Impacts of Early Weaning on Lamb Gut Health and Immune Function: Short-Term and Long-Term Effects
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collection
2.3. Measurement of Hematological Parameters
2.4. Measurement of Plasma Stress-Related Hormones, Haptoglobin, and TNF-α
2.5. Measurement of Intestinal Morphology
2.6. Measurement of Apoptosis in Ileal Cells
2.7. Measurement of Antioxidant and Immune Indices in Ileum
2.8. mRNA Library Construction and Sequencing
2.9. Statistical Analysis
3. Results
3.1. Hematological Responses
3.2. Plasma Stress-Related Hormones, Haptoglobin, and TNF-α
3.3. Intestinal Morphology
3.4. Apoptosis of Ileal Cells
3.5. Antioxidant and Immune Indices in Ileum
3.6. RNA Sequencing (RNA-Seq) Data Mapping and Annotation
3.7. Differentially Expressed Genes (DEGs)
3.8. Correlation Between the Top 20 DEGs and Ileum Morphology and Antioxidant Indices
3.9. KEGG Pathway Analysis of DEG
3.10. Protein–Protein Interaction (PPI) Network of DEGs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schichowski, C.; Moors, E.; Gauly, M. Influence of weaning age and an experimental Haemonchus contortus infection on behaviour and growth rates of lambs. Appl. Anim. Behav. Sci. 2010, 125, 103–108. [Google Scholar] [CrossRef]
- Fazio, E.; Medica, P.; Cravana, C.; Ferlazzo, A. Short- and Long-term Effects of Weaning on Adrenocortical and Functional Response of Lambs. Acta Sci. Vet. 2014, 42, 1193. [Google Scholar]
- Knights, M.; Siew, N.; Ramgattie, R.; Singh-Knights, D.; Bourne, G. Effect of time of weaning on the reproductive performance of Barbados Blackbelly ewes and lamb growth reared in the tropics. Small Rumin. Res. 2012, 103, 205–210. [Google Scholar] [CrossRef]
- Mialon, M.M.; Boivin, X.; Durand, D.; Boissy, A.; Delval, E.; Bage, A.S.; Clanet, C.; Cornilleau, F.; Parias, C.; Foury, A.; et al. Short- and mid-term effects on performance, health and qualitative behavioural assessment of Romane lambs in different milk feeding conditions. Animal 2021, 15, 100157. [Google Scholar] [CrossRef] [PubMed]
- Beard, S.C.; Schmied, J.D.; Hodgins, D.C.; Mallard, B.A. The effects of timing of high immune response phenotyping in relation to weaning on immune responses of crossbred beef calves. J. Anim. Sci. 2023, 101, skad255. [Google Scholar] [CrossRef]
- Lambertz, C.; Farke-Rover, A.; Gauly, M. Effects of sex and age on behavior and weight gain in beef calves after abrupt weaning. Anim. Sci. J. 2015, 86, 345–350. [Google Scholar] [CrossRef]
- Napolitano, F.; Annicchiarico, G.; Caroprese, M.; De Rosa, G.; Taibi, L.; Sevi, A. Lambs prevented from suckling their mothers display behavioral, immune and endocrine disturbances. Physiol. Behav. 2003, 78, 81–89. [Google Scholar] [CrossRef]
