Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = gut microbiome (GM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 12843 KiB  
Article
Prebiotic-like Effects of Proanthocyanidin-Rich Aronia Extract Supplementation on Gut Microbiota Composition and Function in the Twin-M-SHIME® Model
by Blanca Elizabeth Ruiz-Álvarez, Valentina Cattero and Yves Desjardins
Pharmaceuticals 2025, 18(6), 793; https://doi.org/10.3390/ph18060793 - 25 May 2025
Cited by 1 | Viewed by 1604
Abstract
Background: Phenolic compounds, particularly anthocyanins and proanthocyanidins (PACs), are poorly absorbed in the upper digestive tract and reach the colon largely intact, where they may influence gut microbiota (GM) composition and, in turn, impact host health. We hypothesized that a PAC-rich aronia [...] Read more.
Background: Phenolic compounds, particularly anthocyanins and proanthocyanidins (PACs), are poorly absorbed in the upper digestive tract and reach the colon largely intact, where they may influence gut microbiota (GM) composition and, in turn, impact host health. We hypothesized that a PAC-rich aronia extract would beneficially modulate the GM, promote the growth of health-associated bacteria, and enhance short-chain fatty acid (SCFA) production across different colon sections, with partial reversion effects after supplementation ends. Methods: The Twin-M-SHIME® system was used to simulate the digestion and colonic fermentation in two donors with contrasting microbiota profiles. The experimental design included four phases: stabilization (14 days), control (7 days), treatment with 500 mg/day PAC-rich aronia extract (21 days), and wash-out (10 days). SCFA production was monitored, and changes in microbiome composition were assessed using 16S rRNA gene sequencing. Results: PAC-rich aronia extract significantly modulated SCFA levels, increasing butyrate and reducing acetate, with some inter-donor variability. SCFA concentrations tended to return to baseline after the wash-out (WO) period. Metagenomic analysis revealed a decrease in Collinsella, Sutterella, Selenomonas, and Parabacteroides—genera linked to low-fiber diets and gut inflammation—while promoting Proteobacteria (e.g., Escherichia-Shigella, Klebsiella) and butyrate-associated Firmicutes such as Lactiplantibacillus. Although some microbial shifts partially reverted during the wash-out (e.g., Akkermansia, Bacteroides, and Bifidobacterium), other changes persisted. Conclusions: These findings suggest that PAC-rich aronia extract beneficially modulates GM and SCFA production, but continuous intake may be necessary to maintain these effects over time. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

20 pages, 1434 KiB  
Article
Gut Microbiome Development in Rock Pigeons: Effects of Food Restriction Early in Life
by Maurine W. Dietz, Bin-Yan Hsu, Marco van der Velde and B. Irene Tieleman
Microorganisms 2025, 13(6), 1191; https://doi.org/10.3390/microorganisms13061191 - 23 May 2025
Viewed by 572
Abstract
The developmental period is a critical phase in birds, influencing even lifetime reproductive success. The gut microbiome (GM) is important herein, affecting digestive capacity and immune function. Diet impacts the GM, but wild nestlings may experience resource limitations, which may also affect the [...] Read more.
The developmental period is a critical phase in birds, influencing even lifetime reproductive success. The gut microbiome (GM) is important herein, affecting digestive capacity and immune function. Diet impacts the GM, but wild nestlings may experience resource limitations, which may also affect the GM. We investigated the effects of a week of food restriction early in life on the GM in captive rock pigeon nestlings (Columba livia). We sampled the GM at 0, 2, 4, 7, 8, 12, 20, 27, and 38 days and in foster parents. Alpha diversity varied only with age. However, differences in alpha diversity between nestlings and adults were larger during food restriction. Beta diversity varied with age, food treatment, and their interaction term. Four of the eleven major genera varied with age, while four others did not vary with age or food treatment. Major genera that contained potential pathogens (Escherichia-Shigella and Clostridium sensu stricto 1) were more abundant under food restriction. Food restriction thus affected GM development. The increase in alpha diversity and potential pathogens suggest that suppressed immune function may mediate the impact of food restriction on the GM. The effect diminished when food restriction was ended, suggesting that in wild nestlings, the impact of food restriction on the GM may be short-term. Full article
(This article belongs to the Special Issue Gut Microbiota: Metagenomics to Study Ecology, 2nd Edition)
Show Figures

