Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (232)

Search Parameters:
Keywords = hADMs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4660 KiB  
Article
Neuroprotective Evaluation of Murraya Carbazoles: In Vitro and Docking Insights into Their Anti-AChE and Anti-Aβ Activities
by Himadri Sharma, Niti Sharma and Seong Soo A. An
Molecules 2025, 30(15), 3138; https://doi.org/10.3390/molecules30153138 - 26 Jul 2025
Viewed by 166
Abstract
The present study investigated the neuroprotective potential of the Murraya carbazole derivatives murrayanol, mahanimbine, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde using in silico and in vitro assays. The pharmacokinetic properties and potential toxicity (ADME/T) of the carbazole derivatives were assessed to evaluate their prospects as [...] Read more.
The present study investigated the neuroprotective potential of the Murraya carbazole derivatives murrayanol, mahanimbine, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde using in silico and in vitro assays. The pharmacokinetic properties and potential toxicity (ADME/T) of the carbazole derivatives were assessed to evaluate their prospects as up-and-coming drug candidates. Molecular docking was used to investigate the interactions of the compounds with Aβ (PDB: 1IYT, 2BEG, and 8EZE) and AChE receptors (PDB: 4EY7 and 1C2B). The results from the in vitro assays were used to validate and support the findings from the in silico assays. The compounds demonstrated significant inhibition of acetylcholinesterase (AChE), a key target in neurodegenerative disorders. Murrayanol and mahanimbine presented superior inhibitory activity (IC50 ~0.2 μg/mL), outperforming the reference drug, galantamine. The inhibition mechanisms were competitive (murrayanol, murrayafoline A, and 9-methyl-9H-carbazole-2-carbaldehyde) and non-competitive (mahanimbine), supported by low Ki values and strong docking affinities. The compounds also proved effective in reducing Aβ fibrillization (murrayanol: 40.83 ± 0.30%; murrayafoline A: 33.60 ± 0.55%, mahanimbine: 27.68 ± 2.71%). These findings highlight Murraya carbazoles as promising scaffolds for multifunctional agents in AD therapy. Further optimization and mechanistic studies are warranted to advance their development into clinically relevant neuroprotective agents. Full article
(This article belongs to the Special Issue Bioactive Compounds from Foods for Health Benefits)
Show Figures

Graphical abstract

17 pages, 5024 KiB  
Article
Optimization of Deposition Parameters for Ni-P-WC-BN(h) Composite Coatings via Orthogonal Experimentation and Wear Behavior of the Optimized Coating
by Yingyue Li, Zehao Liu, Yana Li and Jinran Lin
Metals 2025, 15(7), 714; https://doi.org/10.3390/met15070714 - 26 Jun 2025
Viewed by 328
Abstract
Ni–P–WC–BN(h) nanocomposite coatings were fabricated on 20CrMnTi substrates using ultrasonic-assisted pulsed electrodeposition. 20CrMnTi is a low-carbon steel that is commonly used in the manufacturing gears and shaft components. To enhance the wear resistance and extend the service life of such mechanical parts, ultrasonic-assisted [...] Read more.
Ni–P–WC–BN(h) nanocomposite coatings were fabricated on 20CrMnTi substrates using ultrasonic-assisted pulsed electrodeposition. 20CrMnTi is a low-carbon steel that is commonly used in the manufacturing gears and shaft components. To enhance the wear resistance and extend the service life of such mechanical parts, ultrasonic-assisted pulsed electrodeposition was employed as an effective surface modification technique. The microhardness, phase structure, surface morphology, and wear behavior of the coating were also characterized. An orthogonal experimental design was employed to examine the effects of current density, bath temperature, ultrasonic power, and pulse duty cycle on the microhardness and wear behavior of the coatings, aiming to optimize the deposition parameters. The optimal process combination was identified as a current density of 3 A·dm−2, a bath temperature of 55 °C, an ultrasonic power of 210 W, and a duty cycle of 0.7. Under these conditions, the coatings exhibited enhanced hardness and wear resistance. Based on the optimized parameters, additional tribological tests were conducted under various operating conditions to further evaluate wear performance. The results showed that the dominant wear mechanisms were chemical wear and adhesive wear. This study offers new insights into the fabrication of high-performance nanocomposite coatings and expands the application scope of ultrasonic-assisted pulsed electrodeposition in multiphase composite systems. Full article
(This article belongs to the Special Issue Surface Modification and Characterization of Metals and Alloys)
Show Figures

