Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = gut-immune cells cross-talk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3205 KiB  
Review
Microbiome–Immune Interaction and Harnessing for Next-Generation Vaccines Against Highly Pathogenic Avian Influenza in Poultry
by Yongming Sang, Samuel N. Nahashon and Richard J. Webby
Vaccines 2025, 13(8), 837; https://doi.org/10.3390/vaccines13080837 - 6 Aug 2025
Abstract
Highly pathogenic avian influenza (HPAI) remains a persistent threat to global poultry production and public health. Current vaccine platforms show limited cross-clade efficacy and often fail to induce mucosal immunity. Recent advances in microbiome research reveal critical roles for gut commensals in modulating [...] Read more.
Highly pathogenic avian influenza (HPAI) remains a persistent threat to global poultry production and public health. Current vaccine platforms show limited cross-clade efficacy and often fail to induce mucosal immunity. Recent advances in microbiome research reveal critical roles for gut commensals in modulating vaccine-induced immunity, including enhancement of mucosal IgA production, CD8+ T-cell activation, and modulation of systemic immune responses. Engineered commensal bacteria such as Lactococcus lactis, Bacteroides ovatus, Bacillus subtilis, and Staphylococcus epidermidis have emerged as promising live vectors for antigen delivery. Postbiotic and synbiotic strategies further enhance protective efficacy through targeted modulation of the gut microbiota. Additionally, artificial intelligence (AI)-driven tools enable predictive modeling of host–microbiome interactions, antigen design optimization, and early detection of viral antigenic drift. These integrative technologies offer a new framework for mucosal, broadly protective, and field-deployable vaccines for HPAI control. However, species-specific microbiome variation, ecological safety concerns, and scalable manufacturing remain critical challenges. This review synthesizes emerging evidence on microbiome–immune crosstalk, commensal vector platforms, and AI-enhanced vaccine development, emphasizing the urgent need for One Health integration to mitigate zoonotic adaptation and pandemic emergence. Full article
(This article belongs to the Special Issue Veterinary Vaccines and Host Immune Responses)
Show Figures

Figure 1

19 pages, 4255 KiB  
Article
Impacts of Early Weaning on Lamb Gut Health and Immune Function: Short-Term and Long-Term Effects
by Chong Li, Yunfei Xu, Jiale Jia, Xiuxiu Weng, Yang Zhang, Jialin Peng, Xueming An and Guoxiu Wang
Animals 2025, 15(14), 2135; https://doi.org/10.3390/ani15142135 - 18 Jul 2025
Viewed by 345
Abstract
Despite the known impacts of weaning on animal health, the underlying molecular mechanisms remain unclear, particularly how psychological and nutritional stress differentially affect gut health and immune function over time. This study hypothesized that early weaning exerts distinct short- and long-term effects on [...] Read more.
Despite the known impacts of weaning on animal health, the underlying molecular mechanisms remain unclear, particularly how psychological and nutritional stress differentially affect gut health and immune function over time. This study hypothesized that early weaning exerts distinct short- and long-term effects on lamb stress physiology, immunity, and gut health, mediated by specific molecular pathways. Twelve pairs of full-sibling male Hu sheep lambs were assigned to control (CON) or early-weaned (EW) groups. Plasma stress/immune markers were dynamically monitored, and intestinal morphology, antioxidant capacity, apoptosis, and transcriptomic profiles were analyzed at 5 and 28 days post-weaning. Early weaning triggered transient psychological stress, elevating hypothalamic–pituitary–adrenal (HPA) axis hormones (cortisol, catecholamines) and inflammatory cytokines (TNF-α) within 1 day (p < 0.05); however, stress responses were transient and recovered by 7 days post-weaning. Sustained intestinal remodeling was observed in EW lambs, featuring reduced ileal villus height, increased crypt depth (p < 0.05), and oxidative damage (MDA levels doubled vs. CON; p < 0.01). Compensatory epithelial adaptation included increased crypt depth but paradoxically reduced villus tip apoptosis. The transcriptome analysis revealed significant changes in gene expression related to immune function, fat digestion, and metabolism. Key DEGs included APOA4, linked to lipid transport adaptation; NOS2, associated with nitric oxide-mediated immune–metabolic crosstalk; and mitochondrial gene COX1, reflecting energy metabolism dysregulation. Protein–protein interaction analysis revealed NOS2 as a hub gene interacting with IDO1 and CXCL11, connecting oxidative stress to immune cell recruitment. Early weaning exerts minimal lasting psychological stress but drives persistent gut dysfunction through transcriptome-mediated changes in metabolic and immune pathways, highlighting key genes such as APOA4, NOS2, and COX1 as potential regulators of these effects. Full article
(This article belongs to the Topic Feeding Livestock for Health Improvement)
Show Figures