Figure 1

22 pages, 3123 KiB  
Article
Multiomics-Based Profiling of the Fecal Microbiome Reveals Potential Disease-Specific Signatures in Pediatric IBD (PIBD)
by Anita H. DeSantis, Kristina Buss, Keaton M. Coker, Brad A. Pasternak, Jinhua Chi, Jeffrey S. Patterson, Haiwei Gu, Peter W. Jurutka and Todd R. Sandrin
Biomolecules 2025, 15(5), 746; https://doi.org/10.3390/biom15050746 - 21 May 2025
Viewed by 1151
Abstract
Inflammatory bowel disease (IBD), which includes Crohn’s Disease (CD) and Ulcerative Colitis (UC), is a chronic gastrointestinal (GI) disorder affecting 1 in 100 people in the United States. Pediatric IBD (PIBD) is estimated to impact 15 per 100,000 children in North America. Factors [...] Read more.
Inflammatory bowel disease (IBD), which includes Crohn’s Disease (CD) and Ulcerative Colitis (UC), is a chronic gastrointestinal (GI) disorder affecting 1 in 100 people in the United States. Pediatric IBD (PIBD) is estimated to impact 15 per 100,000 children in North America. Factors such as the gut microbiome (GM), genetic predisposition to the disease, and certain environmental factors are thought to be involved in pathogenesis. However, the pathophysiology of IBD is incompletely understood, and diagnostic biomarkers and effective treatments, particularly for PIBD, are limited. Recent work suggests that these factors may interact to influence disease development, and multiomic approaches have emerged as promising tools to elucidate the pathophysiology. We employed metagenomics, metabolomics- and metatranscriptomics-based approaches to examine the microbiome, its genetic potential, and its activity to identify factors associated with PIBD. Metagenomics-based analyses revealed pathways such as octane oxidation and glycolysis that were differentially expressed in UC patients. Additionally, metatranscriptomics-based analyses suggested enrichment of glycan degradation and two component systems in UC samples as well as protein processing in the endoplasmic reticulum, ribosome, and protein export in CD and UC samples. In addition, metabolomics-based approaches revealed patterns of differentially abundant metabolites between healthy and PIBD individuals. Interestingly, overall microbiome community composition (as measured by alpha and beta diversity indices) did not appear to be associated with PIBD. However, we observed a small number of differentially abundant taxa in UC versus healthy controls, including members of the Classes Gammaproteobacteria and Clostridia as well as members of the Family Rikenellaceae. Accordingly, when identifying potential biomarkers for PIBD, our results suggest that multiomics-based approaches afford enhanced potential to detect putative biomarkers for PIBD compared to microbiome community composition sequence data alone. Full article
Show Figures

Figure 1

32 pages, 1846 KiB  
Review
The Obesity–Epigenetics–Microbiome Axis: Strategies for Therapeutic Intervention
by Shabnam Nohesara, Hamid Mostafavi Abdolmaleky, Ahmad Pirani, Giuseppe Pettinato and Sam Thiagalingam
Nutrients 2025, 17(9), 1564; https://doi.org/10.3390/nu17091564 - 1 May 2025
Cited by 2 | Viewed by 1487
Abstract
Obesity (OB) has become a serious health issue owing to its ever-increasing prevalence over the past few decades due to its contribution to severe metabolic and inflammatory disorders such as cardiovascular disease, type 2 diabetes, and cancer. The unbalanced energy metabolism in OB [...] Read more.
Obesity (OB) has become a serious health issue owing to its ever-increasing prevalence over the past few decades due to its contribution to severe metabolic and inflammatory disorders such as cardiovascular disease, type 2 diabetes, and cancer. The unbalanced energy metabolism in OB is associated with substantial epigenetic changes mediated by the gut microbiome (GM) structure and composition alterations. Remarkably, experimental evidence also indicates that OB-induced epigenetic modifications in adipocytes can lead to cellular “memory” alterations, predisposing individuals to weight regain after caloric restriction and subsequently inducing inflammatory pathways in the liver. Various environmental factors, especially diet, play key roles in the progression or prevention of OB and OB-related disorders by modulating the GM structure and composition and affecting epigenetic mechanisms. Here, we will first focus on the key role of epigenetic aberrations in the development of OB. Then, we discuss the association between abnormal alterations in the composition of the microbiome and OB and the interplays between the microbiome and the epigenome in the development of OB. Finally, we review promising strategies, including prebiotics, probiotics, a methyl-rich diet, polyphenols, and herbal foods for the prevention and/or treatment of OB via modulating the GM and their metabolites influencing the epigenome. Full article
(This article belongs to the Special Issue The Role of Diet and Medication in Shaping Gut Microbiota in Disease)
Show Figures

