25 instead of IAPP37. We found that hIAPPβ was significantly reduced in the plasma of AD patients with the accuracy of 89%. We uncovered that IAPP25 and a GDNF derived DNSP11 were nonaggregating peptides that inhibited the aggregation of IAPP37 and Aβ42. (4) Conclusions: The novel peptides derived from hIAPP isoforms have potential to serve as blood-derived biomarkers for early AD and be developed as peptide based anti-amyloid medicine. Full article
(This article belongs to the Special Issue Effective Strategies for the Treatment of Alzheimer’s Disease)
Show Figures

Figure 1

18 pages, 3159 KiB  
Article
Decreased Hyocholic Acid and Lysophosphatidylcholine Induce Elevated Blood Glucose in a Transgenic Porcine Model of Metabolic Disease
by Jianping Xu, Kaiyi Zhang, Bintao Qiu, Jieying Liu, Xiaoyu Liu, Shulin Yang and Xinhua Xiao
Metabolites 2022, 12(12), 1164; https://doi.org/10.3390/metabo12121164 - 23 Nov 2022
Cited by 9 | Viewed by 2743
Abstract
(1) Background: This work aims to investigate the metabolomic changes in PIGinH11 pigs and investigate differential compounds as potential therapeutic targets for metabolic diseases. (2) Methods: PIGinH11 pigs were established with a CRISPR/Cas9 system. PNPLA3I148M, hIAPP, and GIPRdn were knocked [...] Read more.
(1) Background: This work aims to investigate the metabolomic changes in PIGinH11 pigs and investigate differential compounds as potential therapeutic targets for metabolic diseases. (2) Methods: PIGinH11 pigs were established with a CRISPR/Cas9 system. PNPLA3I148M, hIAPP, and GIPRdn were knocked in the H11 locus of the pig genome. The differential metabolites between and within groups were compared at baseline and two months after high-fat-high-sucrose diet induction. (3) Results: 72.02% of the 815 detected metabolites were affected by the transgenic effect. Significantly increased metabolites included isoleucine, tyrosine, methionine, oxoglutaric acid, acylcarnitine, glucose, sphinganines, ceramides, and phosphatidylserines, while fatty acids and conjugates, phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins were decreased. Lower expression of GPAT3 and higher expression of PNPLA3I148M decreased the synthesis of diacylglycerol and phosphatidylcholines. Accumulated ceramides that block Akt signaling and decrease hyocholic acid and lysophosphatidylcholines might be the main reason for increased blood glucose in PIGinH11 pigs, which was consistent with metabolomic changes in patients. (4) Conclusions: Through serum metabolomics and lipidomics studies, significant changes in obesity and diabetes-related biomarkers were detected in PIGinH11 pigs. Excessive fatty acids β-oxidation interfered with glucose and amino acids catabolism and reduced phosphatidylcholines. Decreased hyocholic acid, lysophosphatidylcholine, and increased ceramides exacerbated insulin resistance and elevated blood glucose. Phosphatidylserines were also increased, which might promote chronic inflammation by activating macrophages. Full article
(This article belongs to the Topic Metabolism and Health)
Show Figures

Figure 1

13 pages, 2501 KiB  
Article
Melatonin Inhibits hIAPP Oligomerization by Preventing β-Sheet and Hydrogen Bond Formation of the Amyloidogenic Region Revealed by Replica-Exchange Molecular Dynamics Simulation
by Gang Wang, Xinyi Zhu, Xiaona Song, Qingwen Zhang and Zhenyu Qian
Int. J. Mol. Sci. 2022, 23(18), 10264; https://doi.org/10.3390/ijms231810264 - 6 Sep 2022
Cited by 11 | Viewed by 2588
Abstract
The pathogenesis of type 2 diabetes (T2D) is highly related to the abnormal self-assembly of the human islet amyloid polypeptide (hIAPP) into amyloid aggregates. To inhibit hIAPP aggregation is considered a promising therapeutic strategy for T2D treatment. Melatonin (Mel) was reported to effectively [...] Read more.
The pathogenesis of type 2 diabetes (T2D) is highly related to the abnormal self-assembly of the human islet amyloid polypeptide (hIAPP) into amyloid aggregates. To inhibit hIAPP aggregation is considered a promising therapeutic strategy for T2D treatment. Melatonin (Mel) was reported to effectively impede the accumulation of hIAPP aggregates and dissolve preformed fibrils. However, the underlying mechanism at the atomic level remains elusive. Here, we performed replica-exchange molecular dynamics (REMD) simulations to investigate the inhibitory effect of Mel on hIAPP oligomerization by using hIAPP20–29 octamer as templates. The conformational ensemble shows that Mel molecules can significantly prevent the β-sheet and backbone hydrogen bond formation of hIAPP20–29 octamer and remodel hIAPP oligomers and transform them into less compact conformations with more disordered contents. The interaction analysis shows that the binding behavior of Mel is dominated by hydrogen bonding with a peptide backbone and strengthened by aromatic stacking and CH–π interactions with peptide sidechains. The strong hIAPP–Mel interaction disrupts the hIAPP20–29 association, which is supposed to inhibit amyloid aggregation and cytotoxicity. We also performed conventional MD simulations to investigate the influence and binding affinity of Mel on the preformed hIAPP1–37 fibrillar octamer. Mel was found to preferentially bind to the amyloidogenic region hIAPP20–29, whereas it has a slight influence on the structural stability of the preformed fibrils. Our findings illustrate a possible pathway by which Mel alleviates diabetes symptoms from the perspective of Mel inhibiting amyloid deposits. This work reveals the inhibitory mechanism of Mel against hIAPP20–29 oligomerization, which provides useful clues for the development of efficient anti-amyloid agents. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Biophysics in China)
Show Figures