Figure 1

11 pages, 2358 KiB  
Communication
Quinaldehyde o-Nitrobenzoylhydrazone: Structure and Sensitization of HepG2 Cells to Anti-Cancer Drugs
by Valeri V. Mossine, Steven P. Kelley and Thomas P. Mawhinney
Compounds 2025, 5(3), 24; https://doi.org/10.3390/compounds5030024 - 25 Jun 2025
Viewed by 325
Abstract
A quinoline unit is present in many natural products and is an attractive pharmacophore for the development of clinical drugs, including antineoplastics. The title compound (QN) was synthesized via the condensation reaction between quinoline-2-carboxaldehyde and 2-nitrobenzhydrazide. QN’s structure was examined by X-ray diffraction [...] Read more.
A quinoline unit is present in many natural products and is an attractive pharmacophore for the development of clinical drugs, including antineoplastics. The title compound (QN) was synthesized via the condensation reaction between quinoline-2-carboxaldehyde and 2-nitrobenzhydrazide. QN’s structure was examined by X-ray diffraction and features extensive stacking interactions in the crystal. The compound is weakly toxic to HepG2 cells, with an IC50 exceeding 400 μM for 48 h exposure. QN at 50 μM, with the dose reduction index in the range of 1.9–4.4, potentiated the cytotoxicity of several clinical chemotherapeutic drugs, including doxorubicin and other topoisomerase inhibitors, vincristine, and carboplatin, but not cisplatin or 5-fluorouracil. The calculated ADME parameters predict satisfactory drug-like properties for QN. Full article
(This article belongs to the Special Issue Organic Compounds with Biological Activity)
Show Figures

Figure 1

16 pages, 7535 KiB  
Article
Effects of Current Output Modes on Corrosion Resistance of Micro-Arc Oxidation Black Coatings on Aluminum Alloy
by Shiquan Zhou, Rui Tong, Hongtao Li, Xiang Tao and Jian Chen
Materials 2025, 18(13), 2949; https://doi.org/10.3390/ma18132949 - 22 Jun 2025
Cited by 1 | Viewed by 480
Abstract
In this work, micro-arc oxidation (MAO) under constant- and gradient-current modes was used to modify the surface of 6061 aluminum alloy. A black coating was created in situ on the alloy surface by controlling the spark discharge parameters during MAO. Using an electrochemical [...] Read more.
In this work, micro-arc oxidation (MAO) under constant- and gradient-current modes was used to modify the surface of 6061 aluminum alloy. A black coating was created in situ on the alloy surface by controlling the spark discharge parameters during MAO. Using an electrochemical workstation (Metrohm Autolab, PGSTAT302 N, Herisau, Switzerland), energy-dispersive spectroscopy (EDS, JEOL, JSM-IT500A, Tokyo Metropolis, Japan), and scanning electron microscopy (SEM, JEOL, JSM-7900F, Tokyo Metropolis, Japan), the effects of the current output modes on the coating growth rate, energy consumption, colorimetric parameters (L*, a*, b*), microstructure, and corrosion resistance were methodically examined. The findings showed that the gradient-current mode (6 → 4 → 2 A/dm2) greatly lowered the micropore size (from 3.89 μm to 1.52 μm) and improved the coating compactness (porosity dropped by 40%), and all coatings satisfied the necessary blackness criterion (L* < 30). Additionally, this mode achieved excellent corrosion resistance, as demonstrated by a one-order-of-magnitude reduction in the corrosion current density (2.55 × 10−8 A/cm2 vs. 2.34 × 10−7 A/cm2), while minimizing the energy consumption (2.37 kW·h/m2·μm vs. 3.45 kW·h/m2·μm for constant current). Full article
(This article belongs to the Special Issue Surface Technology and Coatings Materials)
Show Figures

Figure 1

12 pages, 2779 KiB  
Article
Enhancing Tissue Integration and Reducing Inflammation in Silicone and Human Acellular Dermal Matrix Implants via Vacuum Plasma Treatment
by Kyung Bae Chung, Young In Lee, Jihee Kim, Ngoc Ha Nguyen, Yoo Jin Kim, Inhee Jung, Jeonghoon Lee, Hyun-Jeong Jeon, Youbong Lim, Sung Jun Lee and Ju Hee Lee
Int. J. Mol. Sci. 2025, 26(12), 5854; https://doi.org/10.3390/ijms26125854 - 18 Jun 2025
Viewed by 440
Abstract
Plasma, an ionized gas composed of charged particles, has shown therapeutic potential in enhancing biological processes such as wound healing and tissue integration. Implants, such as silicone and human acellular dermal matrix (hADM), are commonly used in reconstructive surgery, but improving their biocompatibility [...] Read more.
Plasma, an ionized gas composed of charged particles, has shown therapeutic potential in enhancing biological processes such as wound healing and tissue integration. Implants, such as silicone and human acellular dermal matrix (hADM), are commonly used in reconstructive surgery, but improving their biocompatibility and integration remains a challenge. This study investigated the effects of vacuum plasma treatment on silicone and hADM implants using an in vivo rat model. Plasma-treated and untreated implants were inserted subcutaneously, and tissue samples were collected at 1, 4, and 8 weeks post-implantation. Histological and immunohistochemical analyses were performed to assess inflammation, cellular infiltration, collagen formation (neocollagenesis), and angiogenesis. Results showed that plasma-treated silicone and hADM implants had significantly reduced capsule thickness at weeks 4 and 8 compared to untreated controls, indicating a lower chronic inflammatory response. Plasma treatment also promoted greater fibroblast infiltration and enhanced neocollagenesis within the hADM implants. Furthermore, immunohistochemical staining revealed a notable increase in blood vessel formation around and within the plasma-treated hADM implants, suggesting improved vascularization. In conclusion, vacuum plasma treatment enhances the biocompatibility and tissue integration of implants by reducing inflammation and promoting cellular and vascular responses, offering promising potential for improving outcomes in reconstructive surgery. Full article
Show Figures