Figure 1

29 pages, 1456 KiB  
Review
Beyond Bone Loss: A Biology Perspective on Osteoporosis Pathogenesis, Multi-Omics Approaches, and Interconnected Mechanisms
by Yixin Zhao, Jihan Wang, Lijuan Xu, Haofeng Xu, Yu Yan, Heping Zhao and Yuzhu Yan
Biomedicines 2025, 13(6), 1443; https://doi.org/10.3390/biomedicines13061443 - 12 Jun 2025
Viewed by 1149
Abstract
Osteoporosis is a systemic bone disorder characterized by decreased bone mass and deteriorated microarchitecture, leading to an increased risk of fractures. Recent studies have revealed that its pathogenesis involves complex biological processes beyond bone remodeling, including oxidative stress, chronic inflammation, cellular senescence, osteoimmunology, [...] Read more.
Osteoporosis is a systemic bone disorder characterized by decreased bone mass and deteriorated microarchitecture, leading to an increased risk of fractures. Recent studies have revealed that its pathogenesis involves complex biological processes beyond bone remodeling, including oxidative stress, chronic inflammation, cellular senescence, osteoimmunology, gut microbiota alterations, and epigenetic modifications. Oxidative stress disrupts bone homeostasis by promoting excessive free radical production and osteoclast activity. Chronic inflammation and the accumulation of senescent cells impair skeletal repair mechanisms. Advances in osteoimmunology have highlighted the critical role of immune–bone crosstalk in regulating bone resorption and formation. Moreover, the gut–bone axis, mediated by microbial metabolites, influences bone metabolism through immune and endocrine pathways. Epigenetic changes, such as DNA methylation and histone modification, contribute to gene–environment interactions, affecting disease progression. Multi-omics approaches (genomics, proteomics, and metabolomics) systematically identify molecular networks and comorbid links with diabetes/cardiovascular diseases, revealing pathological feedback loops that exacerbate bone loss. In conclusion, osteoporosis pathogenesis extends beyond bone remodeling to encompass systemic inflammation, immunometabolic dysregulation, and gut microbiota–host interactions. Future research should focus on integrating multi-omics biomarkers with targeted therapies to advance precision medicine strategies for osteoporosis prevention and treatment. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

36 pages, 1531 KiB  
Review
Orchestration of Gut–Liver-Associated Transcription Factors in MAFLD: From Cross-Organ Interactions to Therapeutic Innovation
by Ao Liu, Mengting Huang, Yuwen Xi, Xiaoling Deng and Keshu Xu
Biomedicines 2025, 13(6), 1422; https://doi.org/10.3390/biomedicines13061422 - 10 Jun 2025
Viewed by 1093
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a global health burden, however, therapeutic advancements remain hindered by incomplete insights on mechanisms and suboptimal clinical interventions. This review focused on the transcription factors (TFs) associated with the gut–liver axis, emphasizing their roles as molecular [...] Read more.
Metabolic dysfunction-associated fatty liver disease (MAFLD) represents a global health burden, however, therapeutic advancements remain hindered by incomplete insights on mechanisms and suboptimal clinical interventions. This review focused on the transcription factors (TFs) associated with the gut–liver axis, emphasizing their roles as molecular interpreters of systemic crosstalk in MAFLD. We delineate how TF networks integrate metabolic, immune, and gut microbial signals to manage hepatic steatosis, inflammation, and fibrosis. For instance, metabolic TFs such as peroxisome proliferator-activated receptor α (PPARα) and farnesoid X receptor (FXR) are responsible for regulating lipid oxidation and bile acid homeostasis, while immune-related TFs like signal transducer and activator of transcription 3 (STAT3) modulate inflammatory cascades involving immune cells. Emerging evidence highlights microbiota-responsive TFs, like hypoxia-inducible factor 2α (HIF2α) and aryl hydrocarbon receptor (AHR), linking microbial metabolite signaling to hepatic metabolic reprogramming. Critically, TF-centric therapeutic strategies, including selective TF-agonists, small molecules targeted to degrade TF, and microbiota modulation, hold considerable promise for treating MAFLD. By synthesizing these insights, this review underscores the necessity to dissect TF-mediated interorgan communication and proposes a roadmap for translating mechanism discoveries into precision therapies. Future research should prioritize the use of multi-omics approaches to map TF interactions and validate their clinical relevance to MAFLD. Full article
(This article belongs to the Special Issue New Insights Into Non-Alcoholic Fatty Liver Diseases)
Show Figures