- Li, C.; Wang, G.; Zhang, Q.; Huang, Y.; Li, F.; Wang, W. Developmental changes of nutrient digestion in young lambs are influenced by weaning and associated with intestinal microbiota. Anim. Biotechnol. 2023, 34, 1362–1376. [Google Scholar] [CrossRef]
- Han, C.; Li, M.; Li, F.; Wang, Z.; Hu, X.; Yang, Y.; Wang, H.; Lv, S. Temporary sensory separation of lamb groups from ewes affects behaviors and serum levels of stress-related indicators of small-tailed Han lambs. Physiol. Behav. 2024, 277, 114504. [Google Scholar] [CrossRef]
- Hickey, M.C.; Drennan, M.; Earley, B. The effect of abrupt weaning of suckler calves on the plasma concentrations of cortisol, catecholamines, leukocytes, acute-phase proteins and in vitro interferon-gamma production. J. Anim. Sci. 2003, 81, 2847–2855. [Google Scholar] [CrossRef]
- Nicolaides, N.C.; Kyratzi, E.; Lamprokostopoulou, A.; Chrousos, G.P.; Charmandari, E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation 2015, 22, 6–19. [Google Scholar] [CrossRef]
- Gao, X.; Cao, Q.; Cheng, Y.; Zhao, D.; Wang, Z.; Yang, H.; Wu, Q.; You, L.; Wang, Y.; Lin, Y.; et al. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc. Natl. Acad. Sci. USA 2018, 115, E2960–E2969. [Google Scholar] [CrossRef]
- He, Y.; Liu, N.; Ji, Y.; Tso, P.; Wu, Z. Weaning Stress in Piglets Alters the Expression of Intestinal Proteins Involved in Fat Absorption. J. Nutr. 2022, 152, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Niu, L.; Wang, Y.; Zhan, S.; Wang, L.; Dai, D.; Cao, J.; Guo, J.; Li, L.; Zhang, H.; et al. Combining 16S rRNA Sequencing and Metabolomics Data to Decipher the Interactions between Gut Microbiota, Host Immunity, and Metabolites in Diarrheic Young Small Ruminants. Int. J. Mol. Sci. 2023, 24, 11423. [Google Scholar] [CrossRef] [PubMed]
- Zhong, T.; Wang, Y.; Wang, X.; Freitas-de-Melo, A.; Li, H.; Zhan, S.; Wang, L.; Cao, J.; Dai, D.; Guo, J.; et al. Diarrhea in suckling lambs is associated with changes in gut microbiota, serum immunological and biochemical parameters in an intensive production system. Front. Microbiol. 2022, 13, 1020657. [Google Scholar] [CrossRef]
- Han, X.; Hu, X.; Jin, W.; Liu, G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. Anim. Nutr. 2024, 17, 188–207. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Kim, I.H. The Impact of Weaning Stress on Gut Health and the Mechanistic Aspects of Several Feed Additives Contributing to Improved Gut Health Function in Weanling Piglets—A Review. Animals 2021, 11, 2418. [Google Scholar] [CrossRef]
- Zhuang, Y.; Wu, H.; Wang, X.; He, J.; He, S.; Yin, Y. Resveratrol Attenuates Oxidative Stress-Induced Intestinal Barrier Injury through PI3K/Akt-Mediated Nrf2 Signaling Pathway. Oxidative Med. Cell. Longev. 2019, 2019, 7591840. [Google Scholar] [CrossRef]
- NY/T 816-2004; Feeding standard of meat-producing sheep and goats. China Agriculture Press: Beijing, China, 2004.