Figure 1

14 pages, 3792 KiB  
Article
The Causal Relationship Between Gut Microbiomes, Inflammatory Mediators, and Traumatic Brain Injury in Europeans: Evidence from Genetic Correlation and Functional Mapping Annotation Analyses
by Bingyi Song, Youjia Qiu, Zilan Wang, Yuchen Tao, Menghan Wang, Aojie Duan, Minjia Xie, Ziqian Yin, Zhouqing Chen, Chao Ma and Zhong Wang
Biomedicines 2025, 13(3), 753; https://doi.org/10.3390/biomedicines13030753 - 20 Mar 2025
Viewed by 728
Abstract
Background: The gut microbiome (GM) has been reported to play a role in traumatic brain injury (TBI). To investigate the causal relationship between GMs, inflammatory mediators, and TBI, a comprehensive Mendelian randomization (MR) analysis was conducted. Methods: We utilized Genome-Wide Association Study (GWAS) [...] Read more.
Background: The gut microbiome (GM) has been reported to play a role in traumatic brain injury (TBI). To investigate the causal relationship between GMs, inflammatory mediators, and TBI, a comprehensive Mendelian randomization (MR) analysis was conducted. Methods: We utilized Genome-Wide Association Study (GWAS) summary statistics to examine the causal relationships between GM and TBI. To assess the potential causal associations between GM and TBI, we employed the inverse-variance-weighted, MR-Egger, and weighted median methods. Mediation analysis was used to assess the possible mediating factors. Several sensitivity analyses methods were implemented to verify the stability of the results. Additionally, we utilized FUMA GWAS to map single-nucleotide polymorphisms to genes and conduct transcriptomic MR analysis. Results: We identified potential causal relationships between nine bacterial taxa and TBI. Notably, class Methanobacteria, family Methanobacteriaceae, and order Methanobacteriales (p = 0.0003) maintained a robust positive correlation with TBI. This causal association passed false discovery rate (FDR) correction (FDR < 0.05). Genetically determined 1 inflammatory protein, 30 immune cells and 3 inflammatory factors were significantly causally related to TBI. None of them mediated the relationship between GMs and TBI. The outcome of the sensitivity analysis corroborated the findings. Regarding the mapped genes of significant GMs, genes such as CLK4, MTRF1, NAA16, SH3BP5, and ZNF354A in class Methanobacteria showed a significant causal correlation with TBI. Conclusions: Our study reveals the potential causal effects of nine GMs, especially Methanogens on TBI, and there was no link between TBI and GM through inflammatory protein, immune cells, and inflammatory factors, which may offer fresh insights into TBI biomarkers and therapeutic targets through specific GMs. Full article
Show Figures