Figure 1

27 pages, 980 KiB  
Review
The Role of the Gut Microbiota in Female Reproductive and Gynecological Health: Insights into Endometrial Signaling Pathways
by Patricia Escorcia Mora, Diana Valbuena and Antonio Diez-Juan
Life 2025, 15(5), 762; https://doi.org/10.3390/life15050762 - 9 May 2025
Cited by 5 | Viewed by 2661
Abstract
Fertility is a dynamic, multifactorial process governed by hormonal, immune, metabolic, and environmental factors. Recent evidence highlights the gut microbiota as a key systemic regulator of reproductive health, with notable impacts on endometrial function, implantation, pregnancy maintenance, and the timing of birth. This [...] Read more.
Fertility is a dynamic, multifactorial process governed by hormonal, immune, metabolic, and environmental factors. Recent evidence highlights the gut microbiota as a key systemic regulator of reproductive health, with notable impacts on endometrial function, implantation, pregnancy maintenance, and the timing of birth. This review examines the gut–endometrial axis, focusing on how gut microbial communities influence reproductive biology through molecular signaling pathways. We discuss the modulatory roles of microbial-derived metabolites—including short-chain fatty acids, bile acids, and tryptophan catabolites—in shaping immune tolerance, estrogen metabolism, and epithelial integrity at the uterine interface. Emphasis is placed on shared mechanisms such as β-glucuronidase-mediated estrogen recycling, Toll-like receptor (TLR)-driven inflammation, Th17/Treg cell imbalance, and microbial translocation, which collectively implicate dysbiosis in the etiology of gynecological disorders including endometriosis, polycystic ovary syndrome (PCOS), recurrent implantation failure (RIF), preeclampsia (PE), and preterm birth (PTB). Although most current evidence remains correlational, emerging insights from metagenomic and metabolomic profiling, along with microbiota-depletion models and Mendelian randomization studies, underscore the biological significance of gut-reproductive crosstalk. By integrating concepts from microbiology, immunology, and reproductive molecular biology, this review offers a systems-level perspective on host–microbiota interactions in female fertility. Full article
(This article belongs to the Section Reproductive and Developmental Biology)
Show Figures