Figure 1

24 pages, 4082 KiB  
Article
Epoxy-Functionalized Isatin Derivative: Synthesis, Computational Evaluation, and Antibacterial Analysis
by Deepanjali Shukla, Iqbal Azad, Mohd Arsh Khan, Ziaul Husain, Azhar Kamal, Sabahat Yasmeen Sheikh, Ibrahim Alotibi, Varish Ahmad and Firoj Hassan
Antibiotics 2025, 14(6), 595; https://doi.org/10.3390/antibiotics14060595 - 9 Jun 2025
Viewed by 2115
Abstract
Background/Objectives: The current need for new antibacterial compounds that target non-classical pathways is highlighted by the emergence of multidrug-resistant Klebsiella pneumoniae. In the development of antibiotics, DNA adenine methyltransferase (Dam), a key regulator of bacterial gene expression and pathogenicity, is still underutilized. [...] Read more.
Background/Objectives: The current need for new antibacterial compounds that target non-classical pathways is highlighted by the emergence of multidrug-resistant Klebsiella pneumoniae. In the development of antibiotics, DNA adenine methyltransferase (Dam), a key regulator of bacterial gene expression and pathogenicity, is still underutilized. Epoxy-functionalized analogues of isatin derivatives have not been adequately investigated for their antibacterial activity, particularly as Dam inhibitors. In the pursuit of antimicrobial agents, this study synthesized an epoxy-functionalized isatin derivative (L3) using a one-pot reaction. The compound was characterized using FT-IR, ¹H-NMR, 13C-NMR, HR-MS, and UV–Vis spectroscopy. Methods: In silico evaluation performed by using ADMETlab3 and SwissADME. While molecular docking studies were achieved by AutoDock and Vina to find L3’s interaction with potential antibacterial target (Dam protein in K. pneumoniae). In addition, the antibacterial potential of L3 was evaluated using minimum inhibitory concentration (MIC) assays against Bacillus cereus, Bacillus pumilus, Escherichia coli, and K. pneumoniae. Results: Among these, L3 exhibited potential inhibitory activity against K. pneumoniae, with a MIC value of 93.75 μg/mL. In silico evaluations confirmed L3’s favorable drug-like properties, including potential oral bioavailability, blood–brain barrier (BBB) permeability, and low plasma protein binding (PPB). The compound satisfied Lipinski’s and other drug-likeness rules as well as getting a quantitative estimate of drug-likeness (QED) score of 0.52. Here, a homology model of Dam protein in K. pneumoniae was generated using the SWISS-MODEL server and validated using computational tools. Targeted docking analysis revealed that L3 exhibited significant potential binding affinity against Dam protein, with binding energies of −6.4 kcal/mol and −4.85 kcal/mol, as determined by Vina and AutoDock, respectively. The associated inhibition constant was calculated as 280.35 µM. Further interaction analysis identified the formation of hydrogen bonds with TRP7 and PHE32, along with Van der Waals’ interactions involving GLY9, ASP51, and ASP179. Conclusions: These findings highlight L3 as a promising scaffold for antimicrobial drug development, particularly in targeting Dam protein in K. pneumoniae. Furthermore, the ADMET profiling and physicochemical properties of L3 support its potential as a drug-like candidate. Full article
Show Figures