Figure 1

26 pages, 6159 KiB  
Article
Effects of Multivitamin Supplementation on Metabolic Parameters in High- and Low-Fat Diet-Fed C57BL/6J Mice: Potential Links to Adipose Tissue Browning and Gut Microbiome
by Mehrnaz Abbasi, Braeden Heath and Lauren McGinness
Nutrients 2025, 17(6), 1045; https://doi.org/10.3390/nu17061045 - 17 Mar 2025
Viewed by 3126
Abstract
Background/Objectives: The relationship between diet, micronutrient supplementation, and metabolic regulation emphasizes the potential of nutritional strategies to address obesity and related disorders. Certain vitamins have the potential to enhance thermogenesis and metabolic health. However, the impact of multivitamin supplementation on white adipose tissue [...] Read more.
Background/Objectives: The relationship between diet, micronutrient supplementation, and metabolic regulation emphasizes the potential of nutritional strategies to address obesity and related disorders. Certain vitamins have the potential to enhance thermogenesis and metabolic health. However, the impact of multivitamin supplementation on white adipose tissue (WAT) browning, the gut microbiome (GM), and metabolic function is not well understood. This study investigated the effects of multivitamin supplementation on obesity-related metabolic dysfunction in mice fed a high-fat diet (HFD) or a low-fat diet (LFD). Methods: Male C57BL/6J mice were assigned to group 1: control chow diet (CHD); 2: control HFD; 3: multivitamin-supplemented HFD (Mv-HFD); 4: control LFD; or 5: multivitamin-supplemented LFD (Mv-LFD). Diets, either supplemented with multivitamins A, D, B1, B5, and C or non-supplemented, were administered for 12 weeks. Metabolic parameters, adipose tissue browning, and the GM composition were analyzed. Results: The Mv-HFD significantly reduced weight gain, adipose tissue mass, blood glucose levels, and insulin resistance induced by an HFD. Additionally, it increased energy expenditure and thermogenic gene expression in WAT. Both the Mv-HFD and Mv-LFD improved the GM composition by increasing beneficial bacteria. Conclusions: Multivitamin supplementation improved metabolic health by potentially promoting WAT browning, enhancing energy expenditure, and modulating the GM composition. These findings suggest that multivitamins could offer a promising strategy for combating obesity and associated metabolic dysfunction. Full article
(This article belongs to the Section Prebiotics and Probiotics)
Show Figures

Figure 1

30 pages, 2335 KiB  
Review
Gut Microbiome Modulation in Hepatocellular Carcinoma: Preventive Role in NAFLD/NASH Progression and Potential Applications in Immunotherapy-Based Strategies
by Elisa Monti, Clara Vianello, Ilaria Leoni, Giuseppe Galvani, Annalisa Lippolis, Federica D’Amico, Sara Roggiani, Claudio Stefanelli, Silvia Turroni and Francesca Fornari
Cells 2025, 14(2), 84; https://doi.org/10.3390/cells14020084 - 9 Jan 2025
Cited by 5 | Viewed by 2798
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous tumor associated with several risk factors, with non-alcoholic fatty liver disease (NAFLD) emerging as an important cause of liver tumorigenesis. Due to the obesity epidemics, the occurrence of NAFLD has significantly increased with nearly 30% prevalence worldwide. [...] Read more.
Hepatocellular carcinoma (HCC) is a heterogeneous tumor associated with several risk factors, with non-alcoholic fatty liver disease (NAFLD) emerging as an important cause of liver tumorigenesis. Due to the obesity epidemics, the occurrence of NAFLD has significantly increased with nearly 30% prevalence worldwide. HCC often arises in the background of chronic liver disease (CLD), such as nonalcoholic steatohepatitis (NASH) and cirrhosis. Gut microbiome (GM) alterations have been linked to NAFLD progression and HCC development, with several investigations reporting a crucial role for the gut–liver axis and microbial metabolites in promoting CLD. Moreover, the GM affects liver homeostasis, energy status, and the immune microenvironment, influencing the response to immunotherapy with interesting therapeutic implications. In this review, we summarize the main changes in the GM and derived metabolites (e.g., short-chain fatty acids and bile acids) occurring in HCC patients and influencing NAFLD progression, emphasizing their potential as early diagnostic biomarkers and prognostic tools. We discuss the weight loss effects of diet-based interventions and healthy lifestyles for the treatment of NAFLD patients, highlighting their impact on the restoration of the intestinal barrier and GM structure. We also describe encouraging preclinical findings on the modulation of GM to improve liver functions in CLD, boost the antitumor immune response (e.g., probiotic supplementations or anti-hypercholesterolemic drug treatment), and ultimately delay NAFLD progression to HCC. The development of safe and effective strategies that target the gut–liver axis holds promise for liver cancer prevention and treatment, especially if personalized options will be considered. Full article
Show Figures

