Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = gust factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7989 KB  
Technical Note
Gust Factors in Aerodrome Weather and Climate Assessment
by Michael Splitt and Steven Lazarus
Meteorology 2025, 4(3), 24; https://doi.org/10.3390/meteorology4030024 - 31 Aug 2025
Viewed by 289
Abstract
Wind gustiness at airports, which is generally determined using gust factors, is impactful across a range of considerations from piloting to airport planning. Yet advisory materials to help assess their quality and representativeness, particularly for aviators, are limited. To address this, a climatological [...] Read more.
Wind gustiness at airports, which is generally determined using gust factors, is impactful across a range of considerations from piloting to airport planning. Yet advisory materials to help assess their quality and representativeness, particularly for aviators, are limited. To address this, a climatological analysis of both gust factors is conducted using Automated Surface Observing System (ASOS) wind observations. Data for multi-year periods at selected airports in the United States are used to assess their site representativeness and for turbulence attribution purposes. Both gust factors vary by direction in response to local terrain features and nearby obstructions and are generally not well correlated with each other. The meteorological gust factor is shown to be more responsive to local obstructions in proximity to the ASOS systems. Excluding lower gusts leads to a marked improvement in the correlation between the two gust factors. Due to ASOS’s siting limitations, attributing observed gustiness to turbulence from nearby terrain or structures is difficult. The gustiness is often localized and may not represent conditions across the full airport. Excluding lower gusts increases the aviation gust factor’s sensitivity to local obstructions. This suggests that obstructions may play a meaningful role in shaping the higher observed gust factors. The potential exists to provide pilots and other users of this data with site- and direction-specific metadata regarding observed gustiness, thereby improving situational awareness. Full article
Show Figures

Figure 1

15 pages, 3717 KB  
Article
Multi-Objective ADRC-Based Aircraft Gust Load Control
by Chengxiang Li, Zheng Gong, Yalei Bai, Sikai Guo and Longbin Zhang
Appl. Sci. 2025, 15(16), 8882; https://doi.org/10.3390/app15168882 - 12 Aug 2025
Viewed by 240
Abstract
In this paper, we propose a dual-loop Active Disturbance Rejection Control (ADRC) strategy for gust load alleviation in flexible aircraft. By decoupling the control of modal and normal accelerations and spatially allocating control surfaces, the method effectively resolves signal interference. Simulation results show [...] Read more.
In this paper, we propose a dual-loop Active Disturbance Rejection Control (ADRC) strategy for gust load alleviation in flexible aircraft. By decoupling the control of modal and normal accelerations and spatially allocating control surfaces, the method effectively resolves signal interference. Simulation results show that compared to the uncontrolled case, the ADRC controller reduces the wing root bending moment peak by 38%, the normal load factor peak by 32%, and the pitch angle fluctuation by 38%. Robustness tests under actuator delays (4 Δt and 8 Δt) and gain perturbations (−50% and +100%) further confirm that the system maintains time-domain stability and effective load mitigation across varying conditions. These results demonstrate that the proposed ADRC scheme not only improves load suppression but also offers strong robustness against parameter uncertainty, providing theoretical and practical support for next-generation active control systems in aeroelastic environments. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

17 pages, 2164 KB  
Technical Note
Contributions of Dust and Non-Dust Weather to Dust Emissions: A Case Study from the Central Taklimakan Desert
by Xinghua Yang, Mingjie Ma, Chenglong Zhou, Fan Yang, Wen Huo, Ali Mamtimin, Qing He and Guohua Wang
Remote Sens. 2025, 17(14), 2531; https://doi.org/10.3390/rs17142531 - 21 Jul 2025
Viewed by 396
Abstract
Dust aerosols can influence climate change, the ecological environment, human health, etc. and are one of the most important factors causing global change. The specific contributions of dust events, gusts, and dust devils to dust emission remain unclear in many regions. In this [...] Read more.
Dust aerosols can influence climate change, the ecological environment, human health, etc. and are one of the most important factors causing global change. The specific contributions of dust events, gusts, and dust devils to dust emission remain unclear in many regions. In this study, we quantified dust emissions generated by dust events, gusts, and dust devils in the center of the Taklimakan Desert of northwestern China and investigated their respective contributions to atmospheric dust aerosols. The results illustrated that monthly dust emissions and the dust emission time for dust events, gusts, and dust devils peaked in July, August, and June, respectively, and the average monthly contributions to dust emissions were 48.2, 10.6, and 41.2% and those to emission time were 60.5, 25.5, and 14.0%, respectively. Although the dust emissions for the dust event were comparable to the sum of gusts and dust devils, the average value of AOD corresponding to the dust event was roughly 2.5 times higher than that of a non-dust day. The results presented in this study not only highlight the undeniable contribution of gusts and dust devils to dust emissions but also indicate that the specific contributions to atmospheric dust aerosols from gusts and dust devils remain uncertain. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

