The Interplay between Medical Plants and Gut Microbiota in Cancer
Abstract
:1. Medical Plants and Their Benefits
2. Relationship between Medical Plants, Gut Microbiota, and Cancer
2.1. Modulation of NF-KB and IL-6/STAT-3 Pathway
2.2. Effects on Neoangiogenesis
2.3. Antiproliferative and Proapoptotic Effects
2.4. Antiestrogenic Action
2.5. Modulation of Redox Signalling and Regulation of Foxp3+ T Cells
3. Different Types of Cancer
3.1. Hematological Malignancies
Study Title | Conditions | Study Type | Phase | NCT Number |
---|---|---|---|---|
Rituximab Plus Beta-Glucan in Chronic Lymphocytic Leukemia (CLL)/Small Lymphocytic Lymphoma (SLL) | Chronic Lymphocytic Leukemia; Small Lymphocytic Lymphoma | Interventional | Phase 2 | NCT00290407 |
Imprime PGG, Alemtuzumab, and Rituximab in Treating Patients With High Risk Chronic Lymphocytic Leukemia | B-cell Chronic Lymphocytic Leukemia; Refractory Chronic Lymphocytic Leukemia; Stage 0 Chronic Lymphocytic Leukemia | Interventional | Phase 2 | NCT01269385 |
A Phase 2 Clinical Trial of Rituximab and B-Glucan PGG in Relapsed Indolent Non-Hodgkin Lymphoma | Relapsed/Refractory Indolent B Cell Non-Hodgkin Lymphomas | Interventional | Phase 2 | NCT02086175 |
3.2. Colon Cancer
3.3. Breast Cancer
3.4. Prostate Cancer
3.5. Hepatocellular Carcinoma
4. Conclusions and New Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Arlotta, C.; Toscano, V.; Genovese, C.; Calderaro, P.; Puglia, G.D.; Raccuia, S.A. Nutraceutical Content and Genetic Diversity Share a Common Pattern in New Pomegranate Genotypes. Molecules 2022, 27, 389. [Google Scholar] [CrossRef] [PubMed]
- Contino, M.; Leonardi, C.; Genovese, C.; Scalisi, E.M.; Pecoraro, R.; Ignoto, S.; Failla, C.; Ferruggia, G.; Salvaggio, A.; Asero, P.; et al. Antioxidant activity of two Opuntia Mill. species fruit extracts on human sperm quality after a freeze-thaw cycle. Nat. Prod. Res. 2022, 37, 2725–2731. [Google Scholar] [CrossRef] [PubMed]
- Tibullo, D.; Caporarello, N.; Giallongo, C.; Anfuso, C.D.; Genovese, C.; Arlotta, C.; Puglisi, F.; Parrinello, N.L.; Bramanti, V.; Romano, A.; et al. Antiproliferative and Antiangiogenic Effects of Punica granatum Juice (PGJ) in Multiple Myeloma (MM). Nutrients 2016, 8, 611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alesci, A.; Nicosia, N.; Fumia, A.; Giorgianni, F.; Santini, A.; Cicero, N. Resveratrol and Immune Cells: A Link to Improve Human Health. Molecules 2022, 27, 424. [Google Scholar] [CrossRef]
- Li, Y.; Qin, C.; Dong, L.; Zhang, X.; Wu, Z.; Liu, L.; Yang, J.; Liu, L. Whole grain benefit: Synergistic effect of oat phenolic compounds and β-glucan on hyperlipidemia via gut microbiota in high-fat-diet mice. Food Funct. 2022, 13, 12686–12696. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Qin, C.; Li, Y.; Wu, Z.; Liu, L. Oat phenolic compounds regulate metabolic syndrome in high fat diet-fed mice via gut microbiota. Food Biosci. 2022, 50, 101946. [Google Scholar] [CrossRef]
- Zhu, C.-W.; Lü, H.; Du, L.-L.; Li, J.; Chen, H.; Zhao, H.-F.; Wu, W.-L.; Chen, J.; Li, W.-L. Five blueberry anthocyanins and their antioxidant, hypoglycemic, and hypolipidemic effects in vitro. Front. Nutr. 2023, 10, 1172982. [Google Scholar] [CrossRef]
- Rejithamol, R.; Chandran, D.; Sreelekshmi, P.J.; Devika, V.; Agraja, P.; Maheswari, K.; Balaraman, V. Biopolymer Supported Electroanalytical Methods for the Determination of Biomolecules and Food Additives-A comprehensive Perspective. Anal. Methods 2023. epub ahead of print. [Google Scholar] [CrossRef]
- Yagishita, Y.; Fahey, J.W.; Dinkova-Kostova, A.T.; Kensler, T.W. Broccoli or Sulforaphane: Is It the Source or Dose That Matters? Molecules 2019, 24, 3593. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Beltrán, C.E.; Calderón-Oliver, M.; Pedraza-Chaverri, J.; Chirino, Y.I. Protective effect of sulforaphane against oxidative stress: Recent advances. Exp. Toxicol. Pathol. 2012, 64, 503–508. [Google Scholar] [CrossRef]
- Rasines, L.; Castillejo, N.; Miguel, G.S.; Aguayo, E. Can household storage conditions reduce food waste and environmental impact? A broccoli case study. Sci. Total Environ. 2023, 892, 164779. [Google Scholar] [CrossRef]
- Wojaczyńska, E.; Wojaczyński, J. Sulfoxides in medicine. Curr. Opin. Chem. Biol. 2023, 76, 102340. [Google Scholar] [CrossRef]
- Bowen-Forbes, C.; Armstrong, E.; Moses, A.; Fahlman, R.; Koosha, H.; Yager, J.Y. Broccoli, Kale, and Radish Sprouts: Key Phytochemical Constituents and DPPH Free Radical Scavenging Activity. Molecules 2023, 28, 4266. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jia, Y.; Meng, S.; Luo, Y.; Yang, Q.; Pan, Z. Mechanisms of and Potential Medications for Oxidative Stress in Ovarian Granulosa Cells: A Review. Int. J. Mol. Sci. 2023, 24, 9205. [Google Scholar] [CrossRef] [PubMed]