Figure 1

17 pages, 3061 KiB  
Article
Probiotic Lactobacillus johnsonii Reduces Intestinal Inflammation and Rebalances Splenic Treg/Th17 Responses in Dextran Sulfate Sodium-Induced Colitis
by Hao-Yu Liu, Shicheng Li, Kennedy Jerry Ogamune, Peng Yuan, Xinyu Shi, Wael Ennab, Abdelkareem A. Ahmed, In Ho Kim, Ping Hu and Demin Cai
Antioxidants 2025, 14(4), 433; https://doi.org/10.3390/antiox14040433 - 3 Apr 2025
Cited by 1 | Viewed by 1256
Abstract
Inflammatory bowel disease (IBD), a chronic inflammatory disorder of the gastrointestinal tract, is frequently complicated by extraintestinal manifestations such as functional hyposplenism. Increasing evidence highlights its pathogenesis as a multifactorial interplay of gut dysbiosis, intestinal barrier dysfunction, and dysregulated immune responses. While probiotics, [...] Read more.
Inflammatory bowel disease (IBD), a chronic inflammatory disorder of the gastrointestinal tract, is frequently complicated by extraintestinal manifestations such as functional hyposplenism. Increasing evidence highlights its pathogenesis as a multifactorial interplay of gut dysbiosis, intestinal barrier dysfunction, and dysregulated immune responses. While probiotics, particularly Lactobacillus spp., have emerged as potential therapeutics for IBD, restoring intestinal homeostasis, their systemic immunomodulatory effects remain underexplored. Here, we investigated the protective role of Lactobacillus johnsonii N5 in DSS-induced colitis, focusing on inflammation inhibition and splenic T cell regulation. Pretreatment with L. johnsonii N5 significantly attenuated colitis severity, as evidenced by preserved body weight, reduced disease activity index, and prevention of colon shortening. N5 suppressed colonic pro-inflammatory factors such as TNF-α, Il-1b, Il-6, and CXCL1, while elevating anti-inflammatory IL-10 at both mRNA and protein levels. Transcriptomic analysis of the spleen revealed that N5 mediated the downregulation of inflammatory pathways, including the IL-17 and TNF signaling pathways, as well as the HIF-1 signaling pathway, and modulated the metabolic pathway of oxidative phosphorylation. Flow cytometry analysis demonstrated that N5 rebalanced splenic Treg/Th17 responses by expanding the Treg population and reducing the production of IL-17A in Th17 cells. Notably, Th17-associated IL-17A positively correlated with intestinal pro-inflammatory mediators, emphasizing the role of Th17 cells in driving colitis. In contrast, splenic Treg abundance positively correlated with colonic IL-10 levels, suggesting a link between systemic immune regulation and intestinal anti-inflammatory responses. Our study underscores the therapeutic potential of targeting gut–immune crosstalk through probiotics, thereby offering valuable insights for developing live bacterial-based interventions for IBD and other inflammatory disorders. Full article
(This article belongs to the Special Issue Interplay of Microbiome and Oxidative Stress)
Show Figures

Figure 1

30 pages, 1691 KiB  
Review
The Role of Notch Signaling and Gut Microbiota in Autoinflammatory Diseases: Mechanisms and Future Views
by Vincenzo Giambra, Mario Caldarelli, Laura Franza, Pierluigi Rio, Gaja Bruno, Serena di Iasio, Andrea Mastrogiovanni, Antonio Gasbarrini, Giovanni Gambassi and Rossella Cianci
Biomedicines 2025, 13(4), 768; https://doi.org/10.3390/biomedicines13040768 - 21 Mar 2025
Viewed by 1131
Abstract
Notch signaling is an evolutionarily conserved, multifunctional pathway involved in cell fate determination and immune modulation and contributes to the pathogenesis of autoinflammatory diseases. Emerging evidence reveals a bidirectional interaction between Notch and the gut microbiota (GM), whereby GM composition is capable of [...] Read more.
Notch signaling is an evolutionarily conserved, multifunctional pathway involved in cell fate determination and immune modulation and contributes to the pathogenesis of autoinflammatory diseases. Emerging evidence reveals a bidirectional interaction between Notch and the gut microbiota (GM), whereby GM composition is capable of modulating Notch signaling through the binding of microbial elements to Notch receptors, leading to immune modulation. Furthermore, Notch regulates the GM by promoting SCFA-producing bacteria while suppressing proinflammatory strains. Beneficial microbes, such as Lactobacillus and Akkermansia muciniphila, modulate Notch and reduce proinflammatory cytokine production (such as IL-6 and TNF-α). The interaction between GM and Notch can either amplify or attenuate inflammatory pathways in inflammatory bowel diseases (IBDs), Behçet’s disease, and PAPA syndrome. Together, these findings provide novel therapeutic perspectives for autoinflammatory diseases by targeting the GM via probiotics or inhibiting Notch signaling. This review focuses on Notch–GM crosstalk and how GM-based and/or Notch-targeted approaches may modulate immune responses and promote better clinical outcomes. Full article
Show Figures