Figure 1

19 pages, 1652 KiB  
Review
Factors That Contribute to hIAPP Amyloidosis in Type 2 Diabetes Mellitus
by Adriana Sevcuka, Kenneth White and Cassandra Terry
Life 2022, 12(4), 583; https://doi.org/10.3390/life12040583 - 14 Apr 2022
Cited by 13 | Viewed by 4570
Abstract
Cases of Type 2 Diabetes Mellitus (T2DM) are increasing at an alarming rate due to the rise in obesity, sedentary lifestyles, glucose-rich diets and other factors. Numerous studies have increasingly illustrated the pivotal role that human islet amyloid polypeptide (hIAPP) plays in the [...] Read more.
Cases of Type 2 Diabetes Mellitus (T2DM) are increasing at an alarming rate due to the rise in obesity, sedentary lifestyles, glucose-rich diets and other factors. Numerous studies have increasingly illustrated the pivotal role that human islet amyloid polypeptide (hIAPP) plays in the pathology of T2DM through damage and subsequent loss of pancreatic β-cell mass. HIAPP can misfold and form amyloid fibrils which are preceded by pre-fibrillar oligomers and monomers, all of which have been linked, to a certain extent, to β-cell cytotoxicity through a range of proposed mechanisms. This review provides an up-to-date summary of recent progress in the field, highlighting factors that contribute to hIAPP misfolding and aggregation such as hIAPP protein concentration, cell stress, molecular chaperones, the immune system response and cross-seeding with other amyloidogenic proteins. Understanding the structure of hIAPP and how these factors affect amyloid formation will help us better understand how hIAPP misfolds and aggregates and, importantly, help identify potential therapeutic targets for inhibiting amyloidosis so alternate and more effective treatments for T2DM can be developed. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Figure 1

17 pages, 5286 KiB  
Article
Mechanistic Insights into the Polymorphic Associations and Cross-Seeding of Aβ and hIAPP in the Presence of Histidine Tautomerism: An All-Atom Molecular Dynamic Study
by Abbas Salimi, Sompriya Chatterjee and Jin Yong Lee
Int. J. Mol. Sci. 2022, 23(4), 1930; https://doi.org/10.3390/ijms23041930 - 9 Feb 2022
Cited by 3 | Viewed by 2564
Abstract
Hundreds of millions of people around the world have been affected by Type 2 diabetes (T2D) which is a metabolic disorder. Clinical research has revealed T2D as a possible risk factor for Alzheimer’s disease (AD) development (and vice versa). Amyloid-β (Aβ) and human [...] Read more.
Hundreds of millions of people around the world have been affected by Type 2 diabetes (T2D) which is a metabolic disorder. Clinical research has revealed T2D as a possible risk factor for Alzheimer’s disease (AD) development (and vice versa). Amyloid-β (Aβ) and human islet amyloid polypeptide are the main pathological species in AD and T2D, respectively. However, the mechanisms by which these two amyloidogenic peptides co-aggregate are largely uninvestigated. Herein, for the first time, we present the cross-seeding between Amylin1-37 and Aβ40 considering the particular effect of the histidine tautomerism at atomic resolution applying the all-atom molecular dynamics (MD) simulations for heterodimeric complexes. The results via random seed MD simulations indicated that the Aβ40(δδδ) isomer in cross-talking with Islet(ε) and Islet(δ) isomers could retain or increase the β-sheet content in its structure that may make it more prone to further aggregation and exhibit higher toxicity. The other tautomeric isomers which initially did not have a β-sheet structure in their monomeric forms did not show any generated β-sheet, except for one seed of the Islet(ε) and Aβ40(εεε) heterodimers complex that displayed a small amount of formed β-sheet. This computational research may provide a different point of view to examine all possible parameters that may contribute to the development of AD and T2D and provide a better understanding of the pathological link between these two severe diseases. Full article
(This article belongs to the Special Issue State-of-the-Art Physical Chemistry and Chemical Physics in Korea)
Show Figures