Figure 1

19 pages, 1401 KiB  
Article
Design and Synthesis of Pyridine-Based Pyrrolo[2,3-d]pyrimidine Analogs as CSF1R Inhibitors: Molecular Hybridization and Scaffold Hopping Approach
by Srinivasulu Cherukupalli, Carsten Degenhart, Peter Habenberger, Anke Unger, Jan Eickhoff, Bård Helge Hoff and Eirik Sundby
Pharmaceuticals 2025, 18(6), 814; https://doi.org/10.3390/ph18060814 - 28 May 2025
Viewed by 1479
Abstract
Background/Objectives: Colony stimulating factor 1 receptor kinase (CSF1R) is a well-validated molecular target in drug discovery for various reasons. Based on the structure of an early lead molecule identified in our lab and the marketed drug Pexidartinib (PLX3397), we merged fragments of [...] Read more.
Background/Objectives: Colony stimulating factor 1 receptor kinase (CSF1R) is a well-validated molecular target in drug discovery for various reasons. Based on the structure of an early lead molecule identified in our lab and the marketed drug Pexidartinib (PLX3397), we merged fragments of Pexidartinib with our pyrrolo[2,3-d]pyrimidine nucleus, and the idea was supported by initial molecular docking studies. Thus, several new compounds were synthesized with Pexidartinib fragments on C4, C5, and C6 on the pyrrolopyrimidine scaffold using molecular hybridization. Methods: Nine final products were synthesized using a combination of Buchwald-Hartwig and Suzuki-Miyaura cross-coupling reactions in three to four steps and in good yields. The analogues were subsequently profiled as CSF1R inhibitors in enzymatic and cellular assays, and ADME properties were evaluated for some derivatives. Results: N-Methyl-N-(3-methylbenzyl)-6-(6-((pyridin-3-ylmethyl)amino)pyridin-3-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (12b) emerged as the most potent CSF1R inhibitor, showing low-nanomolar enzymatic activity, cellular efficacy, and favorable ADME properties, highlighting its promise as a lead compound for further development. Conclusions: These findings suggest that combining structural elements from previously reported CSF1R inhibitors such as Pexidartinib could guide the development of improved drug candidates targeting this kinase. Full article
(This article belongs to the Special Issue Design and Synthesis of Small Molecule Kinase Inhibitors)
Show Figures

Graphical abstract

25 pages, 7954 KiB  
Article
Comprehensive GC-MS Profiling and Multi-Modal Pharmacological Evaluations of Haloxylon griffithii: In Vitro and In Vivo Approaches
by Iram Iqbal, Mohamed A. M. Ali, Fatima Saqib, Kinza Alamgir, Mohammad S. Mubarak, Anis Ahmad Chaudhary, Mohamed El-Shazly and Heba A. S. El-Nashar
Pharmaceuticals 2025, 18(6), 770; https://doi.org/10.3390/ph18060770 - 22 May 2025
Viewed by 710
Abstract
Background/Objectives: Haloxylon griffithii is a medicinal plant possessing therapeutic effects in disorders associated with the gastrointestinal (GIT) system. This research aims to study the pharmacological activity of Haloxylon griffithii in a multidimensional manner, involving phytochemistry screening and in vitro and in vivo [...] Read more.
Background/Objectives: Haloxylon griffithii is a medicinal plant possessing therapeutic effects in disorders associated with the gastrointestinal (GIT) system. This research aims to study the pharmacological activity of Haloxylon griffithii in a multidimensional manner, involving phytochemistry screening and in vitro and in vivo experiments. Methods: The whole dried plant was extracted with 80% methanol and further fractionation using solvents of increasing polarity. GC-MS analysis was performed on the crude extract to discover volatile compounds. The spasmolytic/spasmogenic effect was assessed in isolated rabbit jejunum using spontaneous and K⁺-induced contractions, as well as contractions induced by increasing concentrations of calcium ions in depolarized tissue. Antidiarrheal activity was evaluated in Swiss albino rats/mice (n = 6/group) using castor oil-induced diarrhea and peristaltic index models. In silico ADMET screening was conducted via SwissADME and pkCSM. Results: The GC-MS profiling of H. griffithii revealed the presence of 59 phytochemicals and a rare azulene derivative and constituents, including α-santonin and hexadecanoic acid esters, with favorable pharmacokinetic profiles, as predicted using SwissADME and pkCSM computational tools. The in vitro and in vivo experiments revealed the significant calcium channel blocking activity in non-polar fractions (n-hexane and ethyl acetate), while the polar extracts (ethanolic, aqueous) exhibited cholinergic effects, indicating a dual mode of action. Conclusions: This was a first-time demonstration of both antidiarrheal and smooth muscle-relaxant activity in H. griffithii, supported by GC-MS profiling and pharmacological assay. The findings lend scientific credibility to the traditional use of the plant in community healthcare, while also reinforcing the need for further pharmacological and clinical studies to explore its potential in drug development. Full article
(This article belongs to the Special Issue Promising Natural Products in New Drug Design and Therapy)
Show Figures