Figure 1

17 pages, 3612 KiB  
Article
Immune mRNA Expression and Fecal Microbiome Composition Change Induced by Djulis (Chenopodium formosanum Koidz.) Supplementation in Aged Mice: A Pilot Study
by Brian Harvey Avanceña Villanueva, Huai-Ying Huang, Yu-Chang Tyan, Pei-Ju Lin, Chang-Wei Li, Hoang Minh, Lemmuel L. Tayo and Kuo-Pin Chuang
Medicina 2024, 60(9), 1545; https://doi.org/10.3390/medicina60091545 - 20 Sep 2024
Cited by 1 | Viewed by 2168
Abstract
Background and Objectives: The aging process has always been associated with a higher susceptibility to chronic inflammatory lung diseases. Several studies have demonstrated the gut microbiome’s influence on the lungs through cross-talk or the gut–lungs axis maintaining nutrient-rich microenvironments. Taiwan djulis ( [...] Read more.
Background and Objectives: The aging process has always been associated with a higher susceptibility to chronic inflammatory lung diseases. Several studies have demonstrated the gut microbiome’s influence on the lungs through cross-talk or the gut–lungs axis maintaining nutrient-rich microenvironments. Taiwan djulis (Chenopodium formosanum Koidz.) provides antioxidant and anti-inflammatory characteristics that could modulate the gut microbiome. This could induce the gut–lung axis through microbial cross-talk, thus favoring the modulation of lung inflammation. Materials and Methods: Here, we investigate the immune mRNA expression in the spleen, fecal microbiome composition, and hyperplasia of the bronchial epithelium in aged 2-year-old BALB/c mice after 60 days of supplementation of djulis. Results: The pro-inflammatory cytokines IFN-γ, TNF-α, and IL-1β, T; cells CD4 and CD8; and TLRs TLR3, TLR4, TLR5, TLR7, TLR8, and TLR9 were reduced in their mRNA expression levels, while the anti-inflammatory cytokines IL-2, IL-4, and IL-10 were highly expressed in the C. formosanum-treated group. Interestingly, the fecal microbiome composition analysis indicated higher diversity in the C. formosanum-treated group and the presence of butyrate-producing bacteria that are beneficial in the gut microbiome. The histopathology showed reduced hyperplasia of the bronchial epithelium based on the degree of lesions. Conclusions: Our findings suggest that Taiwan djulis can modulate the gut microbiome, leading to microbial cross-talk; reducing the mRNA expression of pro-inflammatory cytokines, T cells, and TLRs; and increasing anti-inflammatory cytokines in the spleen, as cytokines migrate in the lungs, preventing lung inflammation damage in aged mice or the gut–lung axis. Thus, Taiwan djulis could be considered a beneficial dietary component for the older adult population. The major limitation includes a lack of protein validation of cytokines and TLRs and quantification of the T cell population in the spleen as a marker of the gut–lung axis. Full article
(This article belongs to the Section Hematology and Immunology)
Show Figures

Figure 1

55 pages, 3273 KiB  
Review
Adipokines in the Crosstalk between Adipose Tissues and Other Organs: Implications in Cardiometabolic Diseases
by Shaghayegh Hemat Jouy, Sukrutha Mohan, Giorgia Scichilone, Amro Mostafa and Abeer M. Mahmoud
Biomedicines 2024, 12(9), 2129; https://doi.org/10.3390/biomedicines12092129 - 19 Sep 2024
Cited by 21 | Viewed by 5301
Abstract
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent [...] Read more.
Adipose tissue was previously regarded as a dormant organ for lipid storage until the identification of adiponectin and leptin in the early 1990s. This revelation unveiled the dynamic endocrine function of adipose tissue, which has expanded further. Adipose tissue has emerged in recent decades as a multifunctional organ that plays a significant role in energy metabolism and homeostasis. Currently, it is evident that adipose tissue primarily performs its function by secreting a diverse array of signaling molecules known as adipokines. Apart from their pivotal function in energy expenditure and metabolism regulation, these adipokines exert significant influence over a multitude of biological processes, including but not limited to inflammation, thermoregulation, immune response, vascular function, and insulin sensitivity. Adipokines are pivotal in regulating numerous biological processes within adipose tissue and facilitating communication between adipose tissue and various organs, including the brain, gut, pancreas, endothelial cells, liver, muscle, and more. Dysregulated adipokines have been implicated in several metabolic diseases, like obesity and diabetes, as well as cardiovascular diseases. In this article, we attempted to describe the significance of adipokines in developing metabolic and cardiovascular diseases and highlight their role in the crosstalk between adipose tissues and other tissues and organs. Full article
(This article belongs to the Special Issue Recent Advances in Adipokines—2nd Edition)
Show Figures