29 pages, 2282 KB  
Article
Genetic Algorithm for Optimal Control Design to Gust Response for Elastic Aircraft
by Mauro Iavarone, Umberto Papa, Alberto Chiesa, Luca de Pasquale and Angelo Lerro
Aerospace 2025, 12(6), 496; https://doi.org/10.3390/aerospace12060496 - 30 May 2025
Viewed by 536
Abstract
Developing control systems for high aspect ratio aircraft can be challenging due to the flexibility of the structure involved in the control loop design. A model-based approach can be straightforward to tune the control system parameters and, to this aim, a reliable aircraft [...] Read more.
Developing control systems for high aspect ratio aircraft can be challenging due to the flexibility of the structure involved in the control loop design. A model-based approach can be straightforward to tune the control system parameters and, to this aim, a reliable aircraft flexible model is mandatory. This paper aims to present the approach pursued to design a control strategy considering the flexible aircraft simulator in the loop. Once the elastic model for the longitudinal dynamics has been set up, genetic algorithms are used to determine-together with a Linear Quadratic Regulator controller—a logic to improve the dynamic behaviour whilst encountering a gust. A relatively low order elastic model is developed for the dynamics in the longitudinal plane, including both rigid body and elastic degrees of freedom defined in a vehicle-fixed reference frame. The rigid body degrees of freedom and the associated states are the same as those of the rigid vehicle, whilst the additional states represent the elastic degrees of freedom. Modal characteristics are calculated from a finite element model of the aircraft using a commercial code, with the weight distribution added as lumped masses on grid points, while the aerodynamic rigid properties are described with a nonlinear database. Using the 2-D strip theory and neglecting the unsteady effects, the aeroelastic stability derivatives, i.e., elastic influence coefficients, are computed to superimpose the elastic effects on the rigid body degrees of freedom and vice versa. The flexible dynamics is compared to the rigid one in order to highlight the relevant changes in the aircraft modes. Following is herein proposed a control strategy combining genetic algorithms and Linear Quadratic Regulator controller to reduce the load factor, also considering the oscillation amplitude due to a deterministic gust encountered in a predefined flight condition. Full article
Show Figures

Figure 1

15 pages, 5721 KB  
Communication
A Meteorological Analysis of the Missed Approach of an Aircraft at Taoyuan International Airport, Taiwan, During Typhoon Kong-Rey in 2024—The Impact of Crosswind and Turbulence
by Pak Wai Chan, Yan Yu Leung and Kai Kwong Lai
Atmosphere 2025, 16(6), 660; https://doi.org/10.3390/atmos16060660 - 30 May 2025
Cited by 1 | Viewed by 1968
Abstract
When Typhoon Kong-rey hit Taiwan in October 2024, an aircraft attempting to land at Taoyuan International Airport undertook a missed approach and landed successfully on the second attempt. The possible meteorological factors causing this missed approach are studied in this study based on [...] Read more.
When Typhoon Kong-rey hit Taiwan in October 2024, an aircraft attempting to land at Taoyuan International Airport undertook a missed approach and landed successfully on the second attempt. The possible meteorological factors causing this missed approach are studied in this study based on a methodology specifically adopted for Hong Kong International Airport; namely, studying crosswind as derived from aircraft and airport meteorological observations, as well as the low-level turbulence derived from data on the aircraft’s vertical acceleration and high-resolution numerical weather prediction model results. A significant crosswind component and a gusting crosswind are the major reasons for the missed approach. The low-level turbulence appears to have been secondary/minor, as shown by the successful landings of aircraft before and after the event. It is concluded that the methodology supporting airport operations in Hong Kong may be used to explain missed approach cases at other airports under the influence of tropical cyclones. Full article
(This article belongs to the Special Issue Advance in Transportation Meteorology (3rd Edition))
Show Figures