Figure 1

16 pages, 1613 KiB  
Article
Clinical Value of Bioactive Adrenomedullin and Proenkephalin A in Patients with Left Ventricular Assist Devices: An Observational Study
by Leyla Dogan, Ahmad Abugameh, Alish Kolashov, Ajay Moza, Andreas Goetzenich, Christian Stoppe, Mohammed Shoaib, Deborah Bergmann, Jan Spillner, Mohammad Amen Khattab and Rashad Zayat
J. Clin. Med. 2025, 14(10), 3613; https://doi.org/10.3390/jcm14103613 - 21 May 2025
Viewed by 528
Abstract
Background/Objectives: In the context of acute heart failure, proenkephalin A (penKid) has emerged as a prognostic marker for acute kidney injury (AKI), whereas bioactive adrenomedullin (bio-ADM) has been identified as a significant biomarker linked to shock and organ dysfunction. This raises the [...] Read more.
Background/Objectives: In the context of acute heart failure, proenkephalin A (penKid) has emerged as a prognostic marker for acute kidney injury (AKI), whereas bioactive adrenomedullin (bio-ADM) has been identified as a significant biomarker linked to shock and organ dysfunction. This raises the question of whether they can serve as predictors of postoperative complications in patients receiving left ventricular assist devices (LVADs). Methods: This observational study prospectively enrolled patients who had received LVAD implantation. Routine laboratory values as well as plasma levels of penKid and bio-ADM were assessed at four time intervals, spanning from preinduction of anesthesia to 48 h post surgery. Clinical data, the HeartMate 3-risk-score (HM3RS), HeartMateII-risk-score (HMRS), Michigan-right-heart-failure risk score (MRHFS), Euromacs-RHFS (EURORHFS), and kidney failure risk score (KFR) were calculated. Multivariate logistic regression and receiver operating characteristic (ROC) analysis were performed. We entered the biomarkers with the established risk scores into the models. Results: In 20 patients who had undergone LVAD implantation, preoperative penKid level was a predictor of postoperative AKI (OR: 1.05, 95%-CI: 1.0–1.09; p = 0.049) and 30-day mortality (OR: 1.01, 95%-CI: 1.0–1.02; p = 0.033). Bio-ADM was the only predictor of postoperative right heart failure (RHF) (OR: 1.11, 95%-CI: 1.01–1.23; p = 0.034) and rehospitalization (OR: 1.06, 95%-CI: 1.0–1.13; p = 0.047). In the ROC analysis, bio-ADM, as a predictor of post-LVAD RHF, had an area under the curve (AUC) of 0.88. When bio-ADM was added to the accepted clinical scores for post-LVAD RHF prediction (CRITT-score, MRHFS, and EURORHFS), the AUC reached 0.98. The AUC for preoperative penKid, as a predictor of postoperative AKI, was 0.95, and after adding its predictive value to the KFR score, the AUC reached 0.97. Conclusions: In the present study, the biomarkers penKid and bio-ADM predicted clinically significant patient outcomes after LVAD implantation such as AKI, RHF, and 30-day mortality. Adding biomarkers to well-established risk scores improved the AUC for prediction of postoperative complications. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

33 pages, 7247 KiB  
Article
Exploratory Data Analysis of the In Vitro Effects of Novel Hydrazide-Hydrazone Antioxidants in the Context of In Silico Predictors
by Yordan Yordanov, Virginia Tzankova, Denitsa Stefanova, Maya Georgieva and Diana Tzankova
Antioxidants 2025, 14(5), 566; https://doi.org/10.3390/antiox14050566 - 8 May 2025
Viewed by 794
Abstract
Substantial in vitro experimental data have been produced about the safety, antioxidant, neuro- and hepatoprotective effects of a series of recently synthesized N-pyrrolyl hydrazide-hydrazones (compounds 5, 5a5g). However, compound activity across multiple assays varies and it is challenging to [...] Read more.
Substantial in vitro experimental data have been produced about the safety, antioxidant, neuro- and hepatoprotective effects of a series of recently synthesized N-pyrrolyl hydrazide-hydrazones (compounds 5, 5a5g). However, compound activity across multiple assays varies and it is challenging to elucidate the favorable physicochemical characteristics of the studied compounds and guide further lead optimization. The aim of the current study is to apply exploratory data analysis in order to profile the biological effects of the novel hydrazide-hydrazones, gain insights related to their mechanisms of action in the context of in silico predictions and identify key predictor–outcome relationships. We collected a dataset from available in vitro studies of compounds 5, 5a5g. It included cytotoxicity values, protection against hydrogen peroxide-induced damage in HepG2 and SH-SY5Y cells, two radical scavenging assays and a hemolysis assay across a range of treatment concentrations. SwissADME-based predictions of chemometric and ADME parameters and pro-oxidant enzyme docking data were generated to provide context for the interpretation of in vitro outcome patterns and identify causal relationships. Multiple factor analysis (MFA), followed by hierarchical clustering on principal components (HCPC), was applied to profile compounds’ biological behavior. This revealed that differences in the number of H-bond donors, in the permeability coefficient and in the docking scores to two pro-oxidant enzymes could aid in explaining the effects of compounds with similar in vitro profiles. HCPC differentiated 5a as mostly neuroprotective, 5 and 5d as hepatoprotective radical scavengers, 5g with higher docking affinity to 5-lipoxygenase (5-LOX) and myeloperoxidase (MPO) and 5b, 5c and 5f as having less H-bond donors and variable in vitro activity. The consensus application of three variable selection approaches based on standard lasso regression, robust penalized regression and random forest confirmed the relationships between some in vitro outcomes and LogP, pan-assay interference (PAINS) alerts, 5-LOX allosteric site docking and H-bond donor numbers. The exploratory analysis of the combined in vitro and in silico dataset provides useful insights which could help explain the major drivers behind the experimental results. It can be informative in the design of new, improved members of the series of novel N-pyrrolyl hydrazide-hydrazones with better neuroprotective potential and less side effects. Full article
Show Figures