Figure 1

25 pages, 992 KiB  
Review
Effects of Marine-Derived Components on Cardiovascular Disease Risk Factors and Gut Microbiota Diversity
by Ingrid Lamminpää, Amedeo Amedei and Cinzia Parolini
Mar. Drugs 2024, 22(11), 523; https://doi.org/10.3390/md22110523 - 20 Nov 2024
Cited by 3 | Viewed by 3258
Abstract
Cardiovascular diseases (CVDs), which comprise coronary heart disease, hypertension, and stroke, collectively represent the number one cause of death globally. Atherosclerosis is the dominant cause of CVDs, and its risk factors are elevated levels of low-density lipoprotein cholesterol and triglycerides, hypertension, cigarette smoking, [...] Read more.
Cardiovascular diseases (CVDs), which comprise coronary heart disease, hypertension, and stroke, collectively represent the number one cause of death globally. Atherosclerosis is the dominant cause of CVDs, and its risk factors are elevated levels of low-density lipoprotein cholesterol and triglycerides, hypertension, cigarette smoking, obesity, and diabetes mellitus. In addition, diverse evidence highlights the role played by inflammation and clonal haematopoiesis, eventually leading to immunity involvement. The human microbiota project and subsequent studies using next-generation sequencing technology have indicated that thousands of different microbial species are present in the human gut. Disturbances in the gut microbiota (GM) composition, i.e., gut dysbiosis, have been associated with diseases ranging from localised gastrointestinal disorders to metabolic and cardiovascular illnesses. Of note, experimental studies suggested that GM, host immune cells, and marine-derived ingredients work together to ensure intestinal wall integrity. This review discusses current evidence concerning the links among GM, marine-derived ingredients, and human inflammatory disease. In detail, we summarise the impact of fish-derived proteins/peptides and algae components on CVD risk factors and gut microbiome. Furthermore, we describe the interplay among these dietary components, probiotics/prebiotics, and CVDs. Full article
(This article belongs to the Special Issue Marine Drug Research in Italy)
Show Figures

Figure 1

27 pages, 2414 KiB  
Review
Interaction Between Early Meals (Big-Breakfast Diet), Clock Gene mRNA Expression, and Gut Microbiome to Regulate Weight Loss and Glucose Metabolism in Obesity and Type 2 Diabetes
by Daniela Jakubowicz, Yael Matz, Zohar Landau, Rachel Chava Rosenblum, Orit Twito, Julio Wainstein and Shani Tsameret
Int. J. Mol. Sci. 2024, 25(22), 12355; https://doi.org/10.3390/ijms252212355 - 18 Nov 2024
Cited by 4 | Viewed by 6357
Abstract
The circadian clock gene system plays a pivotal role in coordinating the daily rhythms of most metabolic processes. It is synchronized with the light–dark cycle and the eating–fasting schedule. Notably, the interaction between meal timing and circadian clock genes (CGs) allows for optimizing [...] Read more.
The circadian clock gene system plays a pivotal role in coordinating the daily rhythms of most metabolic processes. It is synchronized with the light–dark cycle and the eating–fasting schedule. Notably, the interaction between meal timing and circadian clock genes (CGs) allows for optimizing metabolic processes at specific times of the day. Breakfast has a powerful resetting effect on the CG network. A misaligned meal pattern, such as skipping breakfast, can lead to a discordance between meal timing and the endogenous CGs, and is associated with obesity and T2D. Conversely, concentrating most calories and carbohydrates (CH) in the early hours of the day upregulates metabolic CG expression, thus promoting improved weight loss and glycemic control. Recently, it was revealed that microorganisms in the gastrointestinal tract, known as the gut microbiome (GM), and its derived metabolites display daily oscillation, and play a critical role in energy and glucose metabolism. The timing of meal intake coordinates the oscillation of GM and GM-derived metabolites, which in turn influences CG expression, playing a crucial role in the metabolic response to food intake. An imbalance in the gut microbiota (dysbiosis) can also reciprocally disrupt CG rhythms. Evidence suggests that misaligned meal timing may cause such disruptions and can lead to obesity and hyperglycemia. This manuscript focuses on the reciprocal interaction between meal timing, GM oscillation, and circadian CG rhythms. It will also review studies demonstrating how aligning meal timing with the circadian clock can reset and synchronize CG rhythms and GM oscillations. This synchronization can facilitate weight loss and improve glycemic control in obesity and those with T2D. Full article
(This article belongs to the Special Issue Molecular Advances in Circadian Rhythm and Metabolism)
Show Figures