Figure 1

18 pages, 3533 KB  
Article
Analysis of Tree Falls Caused by Weather Events in Urban Areas: The Case Study of the City of Venice
by Matteo Buson and Lucia Bortolini
Land 2025, 14(6), 1131; https://doi.org/10.3390/land14061131 - 22 May 2025
Viewed by 977
Abstract
Urban green areas, while providing numerous benefits, can also produce negative impacts, often referred to as “ecosystem disservices”. While fallen fruits, leaves, and branches may pose tripping hazards, falling trees present a more significant threat to the safety of citizens and buildings. A [...] Read more.
Urban green areas, while providing numerous benefits, can also produce negative impacts, often referred to as “ecosystem disservices”. While fallen fruits, leaves, and branches may pose tripping hazards, falling trees present a more significant threat to the safety of citizens and buildings. A study was conducted to identify the factors that most influence tree falls, aiming to enhance monitoring and maintenance in high-risk areas and develop preventive felling plans. The analysis was carried out in the city of Venice (Italy) using data from 2019 to 2022. Key variables included daily rainfall and cumulative rainfall over the four days preceding tree falls, minimum temperature, average wind speed and direction, and maximum gust speed on the day of the event and two days prior, as well as detailed information on the affected trees from the municipal GreenSpaces application database (R3GIS). The distribution of fallen trees was assessed in relation to these parameters, and a spatial autocorrelation analysis was performed. The results revealed that tree falls were more frequent during the summer season, coinciding with more intense weather events, especially those characterized by gusts of strong wind (>15 m/s). Street trees and trees in groups, particularly those in parks and densely populated urban areas, were most affected. Tree falls during a single event often occurred in clusters within a radius of approximately 1.5 km. Species analysis indicated that maintaining a diverse mix of tree species could reduce the number of fallen trees, as different species exhibit varying levels of resistance to wind pressure and adaptability to urban conditions. Addressing these findings can help to create more sustainable and livable urban environments, maximizing the benefits of green spaces while mitigating their ecosystem disservices. Full article
(This article belongs to the Special Issue Urban Ecosystem Services: 6th Edition)
Show Figures

Figure 1

19 pages, 4342 KB  
Article
Rainfall Partitioning Dynamics in Xerophytic Shrubs: Interplays Between Self-Organization and Meteorological Drivers
by Yinghao Gao, Chuan Yuan, Yafeng Zhang, Yanting Hu, Li Guo, Zhiyun Jiang, Sheng Wang and Cong Wang
Forests 2025, 16(4), 605; https://doi.org/10.3390/f16040605 - 30 Mar 2025
Viewed by 510
Abstract
Rainfall partitioning, a crucial process in shaping the local hydrological cycle, governs canopy interception and subsequent soil water recharge. While canopy structure and meteorological conditions fundamentally regulate this process, the role of plant self-organization and its interactions with meteorological drivers (non-precipitation variables in [...] Read more.
Rainfall partitioning, a crucial process in shaping the local hydrological cycle, governs canopy interception and subsequent soil water recharge. While canopy structure and meteorological conditions fundamentally regulate this process, the role of plant self-organization and its interactions with meteorological drivers (non-precipitation variables in particular) remain underexplored. To address this gap, we investigated rainfall partitioning components, including the amount, intensity, efficiency, and temporal dynamics of throughfall and stemflow, in clumped and scattered Vitex negundo L. var. heterophylla (Franch.) Rehder shrubs in the Yangjuangou catchment of the Chinese Loess Plateau during the 2021–2022 rainy seasons. Despite comparable net precipitation (clumped: 83.5% vs. scattered: 84.2% of incident rains), divergent rainfall partitioning strategies emerged. Clumped V. negundo exhibited greater stemflow (8.6% vs. 5.2%), characterized by enhanced intensity, efficiency, and favorable temporal dynamics. Conversely, scattered shrubs favored throughfall generation (79.0% vs. 74.9%). Consistent with previous research, rainfall amount was recognized as the primary control on partitioning rains. Furthermore, our integrated analysis, combining machine learning with variance decomposition, highlighted the critical roles of antecedent canopy wetness (4 h pre-event leaf wetness) and wind speed thresholds (e.g., low wind vs. gust) in regulating partitioning efficiency and temporal dynamics. These findings advance the mechanistic understanding of the interplay between plant self-organization and hydrological processes, demonstrating how morphological adaptations in V. negundo optimize water harvesting in semi-arid ecosystems. This addressed the need to incorporate dynamic interplays between plant structure (specifically, self-organized patterns) and meteorological factors (particularly non-precipitation variables) into ecohydrological models, especially for improved predictions in water-limited regions. Full article
Show Figures