- Boťanská, B.; Pecníková, V.; Fogarassyová, M.; Barančík, M. The Role of Heat Shock Proteins and Autophagy in Mechanisms Underlying Effects of Sulforaphane on Doxorubicin-Induced Toxicity in HEK293 Cells. Physiol. Res. 2023, 72, S47–S59. [Google Scholar] [CrossRef]
- Akarsu, S.A.; Güngör, I.H.; Cihangiroğlu, A.; Acısu, T.C.; Koca, R.H.; Türk, G.; Sönmez, M.; Gür, S. Effect of sulforaphane on long-term storage of rabbit semen. Anim. Reprod. 2023, 20, e20230001. [Google Scholar] [CrossRef]
- Donovan, G.H.; Gatziolis, D.; Mannetje, A.T.; Weinkove, R.; Fyfe, C.; Douwes, J. An empirical test of the biodiversity hypothesis: Exposure to plant diversity is associated with a reduced risk of childhood acute lymphoblastic leukemia. Sci. Total. Environ. 2021, 768, 144627. [Google Scholar] [CrossRef]
- Li, P.; Haas, N.A.; Dalla-Pozza, R.; Jakob, A.; Oberhoffer, F.S.; Mandilaras, G. Energy Drinks and Adverse Health Events in Children and Adolescents: A Literature Review. Nutrients 2023, 15, 2537. [Google Scholar] [CrossRef]
- Zhu, L.-Q.; Zhang, L.; Zhang, J.; Chang, G.-L.; Liu, G.; Yu, D.-D.; Yu, X.-M.; Zhao, M.-S.; Ye, B. Evodiamine inhibits high-fat diet-induced colitis-associated cancer in mice through regulating the gut microbiota. J. Integr. Med. 2020, 19, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Man, A.W.C.; Zhou, Y.; Xia, N.; Li, H. Involvement of Gut Microbiota, Microbial Metabolites and Interaction with Polyphenol in Host Immunometabolism. Nutrients 2020, 12, 3054. [Google Scholar] [CrossRef]
- Tsai, Y.-C.; Cheng, K.H.; Jiang, S.S.; Hawse, J.R.; Chuang, S.E.; Chen, S.L.; Huang, T.-S.; Ch’ang, H.-J. Krüppel-like factor 10 modulates stem cell phenotypes of pancreatic adenocarcinoma by transcriptionally regulating notch receptors. J. Biomed. Sci. 2023, 30, 39. [Google Scholar] [CrossRef] [PubMed]
- Solanki, R.; Jangid, A.K.; Jadav, M.; Kulhari, H.; Patel, S. Folate Functionalized and Evodiamine-Loaded Pluronic Nanomicelles for Augmented Cervical Cancer Cell Killing. Macromol. Biosci. 2023, e2300077. [Google Scholar] [CrossRef]
- Hu, C.-Y.; Wu, H.-T.; Shan, Y.-S.; Wang, C.-T.; Shieh, G.-S.; Wu, C.-L.; Ou, H.-Y. Evodiamine Exhibits Anti-Bladder Cancer Activity by Suppression of Glutathione Peroxidase 4 and Induction of Ferroptosis. Int. J. Mol. Sci. 2023, 24, 6021. [Google Scholar] [CrossRef]
- Min, H.-Y.; Lim, Y.; Kwon, H.; Boo, H.-J.; Hyun, S.Y.; Hong, J.; Hong, S.; Lee, H.-Y. An A-ring substituted evodiamine derivative with potent anticancer activity against human non-small cell lung cancer cells by targeting heat shock protein 70. Biochem. Pharmacol. 2023, 211, 115507. [Google Scholar] [CrossRef]
- Mao, M.; Zheng, X.; Sheng, Y.; Chai, J.; Ding, H. Evodiamine inhibits malignant progression of ovarian cancer cells by regulating lncRNA-NEAT1/miR-152-3p/CDK19 axis. Chem. Biol. Drug Des. 2023, 102, 101–114. [Google Scholar] [CrossRef]
- Zhao, Q.; Hao, Y.; Yang, X.; Mao, J.; Tian, F.; Gao, Y.; Tian, X.; Yan, X.; Qiu, Y. Mitigation of maternal fecal microbiota transplantation on neurobehavioral deficits of offspring rats prenatally exposed to arsenic: Role of microbiota-gut-brain axis. J. Hazard. Mater. 2023, 457, 131816. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Han, L.; Wang, B.; Shi, R.; Ye, J.; Xia, B.; Zhao, Z.; Zhao, B.; Liu, X. Leucine-Restricted Diet Ameliorates Obesity-Linked Cognitive Deficits: Involvement of the Microbiota–Gut–Brain Axis. J. Agric. Food Chem. 2023, 71, 9404–9418. [Google Scholar] [CrossRef]
- Iii, J.S.; Vinayak, S.; Williams, J.; Malik, S.; Singh, R.; Manne, U.; Owonikoko, T.K.; Mishra, M.K. Optimum health and inhibition of cancer progression by microbiome and resveratrol. Front. Biosci. 2021, 26, 496–517. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, M.; Ye, C.; Sun, X.; Jiang, N.; Zou, X.; Yang, H.; Liu, H. BuZangTongLuo decoction improved hindlimb ischemia by activating angiogenesis and regulating gut microbiota in diabetic mice. J. Ethnopharmacol. 2019, 248, 112330. [Google Scholar] [CrossRef]
- Xiao, J.; Peng, Z.; Liao, Y.; Sun, H.; Chen, W.; Chen, X.; Wei, Z.; Yang, C.; Nüssler, A.K.; Liu, J.; et al. Organ transplantation and gut microbiota: Current reviews and future challenges. Am. J. Transl. Res. 2018, 10, 3330–3344. [Google Scholar]