- Frazee, A.C.; Pertea, G.; Jaffe, A.E.; Langmead, B.; Salzberg, S.L.; Leek, J.T. Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol. 2015, 33, 243–246. [Google Scholar] [CrossRef]
- Hulbert, L.E.; Moisa, S.J. Stress, immunity, and the management of calves. J. Dairy Sci. 2016, 99, 3199–3216. [Google Scholar] [CrossRef]
- O’Connor, D.B.; Thayer, J.F.; Vedhara, K. Stress and Health: A Review of Psychobiological Processes. Annu. Rev. Psychol. 2021, 72, 663–688. [Google Scholar] [CrossRef] [PubMed]
- Ledezma-Torres, R.A.; Sanchez-Davila, F.; Rodriguez-Miranda, D.A.; Luna-Palomera, C.; Grizelj, J.; Vazquez-Armijo, J.F.; Lopez-Villalobos, N. Sexual performance and semen quality of pubertal lambs treated with different weaning methods. Arch. Anim. Breed. 2022, 65, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Millington, G.W. The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr. Metab. 2007, 4, 18. [Google Scholar] [CrossRef] [PubMed]
- Lynch, E.M.; Earley, B.; McGee, M.; Doyle, S. Effect of abrupt weaning at housing on leukocyte distribution, functional activity of neutrophils, and acute phase protein response of beef calves. BMC Vet. Res. 2010, 6, 39. [Google Scholar] [CrossRef]
- Carroll, J.A.; Arthington, J.D.; Chase, C.C., Jr. Early weaning alters the acute-phase reaction to an endotoxin challenge in beef calves. J. Anim. Sci. 2009, 87, 4167–4172. [Google Scholar] [CrossRef]
- O’Loughlin, A.; McGee, M.; Doyle, S.; Earley, B. Biomarker responses to weaning stress in beef calves. Res. Vet. Sci. 2014, 97, 458–463. [Google Scholar] [CrossRef]
- Ceja, G.; Boerman, J.P.; Neves, R.C.; Jorgensen, M.W.; Johnson, J.S. l-Glutamine supplementation reduces gastrointestinal permeability and biomarkers of physiological stress in preweaning Holstein heifer calves. J. Dairy Sci. 2023, 106, 9663–9676. [Google Scholar] [CrossRef]
- Chi, H.; Pepper, M.; Thomas, P.G. Principles and therapeutic applications of adaptive immunity. Cell 2024, 187, 2052–2078. [Google Scholar] [CrossRef]
- Boivin, X.; Nowak, R.; Garcia, A.T. The presence of the dam affects the efficiency of gentling and feeding on the early establishment of the stockperson-lamb relationship. Appl. Anim. Behav. Sci. 2001, 72, 89–103. [Google Scholar] [CrossRef]
- McCoard, S.A.; Cristobal-Carballo, O.; Knol, F.W.; Heiser, A.; Khan, M.A.; Hennes, N.; Johnstone, P.; Lewis, S.; Stevens, D.R. Impact of early weaning on small intestine, metabolic, immune and endocrine system development, growth and body composition in artificially reared lambs. J. Anim. Sci. 2020, 98, skz356. [Google Scholar] [CrossRef]