Figure 1

17 pages, 2879 KB  
Article
Aviation Safety at the Brink: Unveiling the Hidden Dangers of Wind-Shear-Related Aircraft-Missed Approaches
by Afaq Khattak, Jianping Zhang, Pak-Wai Chan, Feng Chen and Abdulrazak H. Almaliki
Aerospace 2025, 12(2), 126; https://doi.org/10.3390/aerospace12020126 - 7 Feb 2025
Viewed by 1456
Abstract
Aircraft-missed approaches pose significant safety challenges, particularly under adverse weather conditions like wind shear. This study examines the critical factors influencing wind-shear-related missed approaches at Hong Kong International Airport (HKIA) using Pilot Report (PIREP) data from 2015 to 2023. A Binary Logistic Model [...] Read more.
Aircraft-missed approaches pose significant safety challenges, particularly under adverse weather conditions like wind shear. This study examines the critical factors influencing wind-shear-related missed approaches at Hong Kong International Airport (HKIA) using Pilot Report (PIREP) data from 2015 to 2023. A Binary Logistic Model (BLM) with L1 (Lasso) and L2 (Ridge) regularization was applied to both balanced and imbalanced datasets, with the balanced dataset created using the Synthetic Minority Oversampling Technique (SMOTE). The performance of the BLM on the balanced data demonstrated a good model fit, with Hosmer–Lemeshow statistics of 5.91 (L1) and 5.90 (L2). The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) were slightly lower for L1 regularization, at 1528.77 and 1574.35, respectively, compared to 1528.86 and 1574.66 for L2. Cohen’s Kappa values were 0.266 for L1 and 0.253 for L2, reflecting moderate agreement between observed and predicted outcomes and improved performance compared to the imbalanced data. The analysis identified designated-approach runway, aircraft classification, wind shear source, and vertical proximity of wind shear to runway as the most influential factors. Runways 07R and 07C, gust fronts as wind shear sources, and wind shear occurring within 400 ft of the runway posed the highest risk for missed approaches. Narrow-body aircrafts also demonstrated greater susceptibility to turbulence-induced missed approaches. These findings show the importance of addressing these risk factors and enhancing safety protocols for adverse weather conditions. Full article
(This article belongs to the Special Issue Machine Learning for Aeronautics (2nd Edition))
Show Figures

Figure 1

26 pages, 3633 KB  
Article
Forecasting Heat Power Demand in Retrofitted Residential Buildings
by Łukasz Guz, Dariusz Gaweł, Tomasz Cholewa, Alicja Siuta-Olcha, Martyna Bocian and Mariia Liubarska
Energies 2025, 18(3), 679; https://doi.org/10.3390/en18030679 - 1 Feb 2025
Viewed by 781
Abstract
The accurate prediction of heat demand in retrofitted residential buildings is crucial for optimizing energy consumption, minimizing unnecessary losses, and ensuring the efficient operation of heating systems, thereby contributing to significant energy savings and sustainability. Within the framework of this article, the dependence [...] Read more.
The accurate prediction of heat demand in retrofitted residential buildings is crucial for optimizing energy consumption, minimizing unnecessary losses, and ensuring the efficient operation of heating systems, thereby contributing to significant energy savings and sustainability. Within the framework of this article, the dependence of the energy consumption of a thermo-modernized building on a chosen set of climatic factors has been meticulously analyzed. Polynomial fitting functions were derived to describe these dependencies. Subsequent analyses focused on predicting heating demand using artificial neural networks (ANN) were adopted by incorporating a comprehensive set of climatic data such as outdoor temperature; humidity and enthalpy of outdoor air; wind speed, gusts, and direction; direct, diffuse, and total radiation; the amount of precipitation, the height of the boundary layer, and weather forecasts up to 6 h ahead. Two types of networks were analyzed: with and without temperature forecast. The study highlights the strong influence of outdoor air temperature and enthalpy on heating energy demand, effectively modeled by third-degree polynomial functions with R2 values of 0.7443 and 0.6711. Insolation (0–800 W/m2) and wind speeds (0–40 km/h) significantly impact energy demand, while wind direction is statistically insignificant. ANN demonstrates high accuracy in predicting heat demand for retrofitted buildings, with R2 values of 0.8967 (without temperature forecasts) and 0.8968 (with forecasts), indicating minimal performance gain from the forecasted data. Sensitivity analysis reveals outdoor temperature, solar radiation, and enthalpy of outdoor air as critical inputs. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings: 3rd Edition)
Show Figures