- Viswanathan, C.; Bhosale, P.; Ganeshan, D.M.; Truong, M.T.; Silverman, P.; Balachandran, A. Imaging of complications of oncological therapy in the gastrointestinal system. Cancer Imaging 2012, 12, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Cetin, B.; Buyukberber, S.; Sentürk, S.; Güzel, E.; Coskun, U.; Benekli, M. Ischemic colitis after capecitabine plus cisplatin treatment in advanced gastric cancer. J. Thromb. Thrombolysis 2010, 31, 503–506. [Google Scholar] [CrossRef]
- Becker, S.; von Otte, S.; Robenek, H.; Diedrich, K.; Nofer, J.-R. Follicular Fluid High-Density Lipoprotein-Associated Sphingosine 1-Phosphate (S1P) Promotes Human Granulosa Lutein Cell Migration via S1P Receptor Type 3 and Small G-Protein RAC11. Biol. Reprod. 2011, 84, 604–612. [Google Scholar] [CrossRef] [Green Version]
- Vallon, M.; Rohde, F.; Janssen, K.-P.; Essler, M. Tumor endothelial marker 5 expression in endothelial cells during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of cell proliferation. Exp. Cell Res. 2010, 316, 412–421. [Google Scholar] [CrossRef]
- Yang, H.; Yue, G.G.-L.; Yuen, K.-K.; Gao, S.; Leung, P.C.; Wong, C.K.; Lau, C.B.-S. Mechanistic insights into the anti-tumor and anti-metastatic effects of Patrinia villosa aqueous extract in colon cancer via modulation of TGF-β R1-smad2/3-E-cadherin and FAK-RhoA-cofilin pathways. Phytomedicine 2023, 117, 154900. [Google Scholar] [CrossRef]
- Tuli, H.S.; Kumar, A.; Sak, K.; Aggarwal, D.; Gupta, D.S.; Kaur, G.; Vashishth, K.; Dhama, K.; Kaur, J.; Saini, A.K.; et al. Gut Microbiota-Assisted Synthesis, Cellular Interactions and Synergistic Perspectives of Equol as a Potent Anticancer Isoflavone. Pharmaceuticals 2022, 15, 1418. [Google Scholar] [CrossRef]
- Taha, D.; El Hajjaji, S.; Mourabit, Y.; Bouyahya, A.; Lee, L.-H.; El Menyiy, N.; Tarik, A.; Benali, T.; El Moudden, H.; Gallo, M.; et al. Traditional Knowledge, Phytochemistry, and Biological Properties of Vachellia tortilis. Plants 2022, 11, 3348. [Google Scholar] [CrossRef]
- Hnini, M.; El Attar, I.; Taha, K.; Aurag, J. Genetic diversity, symbiotic efficiency, stress tolerance, and plant growth promotion traits of rhizobia nodulating Vachellia tortilis subsp. raddiana growing in dryland soils in southern Morocco. Syst. Appl. Microbiol. 2023, 46, 126434. [Google Scholar] [CrossRef]
- Hnini, M.; Taha, K.; Aurag, J. Molecular identification and characterization of phytobeneficial osmotolerant endophytic bacteria inhabiting root nodules of the Saharan tree Vachellia tortilis subsp. raddiana. Arch. Microbiol. 2022, 205, 45. [Google Scholar] [CrossRef]
- Abdou, A.M.; Seddek, A.-L.S.; Abdelmageed, N.; Badry, M.O.; Nishikawa, Y. Extracts of wild Egyptian plants from the desert inhibit the growth of Toxoplasma gondii and Neospora caninum in vitro. J. Vet. Med. Sci. 2022, 84, 1034–1040. [Google Scholar] [CrossRef]
- Mudau, H.S.; Mokoboki, H.K.; Ravhuhali, K.E.; Mkhize, Z. Effect of Soil Type: Qualitative and Quantitative Analysis of Phytochemicals in Some Browse Species Leaves Found in Savannah Biome of South Africa. Molecules 2022, 27, 1462. [Google Scholar] [CrossRef]
- More, G.K.; Chokwe, C.R.; Meddows-Taylor, S. The attenuation of antibiotic resistant non-albicans Candida species, cytotoxicity, anti-inflammatory effects and phytochemical profiles of five Vachellia species by FTIR and UHPLC–Q/Orbitrap/MS. Heliyon 2021, 7, e08425. [Google Scholar] [CrossRef]
- More, G.K.; Meddows-Taylor, S.; Prinsloo, G. Metabolomic Profiling of Antioxidant Compounds in Five Vachellia Species. Molecules 2021, 26, 6214. [Google Scholar] [CrossRef] [PubMed]
- Thabethe, F.; Khanyile, M.; Ncobela, C.N.; Chimonyo, M. Relationship between inclusion level of Vachellia tortilis leaf meal and behavioral activities of finishing pigs. Asian-Australas. J. Anim. Sci. 2020, 33, 177–185. [Google Scholar] [CrossRef]
- Gomes, S.; Baltazar, F.; Silva, E.; Preto, A. Microbiota-Derived Short-Chain Fatty Acids: New Road in Colorectal Cancer Therapy. Pharmaceutics 2022, 14, 2359. [Google Scholar] [CrossRef] [PubMed]
- González-Bosch, C.; Zunszain, P.A.; Mann, G.E. Control of Redox Homeostasis by Short-Chain Fatty Acids: Implications for the Prevention and Treatment of Breast Cancer. Pathogens 2023, 12, 486. [Google Scholar] [CrossRef] [PubMed]
- Ariyani, W.; Amano, I.; Koibuchi, N. Isoflavones Mediate Dendritogenesis Mainly through Estrogen Receptor α. Int. J. Mol. Sci. 2023, 24, 9011. [Google Scholar] [CrossRef]
- Belobrajdic, D.P.; James-Martin, G.; Jones, D.; Tran, C.D. Soy and Gastrointestinal Health: A Review. Nutrients 2023, 15, 1959. [Google Scholar] [CrossRef]