- Hu, C.H.; Xiao, K.; Luan, Z.S.; Song, J. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J. Anim. Sci. 2013, 91, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Tao, H.; Kang, L.; Wang, S.; Diao, Q.; Han, D.; Cui, K. Transcriptome and iTRAQ-Based Proteome Reveal the Molecular Mechanism of Intestinal Injury Induced by Weaning Ewe’s Milk in Lambs. Front. Vet. Sci. 2022, 9, 809188. [Google Scholar] [CrossRef] [PubMed]
- Barker, N.; van de Wetering, M.; Clevers, H. The intestinal stem cell. Genes Dev. 2008, 22, 1856–1864. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.H.; Sung, T.S.; Kurahashi, M.; O’Kane, L.E.; O’Driscoll, K.; Koh, S.D.; Sanders, K.M. Na+-K+-Cl- cotransporter (NKCC) maintains the chloride gradient to sustain pacemaker activity in interstitial cells of Cajal. Am. J. Physiol.-Gastrointest. Liver Physiol. 2016, 311, G1037–G1046. [Google Scholar] [CrossRef]
- Shyer, A.E.; Huycke, T.R.; Lee, C.; Mahadevan, L.; Tabin, C.J. Bending gradients: How the intestinal stem cell gets its home. Cell 2015, 161, 569–580. [Google Scholar] [CrossRef]
- Wood, K.M.; Palmer, S.I.; Steele, M.A.; Metcalf, J.A.; Penner, G.B. The influence of age and weaning on permeability of the gastrointestinal tract in Holstein bull calves. J. Dairy Sci. 2015, 98, 7226–7237. [Google Scholar] [CrossRef]
- Dunière, L.; Ruiz, P.; Lebbaoui, Y.; Guillot, L.; Bernard, M.; Forano, E.; Chaucheyras-Durand, F. Effects of rearing mode on gastro-intestinal microbiota and development, immunocompetence, sanitary status and growth performance of lambs from birth to two months of age. Anim. Microbiome 2023, 5, 34. [Google Scholar] [CrossRef]
- Faba, L.; Martin-Orue, S.M.; Hulshof, T.G.; Perez, J.F.; Wellington, M.O.; Van Hees, H.M.J. Impact of initial postweaning feed intake on weanling piglet metabolism, gut health, and immunity. J. Anim. Sci. 2025, 103, skaf099. [Google Scholar] [CrossRef]
- Fu, Z.L.; Yang, Y.; Ma, L.; Malmuthuge, N.; Guan, L.L.; Bu, D.P. Dynamics of oxidative stress and immune responses in neonatal calves during diarrhea. J. Dairy Sci. 2024, 107, 1286–1298. [Google Scholar] [CrossRef]
- Pi, J.; Zhang, Q.; Fu, J.; Woods, C.G.; Hou, Y.; Corkey, B.E.; Collins, S.; Andersen, M.E. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol. Appl. Pharmacol. 2010, 244, 77–83. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [PubMed]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2008, 9, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Ma, J.; Xu, J.; Huangfu, W.; Zhang, Y.; Ali, Q.; Liu, B.; Li, D.; Cui, Y.; Wang, Z.; et al. Fecal microbiota transplantation alleviates intestinal inflammatory diarrhea caused by oxidative stress and pyroptosis via reducing gut microbiota-derived lipopolysaccharides. Int. J. Biol. Macromol. 2024, 261, 129696. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.H.; Zhao, K.L.; Chen, X.L.; Xu, J.X. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. J. Anim. Sci. 2012, 90, 2581–2589. [Google Scholar] [CrossRef]