Figure 1

31 pages, 8352 KiB  
Article
Novel Trimethoprim-Based Metal Complexes and Nanoparticle Functionalization: Synthesis, Structural Analysis, and Anticancer Properties
by Abbas M. Abbas, Hossam H. Nasrallah, A. Aboelmagd, W. Christopher Boyd, Haitham Kalil and Adel S. Orabi
Inorganics 2025, 13(5), 144; https://doi.org/10.3390/inorganics13050144 - 1 May 2025
Viewed by 872
Abstract
In this study, we synthesized a novel trimethoprim derivative, 4-(((2-amino-5-(3,4,5-trimethoxybenzyl) pyrimidine-4-yl)imino)methyl)benzene-1,3-diol (HD), by the reaction of trimethoprim with 2,4-dihydroxybenzaldehyde. We then prepared metal complexes of this derivative with Cu(II), Co(II), Ni(II), Ag(I), and Zn(II) and functionalized them with ZnO and Au nanoparticles. Their [...] Read more.
In this study, we synthesized a novel trimethoprim derivative, 4-(((2-amino-5-(3,4,5-trimethoxybenzyl) pyrimidine-4-yl)imino)methyl)benzene-1,3-diol (HD), by the reaction of trimethoprim with 2,4-dihydroxybenzaldehyde. We then prepared metal complexes of this derivative with Cu(II), Co(II), Ni(II), Ag(I), and Zn(II) and functionalized them with ZnO and Au nanoparticles. Their structures were confirmed through 1H NMR, mass spectrometry, FTIR, conductivity, thermal analysis, magnetic susceptibility, X-ray diffraction, UV-Vis spectroscopy, and TEM, revealing octahedral geometries for all complexes. Surface features were investigated using density functional theory (DFT) analysis. Pharmacokinetic parameters and target enzymes for HD and its complexes were computed using the SwissADME web tool, with the BOILED-Egg model indicating that HD and its Cu complex should be passively permeable via the blood-brain barrier and highly absorbed by the gastrointestinal tract (GIT), unlike the Ni, Co, Ag, and Zn complexes, which are predicted to show low GIT absorption. Molecular docking studies with the Caspase-3 enzyme (PDB code: 3GJQ) using the AutoDock 4.2 software demonstrated binding energies of −7.66, −8.36, −9.05, −8.62, −6.90, and −7.81 kcal/mol for HD and the Cu, Co, Ni, Ag, and Zn complexes, respectively, compared to −6.54 and −4.63 kcal/mol for TMP and 5-FU (5-fluorouracil), indicating a potential superior anticancer potential of the novel compounds. The anticancer activities of these complexes were evaluated using the MTT assay. The IC50 values for 5-FU, TMP, HD, Cu-HD, HD@ZnONPs, Cu-HD@ZnONPs, HD@AuNPs, and Cu-HD@AuNPs were found to be 32.53, 80.76, 114.7, 61.66, 77, 53.13, 55.06, and 50.81 µg/mL, respectively. Notably, all derivatives exhibited higher activity against the HepG-2 cancer cell line than TMP, except for HD, which showed similar effectiveness to TMP. Real-time PCR analysis revealed that the Au-HD@AuNPs and Cu-HD@AuNPs significantly increased caspase-3 inhibition by 4.35- and 4.5-fold and P53 expression by 3.05- and 3.41-fold, respectively, indicating enhanced pro-apoptotic gene expression and apoptosis induction in HepG2 cells. Our findings demonstrate that these novel derivatives possess significant anticancer properties, with some complexes showing superior activity compared to standard drugs such as 5-Fluorouracil (5-FU) and Trimethoprim (TMP). This study highlights the potential of these nanocomposites as promising candidates for cancer therapy. Full article
Show Figures