- Vázquez, L.; Cabrera-Rubio, R.; Tamames, J.; Mayo, B.; Flórez, A. Assessment of short-read shotgun sequencing and microbiome analysis of faecal samples to discriminate between equol producers and non-producers. Benef. Microbes 2023, 1–14. [Google Scholar] [CrossRef]
- Wang, X.; Chen, B.; Fang, X.; Zhong, Q.; Liao, Z.; Wang, J.; Wu, X.; Ma, Y.; Li, P.; Feng, X.; et al. Soy isoflavone-specific biotransformation product S-equol in the colon: Physiological functions, transformation mechanisms, and metabolic regulatory pathways. Crit. Rev. Food Sci. Nutr. 2022, 1–29. [Google Scholar] [CrossRef]
- Zhang, X.; Fujiyoshi, A.; Kadota, A.; Kondo, K.; Torii, S.; Okami, Y.; Hisamatsu, T.; Yano, Y.; Barinas-Mitchell, E.; Magnani, J.; et al. Cross-sectional association of equol producing status with aortic calcification in Japanese men aged 40–79 years. Sci. Rep. 2022, 12, 20114. [Google Scholar] [CrossRef]
- Chiba, T.; Tousen, Y.; Nishijima, C.; Umegaki, K. The Prevalence of Dietary Supplements That Claim Estrogen-like Effects in Japanese Women. Nutrients 2022, 14, 4509. [Google Scholar] [CrossRef]
- Caserta, S.; Genovese, C.; Cicero, N.; Gangemi, S.; Allegra, A. The Anti-Cancer Effect of Cinnamon Aqueous Extract: A Focus on Hematological Malignancies. Life 2023, 13, 1176. [Google Scholar] [CrossRef]
- Allegra, A.; Caserta, S.; Genovese, S.; Pioggia, G.; Gangemi, S. Gender Differences in Oxidative Stress in Relation to Cancer Susceptibility and Survival. Antioxidants 2023, 12, 1255. [Google Scholar] [CrossRef]
- Vetvicka, V.; Vetvickova, J. Glucan supplementation enhances the immune response against an influenza challenge in mice. Ann. Transl. Med. 2015, 3, 22. [Google Scholar] [CrossRef]
- Marin, G.-E.; Neag, M.-A.; Burlacu, C.-C.; Buzoianu, A.-D. The Protective Effects of Nutraceutical Components in Methotrexate-Induced Toxicity Models—An Overview. Microorganisms 2022, 10, 2053. [Google Scholar] [CrossRef]
- Caserta, S.; Zaccuri, A.M.; Innao, V.; Musolino, C.; Allegra, A. Immune thrombocytopenia: Options and new perspectives. Blood Coagul. Fibrinolysis 2021, 32, 427–433. [Google Scholar] [CrossRef]
- Bustion, A.E.; Nayak, R.R.; Agrawal, A.; Turnbaugh, P.J.; Pollard, K.S. SIMMER employs similarity algorithms to accurately identify human gut microbiome species and enzymes capable of known chemical transformations. eLife 2023, 12, e82401. [Google Scholar] [CrossRef]
- Wardill, H.R.; Ferreira, A.R.D.S.; Kumar, H.; Bateman, E.H.; Cross, C.B.; Bowen, J.M.; Havinga, R.; Harmsen, H.J.M.; Knol, J.; Dorresteijn, B.; et al. Whey-based diet containing medium chain triglycerides modulates the gut microbiota and protects the intestinal mucosa from chemotherapy while maintaining therapy efficacy. Cell Death Dis. 2023, 14, 338. [Google Scholar] [CrossRef]
- Zaragoza-García, O.; Castro-Alarcón, N.; Pérez-Rubio, G.; Falfán-Valencia, R.; Briceño, O.; Navarro-Zarza, J.E.; Parra-Rojas, I.; Tello, M.; Guzmán-Guzmán, I.P. Serum Levels of IFABP2 and Differences in Lactobacillus and Porphyromonas gingivalis Abundance on Gut Microbiota Are Associated with Poor Therapeutic Response in Rheumatoid Arthritis: A Pilot Study. Int. J. Mol. Sci. 2023, 24, 1958. [Google Scholar] [CrossRef]
- Zhou, B.; Dong, C.; Zhao, B.; Lin, K.; Tian, Y.; Zhang, R.; Zhu, L.; Xu, H.; Yang, L. Bacteroides fragilis participates in the therapeutic effect of methotrexate on arthritis through metabolite regulation. Front. Microbiol. 2022, 13, 1015130. [Google Scholar] [CrossRef] [PubMed]
- Chrysostomou, D.; Roberts, L.A.; Marchesi, J.R.; Kinross, J.M. Gut Microbiota Modulation of Efficacy and Toxicity of Cancer Chemotherapy and Immunotherapy. Gastroenterology 2023, 164, 198–213. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Q.; Deng, J.; Deng, H.; Yao, D.; Yan, Y.; Ye, S.; Shang, X.; Deng, Y.; Han, L.; Zheng, G.; et al. Association of the characteristics of the blood metabolome and gut microbiome with the outcome of methotrexate therapy in psoriasis. Front. Immunol. 2022, 13, 937539. [Google Scholar] [CrossRef] [PubMed]
- Marazzato, M.; Iannuccelli, C.; Guzzo, M.P.; Nencioni, L.; Lucchino, B.; Radocchia, G.; Gioia, C.; Bonfiglio, G.; Neroni, B.; Guerrieri, F.; et al. Gut Microbiota Structure and Metabolites, Before and After Treatment in Early Rheumatoid Arthritis Patients: A Pilot Study. Front. Med. 2022, 9, 921675. [Google Scholar] [CrossRef] [PubMed]
- Clinical Trials about the Use of Natural Compounds Influencing Gut Microbiota in Hematological Malignancies. Available online: Clinicaltrials.gov (accessed on 8 June 2023).