Graphical abstract

24 pages, 4091 KiB  
Review
Molecular Mechanisms of Amylin Turnover, Misfolding and Toxicity in the Pancreas
by Diti Chatterjee Bhowmick, Zhanar Kudaibergenova, Lydia Burnett and Aleksandar M. Jeremic
Molecules 2022, 27(3), 1021; https://doi.org/10.3390/molecules27031021 - 2 Feb 2022
Cited by 20 | Viewed by 7217
Abstract
Amyloidosis is a common pathological event in which proteins self-assemble into misfolded soluble and insoluble molecular forms, oligomers and fibrils that are often toxic to cells. Notably, aggregation-prone human islet amyloid polypeptide (hIAPP), or amylin, is a pancreatic hormone linked to islet β-cells [...] Read more.
Amyloidosis is a common pathological event in which proteins self-assemble into misfolded soluble and insoluble molecular forms, oligomers and fibrils that are often toxic to cells. Notably, aggregation-prone human islet amyloid polypeptide (hIAPP), or amylin, is a pancreatic hormone linked to islet β-cells demise in diabetics. The unifying mechanism by which amyloid proteins, including hIAPP, aggregate and kill cells is still matter of debate. The pathology of type-2 diabetes mellitus (T2DM) is characterized by extracellular and intracellular accumulation of toxic hIAPP species, soluble oligomers and insoluble fibrils in pancreatic human islets, eventually leading to loss of β-cell mass. This review focuses on molecular, biochemical and cell-biology studies exploring molecular mechanisms of hIAPP synthesis, trafficking and degradation in the pancreas. In addition to hIAPP turnover, the dynamics and the mechanisms of IAPP–membrane interactions; hIAPP aggregation and toxicity in vitro and in situ; and the regulatory role of diabetic factors, such as lipids and cholesterol, in these processes are also discussed. Full article
Show Figures

Figure 1

12 pages, 5042 KiB  
Article
Evaluation of Amyloid Polypeptide Aggregation Inhibition and Disaggregation Activity of A-Type Procyanidins
by Taisei Tanaka, Vipul V. Betkekar, Ken Ohmori, Keisuke Suzuki and Hideyuki Shigemori
Pharmaceuticals 2021, 14(11), 1118; https://doi.org/10.3390/ph14111118 - 31 Oct 2021
Cited by 12 | Viewed by 3153
Abstract
The number of people worldwide suffering from Alzheimer’s disease (AD) and type 2 diabetes (T2D) is on the rise. Amyloid polypeptides are thought to be associated with the onset of both diseases. Amyloid-β (Aβ) that aggregates in the brain and human islet amyloid [...] Read more.
The number of people worldwide suffering from Alzheimer’s disease (AD) and type 2 diabetes (T2D) is on the rise. Amyloid polypeptides are thought to be associated with the onset of both diseases. Amyloid-β (Aβ) that aggregates in the brain and human islet amyloid polypeptide (hIAPP) that aggregates in the pancreas are considered cytotoxic and the cause of the development of AD and T2D, respectively. Thus, inhibiting amyloid polypeptide aggregation and disaggregation existing amyloid aggregates are promising approaches in the therapy and prevention against both diseases. Therefore, in this research, we evaluated the Aβ/hIAPP anti-aggregation and disaggregation activities of A-type procyanidins 17 and their substructures 8 and 9, by conducting structure–activity relationship studies and identified the active site. The thioflavin-T (Th-T) assay, which quantifies the degree of aggregation of amyloid polypeptides based on fluorescence intensity, and transmission electron microscopy (TEM), employed to directly observe amyloid polypeptides, were used to evaluate the activity. The results showed that catechol-containing compounds 16 exhibited Aβ/hIAPP anti-aggregation and disaggregation activities, while compound 7, without catechol, showed no activity. This suggests that the presence of catechol is important for both activities. Daily intake of foods containing A-type procyanidins may be effective in the prevention and treatment of both diseases. Full article
(This article belongs to the Special Issue Discovery of Natural Product-Based Amyloid Inhibitors)
Show Figures