- Yin, J.; Wu, M.M.; Xiao, H.; Ren, W.K.; Duan, J.L.; Yang, G.; Li, T.J.; Yin, Y.L. Development of an antioxidant system after early weaning in piglets. J. Anim. Sci. 2014, 92, 612–619. [Google Scholar] [CrossRef]
- Wang, F.; Kohan, A.B.; Lo, C.-M.; Liu, M.; Howles, P.; Tso, P. Apolipoprotein A-IV: A protein intimately involved in metabolism. J. Lipid Res. 2015, 56, 1403–1418. [Google Scholar] [CrossRef]
- Nishihara, K.; van Niekerk, J.; He, Z.; Innes, D.; Guan, L.L.; Steele, M. Reduction in mucosa thickness is associated with changes in immune function in the colon mucosa during the weaning transition in Holstein bull dairy calves. Genomics 2023, 115, 110680. [Google Scholar] [CrossRef]
- Sorokin, A. Nitric Oxide Synthase and Cyclooxygenase Pathways: A Complex Interplay in Cellular Signaling. Curr. Med. Chem. 2016, 23, 2559–2578. [Google Scholar] [CrossRef]
- Romani, L.; Fallarino, F.; De Luca, A.; Montagnoli, C.; D’Angelo, C.; Zelante, T.; Vacca, C.; Bistoni, F.; Fioretti, M.C.; Grohmann, U.; et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature 2008, 451, 211–215. [Google Scholar] [CrossRef]
- Tokunaga, R.; Zhang, W.; Naseem, M.; Puccini, A.; Berger, M.D.; Soni, S.; McSkane, M.; Baba, H.; Lenz, H.J. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation—A target for novel cancer therapy. Cancer Treat. Rev. 2018, 63, 40–47. [Google Scholar] [CrossRef]
Items | Starter (%) | Milk Replacer (%) |
---|---|---|
Ingredients | ||
Alfalfa hay | 18.50 | |
Corn | 21.00 | |
Extruded corn | 22.30 | |
Soybean meal | 21.50 | |
Extruded soybean | 4.00 | |
Corn gluten meal | 5.00 | |
Bran | 6.00 | |
Limestone | 0.30 | |
Premix * | 1.00 | |
NaCl | 0.40 | |
Total | 100 | |
Chemical composition # | ||
Dry matter | 93.86 | 96.91 |
19.50 | 23.22 | |
Fat | 1.33 | 13.20 |
Neutral detergent fiber | 18.94 | 0.00 |
Acid detergent fiber | 8.60 | 0.00 |
Starch | 33.10 | 0.00 |
Items | Treatment | Days Post-Weaning (d) | SEM | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 7 | 14 | 28 | Weaning | Age | Weaning × Age | |||
WBC (×109 cells/L) | CON | 8.29 | 8.59 | 9.03 | 8.31 | 9.20 | 8.28 | 9.86 | 0.223 | 0.024 | 0.328 | 0.464 |
EW | 7.95 b | 10.92 a* | 10.15 ab | 10.66 a* | 9.79 ab | 9.53 ab | 9.68 ab | |||||
LYM (×109 cells/L) | CON | 3.52 b | 3.64 b | 3.62 b | 3.32 b | 4.01 b | 4.32 b | 5.47 a | 0.108 | 0.041 | 0.004 | 0.528 |
EW | 3.47 b | 4.45 ab | 4.37 ab | 4.46 ab* | 4.53 ab | 4.69 ab | 5.06 a | |||||
NEU (×109 cells/L) | CON | 3.49 | 3.71 | 4.06 | 3.69 | 3.68 | 2.75 | 3.30 | 0.150 | 0.145 | 0.097 | 0.642 |
EW | 3.24 b | 5.18 a* | 4.41 ab | 4.69 ab | 3.75 ab | 3.35 b | 3.14 b | |||||
NEU/LYM | CON | 1.02 ab | 1.04 ab | 1.21 a | 1.12 ab | 1.03 ab | 0.66 ab | 0.61b | 0.043 | 0.945 | 0.006 | 0.858 |