- Wang, C.-Z.; Zhang, C.-F.; Luo, Y.; Yao, H.; Yu, C.; Chen, L.; Yuan, J.; Huang, W.-H.; Wan, J.-Y.; Zeng, J.; et al. Baicalein, an enteric microbial metabolite, suppresses gut inflammation and cancer progression in ApcMin/+ mice. Clin. Transl. Oncol. 2019, 22, 1013–1022. [Google Scholar] [CrossRef]
- Jang, J.Y.; Im, E.; Kim, N.D. Therapeutic Potential of Bioactive Components from Scutellaria baicalensis Georgi in Inflammatory Bowel Disease and Colorectal Cancer: A Review. Int. J. Mol. Sci. 2023, 24, 1954. [Google Scholar] [CrossRef]
- Ma, L.; Fang, X.; Yin, X.; Li, Y. Investigation of Molecular Mechanism of Banxia Xiexin Decoction in Colon Cancer via Network Pharmacology and In Vivo Studies. Evid.-Based Complement. Altern. Med. 2022, 2022, 4961407. [Google Scholar] [CrossRef]
- Kuhnert, R.; Kuhnert, L.; Sárosi, M.; George, S.; Draca, D.; Paskas, S.; Hofmann, B.; Steinhilber, D.; Honscha, W.; Mijatović, S.; et al. Borcalein: A Carborane-Based Analogue of Baicalein with 12-Lipoxygenase-Independent Toxicity. Chemmedchem 2021, 17, e202100588. [Google Scholar] [CrossRef]
- Palko-Labuz, A.; Sroda-Pomianek, K.; Uryga, A.; Kostrzewa-Suslow, E.; Michalak, K. Anticancer activity of baicalein and luteolin studied in colorectal adenocarcinoma LoVo cells and in drug-resistant LoVo/Dx cells. Biomed. Pharmacother. 2017, 88, 232–241. [Google Scholar] [CrossRef]
- Phan, T.; Nguyen, V.H.; Salazar, M.A.; Wong, P.; Diamond, D.J.; Yim, J.H.; Melstrom, L.G. Inhibition of Autophagy Amplifies Baicalein-Induced Apoptosis in Human Colorectal Cancer. Mol. Ther. Oncolytics 2020, 19, 1–7. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, J.; Zhang, C.; Li, Y. Baicalein restrains proliferation, migration, and invasion of human malignant melanoma cells by down-regulating colon cancer associated transcript-1. Braz. J. Med. Biol. Res. 2019, 52, e8934, Erratum in Braz. J. Med. Biol. Res. 2021, 54, e8934. [Google Scholar] [CrossRef]
- Zhong, X.; Surh, Y.-J.; Do, S.-G.; Shin, E.; Shim, K.-S.; Lee, C.-K.; Na, H.-K. Baicalein Inhibits Dextran Sulfate Sodium-induced Mouse Colitis. J. Cancer Prev. 2019, 24, 129–138. [Google Scholar] [CrossRef] [Green Version]
- Su, M.-Q.; Zhou, Y.-R.; Rao, X.; Yang, H.; Zhuang, X.; Ke, X.-J.; Peng, G.-Y.; Zhou, C.-L.; Shen, B.-Y.; Dou, J. Baicalein induces the apoptosis of HCT116�human colon cancer cells via the upregulation of DEPP/Gadd45a and activation of MAPKs. Int. J. Oncol. 2018, 53, 750–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Burillo, S.; Navajas-Porras, B.; López-Maldonado, A.; Hinojosa-Nogueira, D.; Pastoriza, S.; Rufián-Henares, J. Green Tea and Its Relation to Human Gut Microbiome. Molecules 2021, 26, 3907. [Google Scholar] [CrossRef] [PubMed]
- Adami, G.R.; Tangney, C.; Schwartz, J.L.; Dang, K.C. Gut/Oral Bacteria Variability May Explain the High Efficacy of Green Tea in Rodent Tumor Inhibition and Its Absence in Humans. Molecules 2020, 25, 4753. [Google Scholar] [CrossRef]
- Zhou, D.; Liu, X.; Lan, L.; Yu, W.; Qiu, R.; Wu, J.; Teng, C.; Huang, L.; Yu, C.; Zeng, Y. Protective effects of Liupao tea against high-fat diet/cold exposure-induced irritable bowel syndrome in rats. Heliyon 2023, 9, e16613. [Google Scholar] [CrossRef]
- Xie, Z.; Zeng, Z.; Chen, G.; Dong, W.; Peng, Y.; Xu, W.; Sun, Y.; Zeng, X.; Liu, Z. Intracellular Polysaccharides of Aspergillus cristatus from Fuzhuan Brick Tea Leverage the Gut Microbiota and Repair the Intestinal Barrier to Ameliorate DSS-Induced Colitis in Mice. J. Agric. Food Chem. 2023, 71, 8023–8037. [Google Scholar] [CrossRef]
- Aldamarany, W.A.S.; Taocui, H.; Liling, D.; Mei, H.; Yi, Z.; Zhong, G. Perilla, sunflower, and tea seed oils as potential dietary supplements with anti-obesity effects by modulating the gut microbiota composition in mice fed a high-fat diet. Eur. J. Nutr. 2023, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, Y.; Le Roy, C.; Hu, J.; Steves, C.J.; Bell, J.T.; Spector, T.D.; Gibson, R.; Menni, C.; Rodriguez-Mateos, A. Interplay between the (Poly)phenol Metabolome, Gut Microbiome, and Cardiovascular Health in Women: A Cross-Sectional Study from the TwinsUK Cohort. Nutrients 2023, 15, 1900. [Google Scholar] [CrossRef]