Figure 1

14 pages, 3792 KB  
Article
Wind Turbine Blade Fault Detection Method Based on TROA-SVM
by Zhuo Lei, Haijun Lin, Xudong Tang, Yong Xiong and He Wen
Sensors 2025, 25(3), 720; https://doi.org/10.3390/s25030720 - 24 Jan 2025
Viewed by 1440
Abstract
Wind turbines are predominantly situated in remote, high-altitude regions, where they face a myriad of harsh environmental conditions. Factors such as high humidity, strong gusts, lightning strikes, and heavy snowfall significantly increase the vulnerability of turbine blades to fatigue damage. This susceptibility poses [...] Read more.
Wind turbines are predominantly situated in remote, high-altitude regions, where they face a myriad of harsh environmental conditions. Factors such as high humidity, strong gusts, lightning strikes, and heavy snowfall significantly increase the vulnerability of turbine blades to fatigue damage. This susceptibility poses serious risks to the normal operation and longevity of the turbines, necessitating effective monitoring and maintenance strategies. In response to these challenges, this paper proposes a novel fault detection method specifically designed for analyzing wind turbine blade noise signals. This method integrates the Tyrannosaurus Optimization Algorithm (TROA) with a support vector machine (SVM), aiming to enhance the accuracy and reliability of fault detection. The process begins with the careful preprocessing of raw noise signals collected from wind turbines during actual operational conditions. The method extracts vital features from three key perspectives: the time domain, frequency domain, and cepstral domain. By constructing a comprehensive feature matrix that encapsulates multi-dimensional characteristics, the approach ensures that all relevant information is captured. Rigorous analysis and feature selection are subsequently conducted to eliminate redundant data, thereby focusing on retaining the most significant features for classification. A TROA-SVM classification model is then developed to effectively identify the faults of the turbine blades. The performance of this method is validated through extensive experiments, which indicate that the recognition accuracy rate is 98.7%. This accuracy is higher than that of the traditional methods, such as SVM, K-Nearest Neighbors (KNN), and random forest, demonstrating the proposed method’s superiority and effectiveness. Full article
(This article belongs to the Special Issue Sensor-Fusion-Based Deep Interpretable Networks)
Show Figures

Figure 1

21 pages, 6061 KB  
Article
Study on the Dynamic Magnification Effect of Structure Stiffness Based on the Gust Coupling Analysis of Civil Aircraft
by Yingying Liu, Kaiping Yu and Jinze Li
Aerospace 2025, 12(1), 27; https://doi.org/10.3390/aerospace12010027 - 2 Jan 2025
Viewed by 833
Abstract
Regarding the dynamic magnification effect of structure stiffness on the gust analysis of civil aircraft, the following three methods are presented: rigid modes analysis, secondary processing based on elastic modes, and analysis with enlarged stiffness. These methods provide consistent gust load and address [...] Read more.
Regarding the dynamic magnification effect of structure stiffness on the gust analysis of civil aircraft, the following three methods are presented: rigid modes analysis, secondary processing based on elastic modes, and analysis with enlarged stiffness. These methods provide consistent gust load and address the challenge of extracting internal gust loads of rigid aircraft. The coupling resonant effects of the inertial force, the aerodynamic force, and the gust-induced aerodynamic force at different frequencies are examined. The response of flexible aircraft is nonlinearly related to frequency. It exhibits a significant increase in the inertial force and the aerodynamic force at higher frequencies, while a quasi-rigid response at very low frequencies shows the importance of sufficient analysis time. In addition, compared with rigid aircraft, flexible aircraft experiences a delay in the occurrence of extreme gust loads with the delay interval proportional to the frequency. The maximum gust load of flexible aircraft under a certain range of frequencies exceeds that of rigid aircraft, although this is not necessarily the case at the specific frequency. The dynamic magnification factor is 1.25 for the model in this study, which is almost constant and reaches its maximum value together with the gust loads when the frequency coincides with the frequency of the first bending mode. Full article
Show Figures