EW | 1.00 ab | 1.31 a | 1.10 ab | 1.11 ab | 0.88 ab | 0.74 ab | 0.61 b | |||||
RBC (×109 cells/L) | CON | 8.47 b | 8.00 b | 8.02 b | 7.91 b | 7.94 b | 8.37 b | 9.22 a | 0.068 | 0.432 | 0.004 | 0.449 |
EW | 8.04 b | 8.49 ab | 8.34 ab | 8.23 ab | 8.25 ab | 8.25 ab | 9.08 a | |||||
Hb (g/L) | CON | 122.64 ab | 113.86 ab | 111.83 ab | 109.79 b | 111.94 ab | 116.67 ab | 127.43 a | 1.066 | 0.586 | 0.024 | 0.293 |
EW | 113.08 | 120.45 | 115.50 | 113.29 | 109.93 | 112.25 | 121.50 |
Items (µg/mL) | Treatment | Days Post-Weaning (d) | SEM | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 7 | Weaning | Age | Weaning × Age | |||
CORT | CON | 116.43 | 114.62 | 115.92 | 125.68 | 115.82 | 1.297 | 0.225 | 0.383 | 0.232 |
EW | 118.22 | 129.29 * | 124.04 | 122.82 | 123.79 | |||||
HPT | CON | 51.02 | 50.75 | 52.02 | 49.15 | 44.94 | 0.826 | 0.391 | 0.109 | 0.960 |
EW | 51.55 | 54.16 * | 53.39 | 50.54 | 48.37 | |||||
NE | CON | 1468.23 | 1488.63 | 1508.55 | 1544.86 | 1456.08 | 16.074 | 0.378 | 0.049 | 0.320 |
EW | 1417.75 b | 1542.85 ab | 1670.66 a* | 1555.05 ab | 1458.10 b | |||||
TNF-α | CON | 97.46 | 94.74 | 94.24 | 95.93 | 90.75 | 0.999 | 0.454 | 0.202 | 0.382 |
EW | 97.37 ab | 103.94 a* | 93.15 b | 95.45ab | 94.93 ab |
Items (μm) | 5 Days Post-Weaning | 28 Days Post-Weaning | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | EW | CON | EW | SEM | Weaning | Age | Weaning × Age | ||
Duodenum | Villi height | 210.68 | 238.47 | 452.96 | 437.60 | 8.376 | 0.714 | <0.001 | 0.211 |
Villi width | 75.88 | 81.21 | 173.27 | 155.40 | 3.717 | 0.818 | <0.001 | 0.115 | |
Crypt depth | 120.00 | 149.87 * | 220.67 | 212.29 | 5.020 | 0.296 | <0.001 | 0.070 | |
Muscle layer thickness | 97.52 | 116.00 * | 112.89 | 136.13 * | 4.752 | 4.752 | 0.075 | 0.804 | |
Jejunum | Villi height | 430.20 | 412.50 | 447.90 | 413.95 | 11.172 | 0.269 | 0.675 | 0.722 |
Villi width | 93.08 | 101.92 | 114.62 | 127.15 | 3.437 | 0.144 | 0.005 | 0.793 | |
Crypt depth | 126.95 | 195.33 * | 159.18 | 181.18 | 7.699 | 0.012 | 0.567 | 0.156 | |
Muscle layer thickness | 99.58 | 87.90 | 93.93 | 86.20 | 5.041 | 0.248 | 0.909 | 0.664 | |
Ileum | Villi height | 458.10 * | 397.97 | 427.54 * | 372.47 | 11.047 | 0.028 | 0.151 | 0.737 |
Villi width | 103.74 | 108.57 | 114.86 | 114.07 | 4.240 | 0.814 | 0.339 | 0.744 | |
Crypt depth | 123.16 | 189.65 * | 173.68 | 192.76 | 7.160 | 0.008 | 0.077 | 0.114 | |
Muscle layer thickness | 112.20 | 103.55 | 93.86 | 88.27 | 8.142 | 0.306 | 0.116 | 0.926 | |
Colon | Villi height | 429.80 | 464.20 | 480.06 | 478.86 | 11.77 | 0.491 | 0.188 | 0.461 |
Villi width | 43.80 | 48.94 | 50.86 | 48.38 | 1.654 | 0.694 | 0.342 | 0.267 | |
Crypt depth | 63.46 | 71.48 | 74.94 | 77.44 | 7.067 | 0.715 | 0.546 | 0.848 | |