- Zhu, M.; Ouyang, J.; Zhou, F.; Zhao, C.; Zhu, W.; Liu, C.; Huang, P.; Li, J.; Tang, J.; Zhang, Z.; et al. Polysaccharides from Fu brick tea ameliorate obesity by modulating gut microbiota and gut microbiota-related short chain fatty acid and amino acid metabolism. J. Nutr. Biochem. 2023, 118, 109356. [Google Scholar] [CrossRef]
- Hanlon, N.; Coldham, N.; Gielbert, A.; Kuhnert, N.; Sauer, M.J.; King, L.J.; Ioannides, C. Absolute bioavailability and dose-dependent pharmacokinetic behaviour of dietary doses of the chemopreventive isothiocyanate sulforaphane in rat. Br. J. Nutr. 2008, 99, 559–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Han, P.; Zhang, Q.; Liu, P.; Liu, J.; Zhao, L.; Guo, L.; Li, J. Lactobacillus brevis alleviates the progress of hepatocellular carcinoma and type 2 diabetes in mice model via interplay of gut microflora, bile acid and NOTCH 1 signaling. Front. Immunol. 2023, 14, 1179014. [Google Scholar] [CrossRef] [PubMed]
- Kouroumalis, E.; Tsomidis, I.; Voumvouraki, A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023, 11, 1166. [Google Scholar] [CrossRef] [PubMed]
- Pelizzaro, F.; Farinati, F.; Trevisani, F. Immune Checkpoint Inhibitors in Hepatocellular Carcinoma: Current Strategies and Biomarkers Predicting Response and/or Resistance. Biomedicines 2023, 11, 1020. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, X.; Cai, L.; Cai, X. Dysbiosis of the gut microbiome in elderly patients with hepatocellular carcinoma. Sci. Rep. 2023, 13, 7797. [Google Scholar] [CrossRef]
- Innao, V.; Allegra, A.G.; Musolino, C.; Allegra, A. New Frontiers about the Role of Human Microbiota in Immunotherapy: The Immune Checkpoint Inhibitors and CAR T-Cell Therapy Era. Int. J. Mol. Sci. 2020, 21, 8902. [Google Scholar] [CrossRef]
- De Martinis, M.; Ginaldi, L.; Allegra, A.; Sirufo, M.M.; Pioggia, G.; Tonacci, A.; Gangemi, S. The Osteoporosis/Microbiota Linkage: The Role of miRNA. Int. J. Mol. Sci. 2020, 21, 8887. [Google Scholar] [CrossRef]
- Murdaca, G.; Greco, M.; Borro, M.; Gangemi, S. Hygiene hypothesis and autoimmune diseases: A narrative review of clinical evidences and mechanisms. Autoimmun. Rev. 2021, 20, 102845. [Google Scholar] [CrossRef]
- Murdaca, G.; Gerosa, A.; Paladin, F.; Petrocchi, L.; Banchero, S.; Gangemi, S. Vitamin D and Microbiota: Is There a Link with Allergies? Int. J. Mol. Sci. 2021, 22, 4288. [Google Scholar] [CrossRef]
- Murdaca, G.; Greco, M.; Negrini, S.; Casciaro, M.; Gangemi, S. The Role of Skin and Gut Microbiome and Epigenetic Modifications in Skin-Autoimmune Disorders. Curr. Mol. Med. 2021, 21, 283–290. [Google Scholar] [CrossRef]
- Musumeci, L.; Maugeri, A.; Cirmi, S.; Lombardo, G.E.; Russo, C.; Gangemi, S.; Calapai, G.; Navarra, M. Citrus fruits and their flavonoids in inflammatory bowel disease: An overview. Nat. Prod. Res. 2019, 34, 122–136. [Google Scholar] [CrossRef] [PubMed]
- Allegra, A.; Casciaro, M.; Presti, E.L.; Musolino, C.; Gangemi, S. Harnessing Unconventional T Cells and Innate Lymphoid Cells to Prevent and Treat Hematological Malignancies: Prospects for New Immunotherapy. Biomolecules 2022, 12, 754. [Google Scholar] [CrossRef]
- Cicero, N.; Gangemi, S.; Allegra, A. Natural products and oxidative stress: Potential agents against multiple myeloma. Nat. Prod. Res. 2022, 37, 687–690. [Google Scholar] [CrossRef]
- Allegra, A.; Petrarca, C.; Di Gioacchino, M.; Casciaro, M.; Musolino, C.; Gangemi, S. Modulation of Cellular Redox Parameters for Improving Therapeutic Responses in Multiple Myeloma. Antioxidants 2022, 11, 455. [Google Scholar] [CrossRef] [PubMed]
- Buemi, M.; Lacquaniti, A.; Maricchiolo, G.; Bolignano, D.; Campo, S.; Cernaro, V.; Sturiale, A.; Grasso, G.; Buemi, A.; Allegra, A.; et al. Regenerative Medicine: Does Erythropoietin have a Role? Curr. Pharm. Des. 2009, 15, 2026–2036. [Google Scholar] [CrossRef] [PubMed]
- Aborehab, N.M.; Kandeil, M.A.; Sabry, D.; Rabie, R.; Ibrahim, I.T. Circular SERPINA3 and its target microRNA-944 as potential molecular biomarkers in hepatitis C virus-induced hepatocellular carcinoma in Egyptian population. Non-Coding RNA Res. 2023, 8, 401–412. [Google Scholar] [CrossRef]