Figure 1

16 pages, 2113 KiB  
Review
Focal Adhesion Kinase and Colony Stimulating Factors: Intestinal Homeostasis and Innate Immunity Crosstalk
by Nicholas D. Brown and Emilie E. Vomhof-DeKrey
Cells 2024, 13(14), 1178; https://doi.org/10.3390/cells13141178 - 11 Jul 2024
Cited by 3 | Viewed by 2164
Abstract
Thousands struggle with acute and chronic intestinal injury due to various causes. Epithelial intestinal healing is dependent on phenotypic transitions to a mobile phenotype. Focal adhesion kinase (FAK) is a ubiquitous protein that is essential for cell mobility. This phenotype change is mediated [...] Read more.
Thousands struggle with acute and chronic intestinal injury due to various causes. Epithelial intestinal healing is dependent on phenotypic transitions to a mobile phenotype. Focal adhesion kinase (FAK) is a ubiquitous protein that is essential for cell mobility. This phenotype change is mediated by FAK activation and proves to be a promising target for pharmaceutical intervention. While FAK is crucial for intestinal healing, new evidence connects FAK with innate immunity and the importance it plays in macrophage/monocyte chemotaxis, as well as other intracellular signaling cascades. These cascades play a part in macrophage/monocyte polarization, maturation, and inflammation that is associated with intestinal injury. Colony stimulating factors (CSFs) such as macrophage colony stimulating factor (M-CSF/CSF-1) and granulocyte macrophage colony stimulating factor (GM-CSF/CSF-2) play a critical role in maintaining homeostasis within intestinal mucosa by crosstalk capabilities between macrophages and epithelial cells. The communication between these cells is imperative in orchestrating healing upon injury. Diving deeper into these connections may allow us a greater insight into the role that our immune system plays in healing, as well as a better comprehension of inflammatory diseases of the gut. Full article
(This article belongs to the Special Issue Macrophage Activation and Regulation)
Show Figures

Figure 1

20 pages, 1555 KiB  
Review
Exploring the Role of the Gut and Intratumoral Microbiomes in Tumor Progression and Metastasis
by Aneta Sevcikova, Beata Mladosievicova, Michal Mego and Sona Ciernikova
Int. J. Mol. Sci. 2023, 24(24), 17199; https://doi.org/10.3390/ijms242417199 - 6 Dec 2023
Cited by 16 | Viewed by 6281
Abstract
Cancer cell dissemination involves invasion, migration, resistance to stressors in the circulation, extravasation, colonization, and other functions responsible for macroscopic metastases. By enhancing invasiveness, motility, and intravasation, the epithelial-to-mesenchymal transition (EMT) process promotes the generation of circulating tumor cells and their collective migration. [...] Read more.
Cancer cell dissemination involves invasion, migration, resistance to stressors in the circulation, extravasation, colonization, and other functions responsible for macroscopic metastases. By enhancing invasiveness, motility, and intravasation, the epithelial-to-mesenchymal transition (EMT) process promotes the generation of circulating tumor cells and their collective migration. Preclinical and clinical studies have documented intensive crosstalk between the gut microbiome, host organism, and immune system. According to the findings, polymorphic microbes might play diverse roles in tumorigenesis, cancer progression, and therapy response. Microbial imbalances and changes in the levels of bacterial metabolites and toxins promote cancer progression via EMT and angiogenesis. In contrast, a favorable microbial composition, together with microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), can attenuate the processes of tumor initiation, disease progression, and the formation of distant metastases. In this review, we highlight the role of the intratumoral and gut microbiomes in cancer cell invasion, migration, and metastatic ability and outline the potential options for microbiota modulation. As shown in murine models, probiotics inhibited tumor development, reduced tumor volume, and suppressed angiogenesis and metastasis. Moreover, modulation of an unfavorable microbiome might improve efficacy and reduce treatment-related toxicities, bringing clinical benefit to patients with metastatic cancer. Full article
(This article belongs to the Special Issue Microbiota and Cancer 3.0)
Show Figures