Muscle layer thickness | 174.82 | 187.52 | 202.28 | 189.24 | 10.187 | 0.993 | 0.484 | 0.537 |
Items | 5 Days Post-Weaning | 28 Days Post-Weaning | p Value | |||||
---|---|---|---|---|---|---|---|---|
CON | EW | CON | EW | SEM | Weaning | Age | Weaning × Age | |
SOD (U/mg) | 0.12 | 0.10 | 0.11 | 0.11 | 0.006 | 0.382 | 0.961 | 0.732 |
GSH-Px (U/mg) | 1.23 | 1.23 | 1.12 | 1.18 | 0.043 | 0.763 | 0364 | 0.716 |
MDA (nmol/g) | 8.53 | 8.29 | 10.13 | 22.30 * | 1.735 | 0.098 | 0.036 | 0.089 |
IgA (mg/g) | 1.31 * | 0.85 | 1.18 * | 0.99 | 0.060 | 0.014 | 0.904 | 0.268 |
Gene ID | Gene Symbol | Description | Group | log2FC | p Value | Q Value | |
---|---|---|---|---|---|---|---|
CON | EW | ||||||
MSTRG.7028 | APOA4 | Apolipoprotein A4 | 6.67 | 37.14 | 2.45 | <0.001 | <0.001 |
MSTRG.2698 | SLC10A2 | Solute carrier family 10 member 2 | 5.90 | 18.23 | 1.60 | <0.001 | <0.001 |
MSTRG.12128 | HSPA1L | Heat shock 70 kda protein 1-like | 0.69 | <0.01 | −9.98 | <0.001 | <0.001 |
MSTRG.5151 | PRNP | Major prion protein | 0.17 | <0.01 | −8.91 | <0.001 | 0.010 |
MSTRG.9443 | OXSR1 | Serine/threonine-protein kinase OSR1 | <0.01 | 4.77 | 11.29 | <0.001 | 0.015 |
MSTRG.2150 | PDE9A | Phosphodiesterase 9A | 11.77 | 27.12 | 1.18 | <0.001 | 0.015 |
MSTRG.2965 | NOS2 | Nitric oxide synthase 2 | 0.74 | 4.74 | 2.64 | <0.001 | 0.019 |
MSTRG.19179 | CDC42SE2 | CDC42 small effector 2 | 8.52 | 20.11 | 1.21 | <0.001 | 0.019 |
MSTRG.22642 | COX1 | Cytochrome c oxidase subunit 1 | 1195.86 | 6.55 | −7.53 | <0.001 | 0.020 |
MSTRG.12142 | C6orf47 | Uncharacterized protein c6orf47 | 1.04 | <0.01 | −10.56 | <0.001 | 0.020 |
MSTRG.2916 | ZNF830 | Zinc finger protein 830 | <0.01 | 0.64 | 8.68 | <0.001 | 0.032 |
MSTRG.19825 | STARD4 | StAR related lipid transfer domain containing 4 | 0.81 | 2.71 | 1.71 | <0.001 | 0.032 |
MSTRG.20048 | SLC34A2 | Solute carrier family 34 member 2 | 14.21 | 33.44 | 1.21 | <0.001 | 0.032 |
MSTRG.12237 | TRIM15 | Tripartite motif containing 15 | 0.79 | 2.33 | 1.52 | <0.001 | 0.047 |
MSTRG.22661 | ND6 | NADH-ubiquinone oxidoreductase chain 6 | <0.01 | 4.74 | 8.59 | <0.001 | 0.049 |
MSTRG.16608 | SOAT2 | Sterol O-acyltransferase 2 | 0.38 | 1.59 | 2.03 | <0.001 | 0.052 |
MSTRG.12735 | MS4A18 | Membrane spanning 4-domains A18 | 1.69 | 5.27 | 1.61 | <0.001 | 0.069 |
MSTRG.9443 | AREG | Amphiregulin | 1.21 | 0.85 | −2.09 | 0.000 | 0.070 |
MSTRG.14252 | ANKS4B | Ankyrin repeat and sterile alpha motif domain containing 4B | 1.04 | 3.51 | 1.72 | 0.001 | 0.154 |
MSTRG.5689 | MLKL | Mixed lineage kinase domain like pseudokinase | 2.80 | 5.71 | 1.00 | 0.001 | 0.154 |
Gene ID | Gene Symbol | Description | Group | log2FC | p Value | Q Value | |
---|---|---|---|---|---|---|---|
CON | EW | ||||||