- Kensler, T.W.; Chen, J.-G.; Egner, P.A.; Fahey, J.W.; Jacobson, L.P.; Stephenson, K.K.; Ye, L.; Coady, J.L.; Wang, J.-B.; Wu, Y.; et al. Effects of Glucosinolate-Rich Broccoli Sprouts on Urinary Levels of Aflatoxin-DNA Adducts and Phenanthrene Tetraols in a Randomized Clinical Trial in He Zuo Township, Qidong, People’s Republic of China. Cancer Epidemiol. Biomark. Prev. 2005, 14, 2605–2613. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Xiang, Q.; Peng, F.; Gao, S.; Yu, L.; Tang, Y.; Yang, Z.; Pu, W.; Xie, X.; Peng, C. The mechanism of action of safflower total flavonoids in the treatment of endometritis caused by incomplete abortion based on network pharmacology and 16S rDNA sequencing. J. Ethnopharmacol. 2023, 315, 116639. [Google Scholar] [CrossRef]
- Zhai, Y.; Luo, Y.; Mo, X.; Yang, P.; Pang, Y.; Wu, L.; Zheng, G.; Zou, M.; Ma, W.; Wang, K.; et al. Zhuang medicine Shuanglu Tongnao Compound Recipe treats stroke by affecting the intestinal flora regulated by the TLR4/NF-κB signaling pathway. Ann. Transl. Med. 2023, 11, 174. [Google Scholar] [CrossRef]
- Dai, X.-C.; Zhang, Y.-H.; Huang, Y.-L.; Wu, X.-T.; Fang, Y.-J.; Gao, Y.-J.; Wang, F. Calorie restriction remodels gut microbiota and suppresses tumorigenesis of colorectal cancer in mice. Exp. Ther. Med. 2022, 25, 59. [Google Scholar] [CrossRef]
- Xia, Y.; Luo, Q.; Huang, C.; Shi, L.; Jahangir, A.; Pan, T.; Wei, X.; He, J.; Liu, W.; Shi, R.; et al. Ferric citrate-induced colonic mucosal damage associated with oxidative stress, inflammation responses, apoptosis, and the changes of gut microbial composition. Ecotoxicol. Environ. Saf. 2023, 249, 114364. [Google Scholar] [CrossRef]
- Zhang, R.; Teng, L.; Zhong, Y.; Ma, P.; Xu, L.; Xiao, P. Neuroprotection of isookanin against MPTP-induced cell death of SH-SY5Y cells via BCL2/BAX and PI3K/AKT pathways. Psychopharmacol. 2023, 240, 1509–1520. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, L.; Wang, C.; Li, Z.; Luo, M.; Xie, G.; Yang, X.; Li, M.; Ren, S.; Zhao, D.; et al. Anti-apoptotic protein BCL-XL as a therapeutic vulnerability in gastric cancer. Anim. Model. Exp. Med. 2023, 6, 245–254. [Google Scholar] [CrossRef]
- Kervadec, J.; Priault, M. Advances in Bcl-xL Research 2.0. Int. J. Mol. Sci. 2023, 24, 9484. [Google Scholar] [CrossRef]
- Cao, C.; Pei, Y.; Yu, H.; Qi, H. Dual targeting Bcl-2 and Bcl-xL augments osteosarcoma response to doxorubicin. J. Chemother. 2023, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ryu, W.; Park, C.-W.; Kim, J.; Lee, H.; Chung, H. The Bcl-2/Bcl-xL Inhibitor ABT-263 Attenuates Retinal Degeneration by Selectively Inducing Apoptosis in Senescent Retinal Pigment Epithelial Cells. Mol. Cells 2023, 46, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, C.; Li, Y.; Gong, Q.; Ru, Y.; Xie, L.; Xiao, B.; Jin, X.; Ma, C.; Chai, Z.; et al. Wuzi Yanzong Pill protects neural tube defects by activating PI3K/Akt signaling pathway. Int. J. Dev. Neurosci. 2023. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Xia, Q.; Liu, L.; Wu, Z.; Pan, D. Recent advances of cereal β-glucan on immunity with gut microbiota regulation functions and its intelligent gelling application. Crit. Rev. Food Sci. Nutr. 2021, 63, 3895–3911. [Google Scholar] [CrossRef] [PubMed]
- Caserta, S.; Innao, V.; Musolino, C.; Allegra, A. Immune checkpoint inhibitors in multiple myeloma: A review of the literature. Pathol. Res. Pract. 2020, 216, 153114. [Google Scholar] [CrossRef]
- Amano, H.; Eshima, K.; Ito, Y.; Nakamura, M.; Kitasato, H.; Ogawa, F.; Hosono, K.; Iwabuchi, K.; Uematsu, S.; Akira, S.; et al. The microsomal prostaglandin E synthase-1/prostaglandin E2 axis induces recovery from ischaemia via recruitment of regulatory T cells. Cardiovasc. Res. 2022, 119, 1218–1233. [Google Scholar] [CrossRef]
- Shokrgozar, N.; Amirian, N.; Ranjbaran, R.; Bazrafshan, A.; Sharifzadeh, S. Evaluation of regulatory T cells frequency and FoxP3/GDF-15 gene expression in β-thalassemia major patients with and without alloantibody; correlation with serum ferritin and folate levels. Ann. Hematol. 2020, 99, 421–429. [Google Scholar] [CrossRef]
- González-Guerrero, C.; Morgado-Pascual, J.L.; Cannata-Ortiz, P.; Ramos-Barron, M.A.; Gómez-Alamillo, C.; Arias, M.; Mezzano, S.; Egido, J.; Ruiz-Ortega, M.; Ortiz, A.; et al. CCL20 blockade increases the severity of nephrotoxic folic acid-induced acute kidney injury. J. Pathol. 2018, 246, 191–204. [Google Scholar] [CrossRef]