Figure 1

26 pages, 7919 KiB  
Article
Exploring Chalcone Derivatives as a Multifunctional Therapeutic Agent: Investigating Antioxidant Potential, Acetylcholinesterase Inhibition and Computational Insights
by Sujatha M. Lokanath, Manjunatha S. Katagi, Girish S. Bolakatti, Johnson Samuel and Belakatte P. Nandeshwarappa
Drugs Drug Candidates 2025, 4(2), 16; https://doi.org/10.3390/ddc4020016 - 14 Apr 2025
Viewed by 1268
Abstract
Background: The cholinergic hypothesis is an elementary approach employed for the research and drug discovery of novel anti-Alzheimer therapeutics. Method: In this context, the study focuses on synthesizing and evaluating a new series of chalcone derivatives (3a3j) as multifunctional [...] Read more.
Background: The cholinergic hypothesis is an elementary approach employed for the research and drug discovery of novel anti-Alzheimer therapeutics. Method: In this context, the study focuses on synthesizing and evaluating a new series of chalcone derivatives (3a3j) as multifunctional therapeutic agents, specifically investigating their antioxidant potential using the DPPH method with ascorbic acid as a standard. Ellman’s protocol for acetylcholinesterase inhibition assay was performed using donepezil as a standard, and computational insights were explored through molecular docking and ADME profiling. Results: Compounds 3a, 3d, 3e, 3f, and 3h exhibited excellent antioxidant activity compared to the standard. Most of the compounds exhibited moderate to good (3b, 3c, and 3h) AChE inhibitory activity. Molecular docking studies revealed conventional hydrogen bonding and π-π interactions with the enzyme’s active residues, facilitated by their electronegative groups and phenyl rings, respectively. In addition, a pharmacokinetic study was conducted using computational approach to assess druggability. The results demonstrated that compound 3b is an outstanding lead candidate with appreciable AChE inhibitory activity. Conclusions: The combined experimental and computational results of this study highlight the multifunctional nature of chalcone derivatives, suggesting their potential as promising therapeutic agents for the discovery of novel AChE inhibitors that could be employed in the management of Alzheimer’s disease and oxidative stress-related diseases. Full article
(This article belongs to the Section Medicinal Chemistry and Preliminary Screening)
Show Figures

Figure 1

28 pages, 13304 KiB  
Article
Comparative Evaluation of Cytotoxic and Apoptotic Effects of Natural Compounds in SH-SY5Y Neuroblastoma Cells in Relation to Their Physicochemical Properties
by Antonella Rosa, Federica Pollastro, Valeria Sogos and Franca Piras
Molecules 2025, 30(8), 1742; https://doi.org/10.3390/molecules30081742 - 13 Apr 2025
Cited by 1 | Viewed by 659
Abstract
The cytotoxic and apoptotic properties of four bioactive natural compounds, the prenylated α-pyronephloroglucinol heterodimer arzanol (ARZ), the methoxylated flavones eupatilin (EUP) and xanthomicrol (XAN), and the sesquiterpene zerumbone (ZER), were compared in SH-SY5Y human neuroblastoma cells to assess their potential as neuroblastoma-specific therapeutics. [...] Read more.
The cytotoxic and apoptotic properties of four bioactive natural compounds, the prenylated α-pyronephloroglucinol heterodimer arzanol (ARZ), the methoxylated flavones eupatilin (EUP) and xanthomicrol (XAN), and the sesquiterpene zerumbone (ZER), were compared in SH-SY5Y human neuroblastoma cells to assess their potential as neuroblastoma-specific therapeutics. EUP, XAN, and ZER (2.5–100 μM) exerted marked significant cytotoxicity (MTT assay) and morphological changes after 24 h of incubation, following the order XAN > ZER > EUP > ARZ (no toxic effect). The propidium iodide fluorescence assay (PI, red fluorescence) and NucView® 488 assay (NV, green fluorescence) evidenced a significant increase in the apoptotic cell number, vs. controls, in SH-SY5Y cells pre-incubated for 2 h with the compounds, in the following order of apoptotic potency: XAN > EUP > ZER > ARZ. The PubChem database and freely accessible web tools SwissADME, pkCSM-pharmacokinetics, and SwissTargetPrediction were used to assess the physicochemical/pharmacokinetic properties and potential protein targets of the compounds. At 50 μM, a positive correlation (r = 0.917) between values of % viability reduction and % human intestinal absorption (bioavailability) was observed, indicating a marked contribution of compound membrane permeability to cytotoxicity in SH-SY5Y cells. The capacity of compounds to induce apoptosis emerged as inversely correlated to the computed lipophilicity (r = −0.885). Full article
(This article belongs to the Special Issue Biological Activity of Plant Extracts)
Show Figures