Figure 1

10 pages, 975 KiB  
Review
Gut Microbiome and Carotid Artery Intima-Media Thickness: A Narrative Review of the Current Scenario
by Barbara Pala, Giuliano Tocci, Giulia Nardoianni, Emanuele Barbato and Amedeo Amedei
Diagnostics 2024, 14(22), 2463; https://doi.org/10.3390/diagnostics14222463 - 5 Nov 2024
Cited by 1 | Viewed by 1283
Abstract
Up to the last update, the gut microbiome (GM) had been associated with a different physiologic host process, including those affecting cardiovascular health. The carotid intima-media thickness (IMT) is an indicator of atherosclerosis and cardiovascular risk. The GM influence on atherosclerosis progression has [...] Read more.
Up to the last update, the gut microbiome (GM) had been associated with a different physiologic host process, including those affecting cardiovascular health. The carotid intima-media thickness (IMT) is an indicator of atherosclerosis and cardiovascular risk. The GM influence on atherosclerosis progression has garnered growing attention in recent years but the consensus in subclinical atherosclerosis remains elusive. The aim of this narrative review is to investigate the connection between the GM and carotid IMT, encompassing mechanisms like the microbiome impact on metabolite production, and systemic inflammation, and its effects on endothelial function. The literature analysis revealed that the GM appears to exert an influence on carotid IMT development, likely through mechanisms involving metabolites’ production, systemic inflammation, and endothelial function modulation. Additional research, however, is needed to finely elucidate the relationship between the GM and atherosclerosis. Specifically, more extensive studies are required to pinpoint individuals at the highest risk of developing atherosclerosis based on their GM composition. This will facilitate the enhancement and optimization of cardiovascular disease prevention strategies and enable the treatments’ customization for each patient. Further investigations are required to refine patient outcomes in the context of probiotics and other interventions aimed at improving microbiome composition and function. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

18 pages, 3891 KiB  
Article
Altered Gut Microbiome Composition in Dogs with Hyperadrenocorticism: Key Bacterial Genera Analysis
by Hee-Jun Kang, Sang-Won Kim, Seon-Myung Kim, Tae-Min La, Jae-Eun Hyun, Sang-Won Lee and Jung-Hyun Kim
Animals 2024, 14(19), 2883; https://doi.org/10.3390/ani14192883 - 7 Oct 2024
Viewed by 2295
Abstract
Hyperadrenocorticism (HAC) is a common endocrine disorder in dogs, which is associated with diverse metabolic abnormalities. We hypothesized that elevated cortisol levels in dogs with HAC disrupt the gut microbiome (GM), and this disruption persists even after trilostane treatment. This study explored GM [...] Read more.
Hyperadrenocorticism (HAC) is a common endocrine disorder in dogs, which is associated with diverse metabolic abnormalities. We hypothesized that elevated cortisol levels in dogs with HAC disrupt the gut microbiome (GM), and this disruption persists even after trilostane treatment. This study explored GM composition in dogs with HAC. We included 24 dogs, 15 with HAC and 9 healthy controls, and followed up with 5 dogs with HAC who received trilostane treatment. The GM analysis revealed significant compositional changes in dogs with HAC, including reduced microbiome diversity compared to healthy controls, particularly in rare taxa, as indicated by the Shannon index (p = 0.0148). Beta diversity analysis further showed a distinct clustering of microbiomes in dogs with HAC, separating them from healthy dogs (p < 0.003). Specifically, an overrepresentation of Proteobacteria (Pseudomonadota), Actinobacteria, Bacteroides, Enterococcus, Corynebacterium, Escherichia, and Proteus populations occurred alongside a decreased Firmicutes (Bacillota) population. Despite trilostane treatment, gut dysbiosis persisted in dogs with HAC at a median of 41 d post treatment, suggesting its potential role in ongoing metabolic issues. We identified GM dysbiosis in dogs with HAC by examining key bacterial genera, offering insights into potential interventions like probiotics or fecal microbiota transplants for better HAC management. Full article
(This article belongs to the Special Issue Microbiome, Immune and Intestinal Health in Animals)
Show Figures