Graphical abstract

43 pages, 2818 KiB  
Review
Host Transcriptional Regulatory Genes and Microbiome Networks Crosstalk through Immune Receptors Establishing Normal and Tumor Multiomics Metafirm of the Oral-Gut-Lung Axis
by Beatriz Andrea Otálora-Otálora, Juan Javier López-Rivera, Claudia Aristizábal-Guzmán, Mario Arturo Isaza-Ruget and Carlos Arturo Álvarez-Moreno
Int. J. Mol. Sci. 2023, 24(23), 16638; https://doi.org/10.3390/ijms242316638 - 23 Nov 2023
Cited by 6 | Viewed by 3933
Abstract
The microbiome has shown a correlation with the diet and lifestyle of each population in health and disease, the ability to communicate at the cellular level with the host through innate and adaptative immune receptors, and therefore an important role in modulating inflammatory [...] Read more.
The microbiome has shown a correlation with the diet and lifestyle of each population in health and disease, the ability to communicate at the cellular level with the host through innate and adaptative immune receptors, and therefore an important role in modulating inflammatory process related to the establishment and progression of cancer. The oral cavity is one of the most important interaction windows between the human body and the environment, allowing the entry of an important number of microorganisms and their passage across the gastrointestinal tract and lungs. In this review, the contribution of the microbiome network to the establishment of systemic diseases like cancer is analyzed through their synergistic interactions and bidirectional crosstalk in the oral-gut-lung axis as well as its communication with the host cells. Moreover, the impact of the characteristic microbiota of each population in the formation of the multiomics molecular metafirm of the oral-gut-lung axis is also analyzed through state-of-the-art sequencing techniques, which allow a global study of the molecular processes involved of the flow of the microbiota environmental signals through cancer-related cells and its relationship with the establishment of the transcription factor network responsible for the control of regulatory processes involved with tumorigenesis. Full article
(This article belongs to the Special Issue Molecular Advances and Perspectives of Lung Disease)
Show Figures

Figure 1

15 pages, 1565 KiB  
Article
Epithelial-Immune Cell Crosstalk Determines the Activation of Immune Cells In Vitro by the Human Cathelicidin LL-37 at Low Physiological Concentrations
by Ivan V. Bogdanov, Maria A. Streltsova, Elena I. Kovalenko, Alexander M. Sapozhnikov, Pavel V. Panteleev and Tatiana V. Ovchinnikova
Biomolecules 2023, 13(9), 1316; https://doi.org/10.3390/biom13091316 - 28 Aug 2023
Cited by 3 | Viewed by 2003
Abstract
The only human cathelicidin, LL-37, is a host defense antimicrobial peptide with antimicrobial activities against protozoans, fungi, Gram(+) and Gram(−) bacteria, and enveloped viruses. It has been shown in experiments in vitro that LL-37 is able to induce the production of various inflammatory [...] Read more.
The only human cathelicidin, LL-37, is a host defense antimicrobial peptide with antimicrobial activities against protozoans, fungi, Gram(+) and Gram(−) bacteria, and enveloped viruses. It has been shown in experiments in vitro that LL-37 is able to induce the production of various inflammatory and anti-inflammatory cytokines and chemokines by different human cell types. However, it remains an open question whether such cytokine induction is physiologically relevant, as LL-37 exhibited its immunomodulatory properties at concentrations that are much higher (>20 μg/mL) than those observed in non-inflamed tissues (1–5 μg/mL). In the current study, we assessed the permeability of LL-37 across the Caco-2 polarized monolayer and showed that this peptide could pass through the Caco-2 monolayer with low efficiency, which predetermined its low absorption in the gut. We showed that LL-37 at low physiological concentrations (<5 μg/mL) was not able to directly activate monocytes. However, in the presence of polarized epithelial monolayers, LL-37 is able to activate monocytes through the MAPK/ERK signaling pathway and induce the production of cytokines, as assessed by a multiplex assay at the protein level. We have demonstrated that LL-37 is able to fulfill its immunomodulatory action in vivo in non-inflamed tissues at low physiological concentrations. In the present work, we revealed a key role of epithelial-immune cell crosstalk in the implementation of immunomodulatory functions of the human cathelicidin LL-37, which might shed light on its physiological action in vivo. Full article
(This article belongs to the Special Issue New Advances in Natural Products in Drug Discovery)
Show Figures