Figure 1

36 pages, 6689 KiB  
Article
In Silico and In Vitro Analyses of Strawberry-Derived Extracts in Relation to Key Compounds’ Metabolic and Anti-Tumor Effects
by Lucia Camelia Pirvu, Amalia Stefaniu, Sultana Nita, Nicoleta Radu and Georgeta Neagu
Int. J. Mol. Sci. 2025, 26(8), 3492; https://doi.org/10.3390/ijms26083492 - 8 Apr 2025
Viewed by 655
Abstract
Plant extracts contain many small molecules that are less investigated. The present paper aims to study in silico physical-chemical, pharmacokinetic, medicinal chemistry and lead/drug-likeness properties and the ability to interfere with the activity of P-glycoprotein (P-gp) transporter and cytochrome P450 (CYP) oxidase system [...] Read more.
Plant extracts contain many small molecules that are less investigated. The present paper aims to study in silico physical-chemical, pharmacokinetic, medicinal chemistry and lead/drug-likeness properties and the ability to interfere with the activity of P-glycoprotein (P-gp) transporter and cytochrome P450 (CYP) oxidase system in humans of phloridzin, phloretin, 4-methylchalcone metabolic series alongside the top three compounds found in the ethanolic extract from strawberries (S), namely 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, 2-pyrrolidinone 5-(cyclohexylmethyl) and hexadecanoic acid. The phloridzin derivatives also were studied for their inhibitory potential upon Bcl-2, TNKS1 and COX-2 molecular targets. In vitro, Caco-2 studies analyzed the cytoprotective and anti-proliferative activity of S and the three phloridzin derivatives (pure compounds) in comparison with their combination 1:1 (GAE/pure compound, w/w), in the range 1 to 50 µg active compounds per test sample. Altogether, it was concluded that phloretin (Phl) can be used alone or in combination with S to support intestinal cell health in humans. Phloridzin (Phd) and phloridzin combined with S were proven ineffective. 4-methylchalcone (4-MeCh) combined with S indicated no advantages, while the pure compound exhibited augmented inhibitory effects, becoming a candidate for combinations with anticancer drugs. Overall, in silico studies revealed possible limitations in the practical use of phloridzin derivatives due to their potential to interfere with the activity of several major CYP enzymes. Full article
(This article belongs to the Special Issue Medicinal Plants and Bioactive Compounds in Health and Disease)
Show Figures

Figure 1

32 pages, 2869 KiB  
Review
Cardiovascular Biomarkers: Tools for Precision Diagnosis and Prognosis
by Vasudeva Reddy Netala, Tianyu Hou, Yanbo Wang, Zhijun Zhang and Sireesh Kumar Teertam
Int. J. Mol. Sci. 2025, 26(7), 3218; https://doi.org/10.3390/ijms26073218 - 30 Mar 2025
Cited by 5 | Viewed by 3365
Abstract
The present study provides a detailed review of cardiovascular biomarkers critical for the diagnosis, prognosis, and pathophysiology of cardiovascular diseases, the leading cause of global morbidity and mortality. These biomarkers aid in detecting disease onset, progression, and therapeutic responses, providing insights into molecular [...] Read more.
The present study provides a detailed review of cardiovascular biomarkers critical for the diagnosis, prognosis, and pathophysiology of cardiovascular diseases, the leading cause of global morbidity and mortality. These biomarkers aid in detecting disease onset, progression, and therapeutic responses, providing insights into molecular mechanisms. Enzyme markers like AST, CK-MB, LDH, CA-III, and HBDH are pivotal for detecting myocardial injury during acute events. Protein markers such as CRP, H-FABP, and MPO shed light on inflammation and oxidative stress. Cardiac Troponins, the gold standard for myocardial infarction diagnosis, exhibit high specificity and sensitivity, while IMA and GPBB indicate ischemia and early myocardial damage. Peptide markers, including BNP and NT-proBNP, are crucial for heart failure diagnosis and management, reflecting ventricular stress and remodeling. Novel peptides like MR-proANP and MR-proADM aid in assessing disease severity. Lipid markers such as lipoprotein-associated phospholipase A2 and oxylipins provide insights into lipid metabolism and atherosclerosis. Inflammatory and stress-related biomarkers, including TNFα, IL-6, GDF-15, and Pentraxin 3, illuminate chronic inflammation in CVDs. Hormonal markers like copeptin and endothelin-1 highlight neurohormonal activation, while emerging markers such as ST2, galectin-3, PAPP-A, and TMAO elucidate fibrosis, remodeling, and metabolic dysregulation. The inclusion of microRNAs and long non-coding RNAs represents a breakthrough in biomarker research, offering sensitive tools for early detection, risk stratification, and therapeutic targeting. This review emphasizes the diagnostic and prognostic utility of these biomarkers, advancing cardiovascular care through personalized medicine. Full article
Show Figures

Figure 1

Back to TopTop