- Park, A.-M.; Omura, S.; Fujita, M.; Sato, F.; Tsunoda, I. Helicobacter pylori and gut microbiota in multiple sclerosis versus Alzheimer’s disease: 10 pitfalls of microbiome studies. Clin. Exp. Neuroimmunol. 2017, 8, 215–232. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Duan, S.; Yu, X.; Qian, Z.; Zhou, S.; Zhang, Z.; Huang, X.; Huang, Y.; Su, J.; Lai, C.; et al. Folate-modified Chitosan Nanoparticles Containing the IP-10 Gene Enhance Melanoma-specific Cytotoxic CD8+CD28+ T Lymphocyte Responses. Theranostics 2016, 6, 752–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, C.; Yu, X.; Zhuo, H.; Zhou, N.; Xie, Y.; He, J.; Peng, Y.; Xie, X.; Luo, G.; Zhou, S.; et al. Anti-tumor immune response of folate-conjugated chitosan nanoparticles containing the IP-10 gene in mice with hepatocellular carcinoma. J. Biomed. Nanotechnol. 2014, 10, 3576–3589. [Google Scholar] [CrossRef]
- Hu, M.; Li, K.; Maskey, N.; Xu, Z.; Peng, C.; Wang, B.; Li, Y.; Yang, G. Decreased intratumoral Foxp3 Tregs and increased dendritic cell density by neoadjuvant chemotherapy associated with favorable prognosis in advanced gastric cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 4685–4694. [Google Scholar]
- Liang, S.C.; Moskalenko, M.; Van Roey, M.; Jooss, K. Depletion of regulatory T cells by targeting folate receptor 4 enhances the potency of a GM-CSF-secreting tumor cell immunotherapy. Clin. Immunol. 2013, 148, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wu, G.; Xing, J.-C.; Tang, J.; Zhang, Y.; Huang, Z.-M.; Jia, Z.-C.; Zhao, R.; Tian, Z.-Q.; Wang, S.-F.; et al. A novel splice variant of folate receptor 4 predominantly expressed in regulatory T cells. BMC Immunol. 2012, 13, 30. [Google Scholar] [CrossRef] [Green Version]
- Humphries, A.; Daud, A. The gut microbiota and immune checkpoint inhibitors. Hum. Vaccines Immunother. 2018, 14, 2178–2182. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Zhang, S.; Tseng, Y.; Shen, X.; Dong, L.; Xue, R. Gut Microbiota and Immune Checkpoint Inhibitors-Based Immunotherapy. Anti-Cancer Agents Med. Chem. 2021, 22, 1244–1256. [Google Scholar] [CrossRef]
- Wang, J.; Yang, H.-R.; Wang, D.-J.; Wang, X.-X. Association between the gut microbiota and patient responses to cancer immune checkpoint inhibitors (Review). Oncol. Lett. 2020, 20, 342. [Google Scholar] [CrossRef]
- Delaye, M.; Rousseau, A.; Mailly-Giacchetti, L.; Assoun, S.; Sokol, H.; Neuzillet, C. Obesity, cancer, and response to immune checkpoint inhibitors: Could the gut microbiota be the mechanistic link? Pharmacol. Ther. 2023, 247, 108442. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Shi, Q.; Liu, X.; Tang, H.; Lu, B.; Zhou, Q.; Xu, Y.; Chen, M.; Zhao, J.; Li, Y.; et al. Dynamic gut microbiota changes in patients with advanced malignancies experiencing secondary resistance to immune checkpoint inhibitors and immune-related adverse events. Front. Oncol. 2023, 13, 1144534. [Google Scholar] [CrossRef]
- Daillère, R.; Routy, B.; Goubet, A.-G.; Cogdill, A.; Ferrere, G.; Silva, C.A.-C.; Fluckiger, A.; Ly, P.; Haddad, Y.; Pizzato, E.; et al. Elucidating the gut microbiota composition and the bioactivity of immunostimulatory commensals for the optimization of immune checkpoint inhibitors. Oncoimmunology 2020, 9, 1794423. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ye, J. Characterization of gut microbiota in patients with primary hepatocellular carcinoma received immune checkpoint inhibitors. Medicine 2020, 99, e21788. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caserta, S.; Genovese, C.; Cicero, N.; Toscano, V.; Gangemi, S.; Allegra, A. The Interplay between Medical Plants and Gut Microbiota in Cancer. Nutrients 2023, 15, 3327. https://doi.org/10.3390/nu15153327
Caserta S, Genovese C, Cicero N, Toscano V, Gangemi S, Allegra A. The Interplay between Medical Plants and Gut Microbiota in Cancer. Nutrients. 2023; 15(15):3327. https://doi.org/10.3390/nu15153327
Chicago/Turabian StyleCaserta, Santino, Claudia Genovese, Nicola Cicero, Valeria Toscano, Sebastiano Gangemi, and Alessandro Allegra. 2023. "The Interplay between Medical Plants and Gut Microbiota in Cancer" Nutrients 15, no. 15: 3327. https://doi.org/10.3390/nu15153327
APA StyleCaserta, S., Genovese, C., Cicero, N., Toscano, V., Gangemi, S., & Allegra, A. (2023). The Interplay between Medical Plants and Gut Microbiota in Cancer. Nutrients, 15(15), 3327. https://doi.org/10.3390/nu15153327