Figure 1

15 pages, 1284 KiB  
Review
Exploring the Interconnection between Metabolic Dysfunction and Gut Microbiome Dysbiosis in Osteoarthritis: A Narrative Review
by Hui Li, Jihan Wang, Linjie Hao and Guilin Huang
Biomedicines 2024, 12(10), 2182; https://doi.org/10.3390/biomedicines12102182 - 25 Sep 2024
Cited by 2 | Viewed by 2158
Abstract
Osteoarthritis (OA) is a prevalent joint disorder and the most common form of arthritis, affecting approximately 500 million people worldwide, or about 7% of the global population. Its pathogenesis involves a complex interplay between metabolic dysfunction and gut microbiome (GM) alterations. This review [...] Read more.
Osteoarthritis (OA) is a prevalent joint disorder and the most common form of arthritis, affecting approximately 500 million people worldwide, or about 7% of the global population. Its pathogenesis involves a complex interplay between metabolic dysfunction and gut microbiome (GM) alterations. This review explores the relationship between metabolic disorders—such as obesity, diabetes, and dyslipidemia—and OA, highlighting their shared risk factors, including aging, sedentary lifestyle, and dietary habits. We further explore the role of GM dysbiosis in OA, elucidating how systemic inflammation, oxidative stress, and immune dysregulation driven by metabolic dysfunction and altered microbial metabolites contribute to OA progression. Additionally, the concept of “leaky gut syndrome” is discussed, illustrating how compromised gut barrier function exacerbates systemic and local joint inflammation. Therapeutic strategies targeting metabolic dysfunction and GM composition, including lifestyle interventions, pharmacological and non-pharmacological factors, and microbiota-targeted therapies, are reviewed for their potential to mitigate OA progression. Future research directions emphasize the importance of identifying novel biomarkers for OA risk and treatment response, adopting personalized treatment approaches, and integrating multiomics data to enhance our understanding of the metabolic–GM–OA connection and advance precision medicine in OA management. Full article
(This article belongs to the Special Issue Molecular Research on Osteoarthritis and Osteoporosis)
Show Figures

Figure 1

19 pages, 3407 KiB  
Systematic Review
Difference in the Intestinal Microbiota between Breastfeed Infants and Infants Fed with Artificial Milk: A Systematic Review
by Francesco Inchingolo, Angelo Michele Inchingolo, Giulia Latini, Laura Ferrante, Elisabetta de Ruvo, Merigrazia Campanelli, Marialuisa Longo, Andrea Palermo, Alessio Danilo Inchingolo and Gianna Dipalma
Pathogens 2024, 13(7), 533; https://doi.org/10.3390/pathogens13070533 - 24 Jun 2024
Cited by 16 | Viewed by 5597
Abstract
The gut microbiota (GM) plays a crucial role in human health, particularly during the first years of life. Differences in GM between breastfed and formula (F)-fed infants may influence long-term health outcomes. This systematic review aims to compare the gut microbiota of breastfed [...] Read more.
The gut microbiota (GM) plays a crucial role in human health, particularly during the first years of life. Differences in GM between breastfed and formula (F)-fed infants may influence long-term health outcomes. This systematic review aims to compare the gut microbiota of breastfed infants with that of F-fed infants and to evaluate the clinical implications of these differences. We searched databases on Scopus, Web of Science, and Pubmed with the following keywords: “gut microbiota”, “gut microbiome”, and “neonatal milk”. The inclusion criteria were articles relating to the analysis of the intestinal microbiome of newborns in relation to the type of nutrition, clinical studies or case series, excluding reviews, meta-analyses, animal models, and in vitro studies. The screening phase ended with the selection of 13 publications for this work. Breastfed infants showed higher levels of beneficial bacteria such as Bifidobacterium and Lactobacillus, while F-fed infants had a higher prevalence of potentially pathogenic bacteria, including Clostridium difficile and Enterobacteriaceae. Infant feeding type influences the composition of oral GM significantly. Breastfeeding promotes a healthier and more diverse microbial ecosystem, which may offer protective health benefits. Future research should explore strategies to improve the GM of F-fed infants and understand the long-term health implications. Full article
(This article belongs to the Special Issue Oral Microbiome and Human Systemic Health)
Show Figures