Figure 1

14 pages, 1469 KiB  
Article
Human Islet Amyloid Polypeptide Overexpression in INS-1E Cells Influences Amylin Oligomerization under ER Stress and Oxidative Stress
by Yeong-Min Yoo and Seong Soo Joo
Int. J. Mol. Sci. 2021, 22(21), 11341; https://doi.org/10.3390/ijms222111341 - 20 Oct 2021
Cited by 7 | Viewed by 2736
Abstract
Human amylin or islet amyloid polypeptide (hIAPP) is synthesized in the pancreatic β-cells and has been shown to contribute to the pathogenesis of type 2 diabetes (T2D) in vitro and in vivo. This study compared amylin oligomerization/expression and signal transduction under endoplasmic reticulum [...] Read more.
Human amylin or islet amyloid polypeptide (hIAPP) is synthesized in the pancreatic β-cells and has been shown to contribute to the pathogenesis of type 2 diabetes (T2D) in vitro and in vivo. This study compared amylin oligomerization/expression and signal transduction under endoplasmic reticulum (ER) stress and oxidative stress. pCMV-hIAPP-overexpressing INS-1E cells presented different patterns of amylin oligomerization/expression under ER stress and oxidative stress. Amylin oligomerization/expression under ER stress showed three amylin oligomers of less than 15 kDa size in pCMV-hIAPP-overexpressing cells, while one band was detected under oxidative stress. Under ER stress conditions, HIF1α, p-ERK, CHOP, Cu/Zn-SOD, and Bax were significantly increased in pCMV-hIAPP-overexpressing cells compared to the pCMV-Entry-expressing cells (control), whereas p-Akt, p-mTOR, Mn-SOD, catalase, and Bcl-2 were significantly decreased. Under oxidative stress conditions, HIF1α, p-ERK, CHOP, Mn-SOD, catalase, and Bcl-2 were significantly reduced in pCMV-hIAPP-overexpressing cells compared to the control, whereas p-mTOR, Cu/Zn-SOD, and Bax were significantly increased. In mitochondrial oxidative phosphorylation (OXPHOS), the mitochondrial complex I and complex IV were significantly decreased under ER stress conditions and significantly increased under oxidative stress conditions in pCMV-hIAPP-overexpressing cells compared to the control. The present study results demonstrate that amylin undergoes oligomerization under ER stress in pCMV-hIAPP-overexpressing cells. In addition, human amylin overexpression under ER stress in the pancreatic β cells may enhance amylin protein aggregation, resulting in β-cell dysfunction. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 4930 KiB  
Article
Undercover Toxic Ménage à Trois of Amylin, Copper (II) and Metformin in Human Embryonic Kidney Cells
by Terenzio Congiu, Mawadda Alghrably, Abdul-Hamid Emwas, Lukasz Jaremko, Joanna I. Lachowicz, Marco Piludu, Monica Piras, Gavino Faa, Giuseppina Pichiri, Mariusz Jaremko and Pierpaolo Coni
Pharmaceutics 2021, 13(6), 830; https://doi.org/10.3390/pharmaceutics13060830 - 3 Jun 2021
Cited by 11 | Viewed by 3756
Abstract
In recent decades, type 2 diabetes complications have been correlated with amylin aggregation, copper homeostasis and metformin side effects. However, each factor was analyzed separately, and only in some rare cases copper/amylin or copper/metformin complexes were considered. We demonstrate for the first time [...] Read more.
In recent decades, type 2 diabetes complications have been correlated with amylin aggregation, copper homeostasis and metformin side effects. However, each factor was analyzed separately, and only in some rare cases copper/amylin or copper/metformin complexes were considered. We demonstrate for the first time that binary metformin/amylin and tertiary copper (II)/amylin/metformin complexes of high cellular toxicity are formed and lead to the formation of aggregated multi-level lamellar structures on the cell membrane. Considering the increased concentration of amylin, copper (II) and metformin in kidneys of T2DM patients, our findings on the toxicity of amylin and its adducts may be correlated with diabetic nephropathy development. Full article
Show Figures

Figure 1

Back to TopTop