MSTRG.24683 | ZBTB33 | Zinc finger and BTB domain containing 33 | 3.31 | 1.7 | −2.08 | <0.001 | 0.922 |
MSTRG.16036 | RAB11FIP1 | RAB11 family interacting protein 1 | 2.99 | 1.17 | −1.66 | <0.001 | 0.922 |
MSTRG.21722 | AGGF1 | Angiogenic factor with G-patch and FHA domains 1 | 1.57 | 5.03 | 1.58 | 0.001 | 0.922 |
MSTRG.4224 | GNA13 | G protein subunit alpha 13 | 50.13 | 31.05 | −4.00 | 0.009 | 0.922 |
MSTRG.6324 | CMTR2 | CAP methyltransferase 2 | 3.73 | 2.67 | −1.53 | 0.010 | 0.922 |
MSTRG.12043 | NYAP2 | Neuronal tyrosine-phosphorylated phosphoinositide3-kinase adaptor 2 | 1.1 | 3.04 | 1.31 | 0.014 | 0.922 |
MSTRG.10771 | CCL19 | C-C motif chemokine ligand 19 | 5.33 | 10.22 | 1.05 | 0.017 | 0.922 |
MSTRG.19058 | PRR15 | Proline rich 15 | 3.57 | 2.02 | −1.05 | 0.018 | 0.922 |
MSTRG.16341 | ASS1 | Argininosuccinate synthase 1 | 4.96 | 13.22 | 1.32 | 0.026 | 0.922 |
MSTRG.6232 | CES2 | Carboxylesterase 2 | 21.13 | 13.63 | −1.02 | 0.027 | 0.922 |
MSTRG.18314 | CCND2 | Cyclin D2 | 6.25 | <0.001 | −1.99 | 0.029 | 0.922 |
MSTRG.22347 | DUOXA2 | Dual oxidase maturation factor 2 | 1.19 | 9.26 | 1.77 | 0.033 | 0.922 |
MSTRG.22348 | DUOX2 | Dual oxidase 2 | 1.7 | 12.07 | 1.63 | 0.038 | 0.922 |
MSTRG.5089 | PGAM1 | Phosphoglycerate mutase 1 | 17.72 | 34.79 | 2.36 | 0.041 | 0.922 |
MSTRG.3081 | CCL8 | Phosphoglycerate mutase 1 | 1.79 | 6.12 | 1.09 | 0.043 | 0.922 |
MSTRG.21722 | CRAMP1 | CAMP-regulated antimicrobial peptide 1 | 2.77 | 2.05 | −1.02 | 0.044 | 0.922 |
MSTRG.24683 | SOCS3 | Suppressor of cytokine signaling 3 | 2.32 | 7.51 | 1.06 | 0.046 | 0.922 |
MSTRG.16036 | RBM15 | Suppressor of cytokine signaling 3 | 4.78 | 2.46 | −1.39 | 0.046 | 0.922 |
MSTRG.4224 | ISG20 | Interferon-stimulated exonuclease gene 20 | 2.47 | 7.96 | 1.14 | 0.049 | 0.922 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Xu, Y.; Jia, J.; Weng, X.; Zhang, Y.; Peng, J.; An, X.; Wang, G. Impacts of Early Weaning on Lamb Gut Health and Immune Function: Short-Term and Long-Term Effects. Animals 2025, 15, 2135. https://doi.org/10.3390/ani15142135
Li C, Xu Y, Jia J, Weng X, Zhang Y, Peng J, An X, Wang G. Impacts of Early Weaning on Lamb Gut Health and Immune Function: Short-Term and Long-Term Effects. Animals. 2025; 15(14):2135. https://doi.org/10.3390/ani15142135
Chicago/Turabian StyleLi, Chong, Yunfei Xu, Jiale Jia, Xiuxiu Weng, Yang Zhang, Jialin Peng, Xueming An, and Guoxiu Wang. 2025. "Impacts of Early Weaning on Lamb Gut Health and Immune Function: Short-Term and Long-Term Effects" Animals 15, no. 14: 2135. https://doi.org/10.3390/ani15142135
APA StyleLi, C., Xu, Y., Jia, J., Weng, X., Zhang, Y., Peng, J., An, X., & Wang, G. (2025). Impacts of Early Weaning on Lamb Gut Health and Immune Function: Short-Term and Long-Term Effects. Animals, 15(14), 2135. https://doi.org/10.3390/ani15142135