Figure 1

13 pages, 478 KiB  
Systematic Review
Gut Microbiota Dysbiosis and Sleep Disorders: Culprit in Cardiovascular Diseases
by Barbara Pala, Laura Pennazzi, Giulia Nardoianni, Federica Fogacci, Arrigo F. G. Cicero, Laura Di Renzo, Emanuele Barbato and Giuliano Tocci
J. Clin. Med. 2024, 13(11), 3254; https://doi.org/10.3390/jcm13113254 - 31 May 2024
Cited by 6 | Viewed by 3456
Abstract
Background: Over the past decade, the gut microbiome (GM) has progressively demonstrated to have a central role in human metabolism, immunity, and cardiometabolic risk. Likewise, sleep disorders showed an impact on individual health and cardiometabolic risk. Recent studies seem to suggest multi-directional relations [...] Read more.
Background: Over the past decade, the gut microbiome (GM) has progressively demonstrated to have a central role in human metabolism, immunity, and cardiometabolic risk. Likewise, sleep disorders showed an impact on individual health and cardiometabolic risk. Recent studies seem to suggest multi-directional relations among GM, diet, sleep, and cardiometabolic risk, though specific interactions are not fully elucidated. We conducted a systematic review to synthesize the currently available evidence on the potential interactions between sleep and GM and their possible implications on cardiometabolic risk. Methods: A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement for reporting systematic reviews and meta-analyses, including articles from January 2016 until November 2022. Narrative syntheses were employed to describe the results. Results: A total of 8 studies were selected according to these criteria. Our findings indicated that the sleep disorder and/or the acute circadian rhythm disturbance caused by sleep–wake shifts affected the human GM, mainly throughout microbial functionality. Conclusions: Sleep disorders should be viewed as cardiovascular risk factors and targeted for preventive intervention. More research and well-designed studies are needed to completely assess the role of sleep deprivation in the multi-directional relationship between GM and cardiometabolic risk. Full article
(This article belongs to the Section Cardiology)
Show Figures

Graphical abstract

14 pages, 654 KiB  
Review
Gut Microbiome and Its Role in Valvular Heart Disease: Not a “Gutted” Relationship
by Gyanaranjan Nayak, Kyriakos Dimitriadis, Nikolaos Pyrpyris, Magdalini Manti, Nikolaos Kamperidis, Vasileios Kamperidis, Antonios Ziakas and Konstantinos Tsioufis
Life 2024, 14(4), 527; https://doi.org/10.3390/life14040527 - 19 Apr 2024
Cited by 4 | Viewed by 2477
Abstract
The role of the gut microbiome (GM) and oral microbiome (OM) in cardiovascular disease (CVD) has been increasingly being understood in recent years. It is well known that GM is a risk factor for various CVD phenotypes, including hypertension, dyslipidemia, heart failure and [...] Read more.
The role of the gut microbiome (GM) and oral microbiome (OM) in cardiovascular disease (CVD) has been increasingly being understood in recent years. It is well known that GM is a risk factor for various CVD phenotypes, including hypertension, dyslipidemia, heart failure and atrial fibrillation. However, its role in valvular heart disease (VHD) is less well understood. Research shows that, direct, microbe-mediated and indirect, metabolite-mediated damage as a result of gut dysbiosis and environmental factors results in a subclinical, chronic, systemic inflammatory state, which promotes inflammatory cell infiltration in heart valves and subsequently, via pro-inflammatory molecules, initiates a cascade of reaction, resulting in valve calcification, fibrosis and dysfunction. This relationship between GM and VHD adds a pathophysiological link to the pathogenesis of VHD, which can be aimed therapeutically, in order to prevent or regress any risk for valvular pathologies. Therapeutic interventions include dietary modifications and lifestyle interventions, in order to influence environmental factors that can promote gut dysbiosis. Furthermore, the combination of probiotics and prebiotics, as well as fecal m transplantation and targeted treatment with inducers or inhibitors of microbial enzymes have showed promising results in animal and/or clinical studies, with the potential to reduce the inflammatory state and restore the normal gut flora in patients. This review, thus, is going to discuss the pathophysiological links behind the relationship of GM, CVD and VHD, as well as explore the recent data regarding the effect of GM-altering treatment in CVD, cardiac function and systemic inflammation. Full article
Show Figures

Figure 1

Back to TopTop