Figure 1

13 pages, 881 KiB  
Review
The Emerging Role of the Microbiota in Breast Cancer Progression
by Giancarla Bernardo, Valentino Le Noci, Martina Di Modica, Elena Montanari, Tiziana Triulzi, Serenella M. Pupa, Elda Tagliabue, Michele Sommariva and Lucia Sfondrini
Cells 2023, 12(15), 1945; https://doi.org/10.3390/cells12151945 - 27 Jul 2023
Cited by 35 | Viewed by 5546
Abstract
Emerging evidence suggests a profound association between the microbiota composition in the gastrointestinal tract and breast cancer progression. The gut microbiota plays a crucial role in modulating the immune response, releasing metabolites, and modulating estrogen levels, all of which have implications for breast [...] Read more.
Emerging evidence suggests a profound association between the microbiota composition in the gastrointestinal tract and breast cancer progression. The gut microbiota plays a crucial role in modulating the immune response, releasing metabolites, and modulating estrogen levels, all of which have implications for breast cancer growth. However, recent research has unveiled a novel aspect of the relationship between the microbiota and breast cancer, focusing on microbes residing within the mammary tissue, which was once considered sterile. These localized microbial communities have been found to change in the presence of a tumor as compared to healthy mammary tissue, unraveling their potential contribution to tumor progression. Studies have identified specific bacterial species that are enriched within breast tumors and have highlighted the mechanisms by which even these microbes influence cancer progression through immune modulation, direct carcinogenic activity, and effects on cellular pathways involved in cell proliferation or apoptosis. This review aims to provide an overview of the current knowledge on the mechanisms of crosstalk between the gut/mammary microbiota and breast cancer. Understanding this intricate interplay holds promise for developing innovative therapeutic approaches. Full article
(This article belongs to the Special Issue Advances in Cellular and Molecular Research in Breast Cancer)
Show Figures

Graphical abstract

19 pages, 4164 KiB  
Review
The Interplay between Medical Plants and Gut Microbiota in Cancer
by Santino Caserta, Claudia Genovese, Nicola Cicero, Valeria Toscano, Sebastiano Gangemi and Alessandro Allegra
Nutrients 2023, 15(15), 3327; https://doi.org/10.3390/nu15153327 - 26 Jul 2023
Cited by 10 | Viewed by 4692
Abstract
The gut microbiota is a dynamic community of bacteria distributed in the gastroenteric tract and changes in response to diseases, diet, use of antibiotics and probiotics, hygiene status, and other environmental factors. Dysbiosis, a disruption of the normal crosstalk between the host and [...] Read more.
The gut microbiota is a dynamic community of bacteria distributed in the gastroenteric tract and changes in response to diseases, diet, use of antibiotics and probiotics, hygiene status, and other environmental factors. Dysbiosis, a disruption of the normal crosstalk between the host and the microbes, is associated with obesity, diabetes, cancer, and cardiovascular diseases, is linked to a reduction of anti-inflammatory bacteria like Lactobacillus and Roseburia, and to an increase in the growth of proinflammatory species like Ruminococcus gnavus and Bacteroidetes. Some plants possess anticancer properties and various studies have reported that some of these are also able to modulate the gut microbiota. The aim of this work is to evaluate the crucial relationship between medical plants and gut microbiota and the consequences on the onset and progression of cancer. In vivo studies about hematological malignancies showed that beta-glucans tie to endogenous antibeta glucan antibodies and to iC3b, an opsonic fragment of the central complement protein C3, leading to phagocytosis of antibody-targeted neoplastic cells and potentiation of the cytotoxic activity of the innate immune system if administered together with monoclonal antibodies. In conclusion, this review suggests the potential use of medical plants to improve gut dysbiosis and assist in the treatment of cancer. Full article
(This article belongs to the Topic Gut Microbiota in Human Health)
Show Figures

Figure 1

Back to TopTop