Figure 1

15 pages, 6512 KB  
Article
Wind Field Characteristics of the 13 June 2014 Downburst Event in Beijing Based on Meteorological Tower Records
by Shi Zhang, Yibo Wang, Zengzhi Qian, Kexin Guo, Xiaoda Xu, Daxing Zhou and Qing Cao
Atmosphere 2025, 16(1), 27; https://doi.org/10.3390/atmos16010027 - 29 Dec 2024
Viewed by 838
Abstract
Understanding the characteristics of downburst wind fields is crucial for studying structural resistance to downbursts. Based on measured data from the 325 m meteorological tower in Beijing, this paper investigates the spatiotemporal evolution of mean and fluctuating winds during a non-stationary downburst. Key [...] Read more.
Understanding the characteristics of downburst wind fields is crucial for studying structural resistance to downbursts. Based on measured data from the 325 m meteorological tower in Beijing, this paper investigates the spatiotemporal evolution of mean and fluctuating winds during a non-stationary downburst. Key wind field parameters such as the mean wind speed, turbulence intensity, turbulence integral length scale, probability density function, power spectral density, evolutionary power spectral density, and gust factor are statistically analyzed. The results show that the wind speed of downburst undergoes rapid changes, with wind direction significantly influenced by outflow vortices at low altitudes and relatively stable at higher altitudes. When the event happens, the temperature decreases sharply. The mean wind speeds and turbulence integral length scale of the downburst exhibit pronounced “nose-shaped” profile characteristics at the moment when peak wind speed occurs. The turbulence intensity at lower altitudes predominantly exceeds that at higher altitudes. The probability density distribution function of the reduced fluctuating wind speed matches the standard Gaussian distribution curve. The fluctuating wind speeds of the downburst exhibit significant non-stationary characteristics, with their energy mainly distributing in the period of rapid change of wind speed in the time domain and concentrating in the vicinity of 0–0.1 Hz in the frequency domain. The gust factor reaches its maximum at the moment when the peak wind speed occurs. Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Past, Current and Future)
Show Figures

Figure 1

33 pages, 9965 KB  
Article
A Comparison of ASCE/SEI 7–22 Tornado-Induced Load Provisions for Residential Low-Rise Buildings to Those Evaluated Using Physical Simulation
by Gabriel Narancio, Djordje Romanic, Jubayer Chowdhury, Han-Ping Hong and Horia Hangan
Wind 2024, 4(4), 412-446; https://doi.org/10.3390/wind4040021 - 20 Dec 2024
Viewed by 1795
Abstract
In this study, the loads induced by tornado-like vortices on scaled models of eight low-rise residential buildings with real-world shapes in a typical North American community are quantified and compared to the provisions provided by ASCE/SEI 7–22. Physical simulations of the interaction between [...] Read more.
In this study, the loads induced by tornado-like vortices on scaled models of eight low-rise residential buildings with real-world shapes in a typical North American community are quantified and compared to the provisions provided by ASCE/SEI 7–22. Physical simulations of the interaction between translating tornado-like vortices representative of EF1-, EF2- and EF3-rated tornadoes and the scaled models were performed in the WindEEE Dome at the University of Western Ontario. Three internal pressure scenarios were numerically simulated. The tornado velocity gust factor was identified as a critical parameter when translating loads from the model to full-scale. The uplift forces on the whole roof in the internal pressure scenarios with one dominant opening are between 44% and 63% higher than the distributed leakage scenario, highlighting the importance of keeping the integrity of the envelope. Revised values of the internal pressure coefficients and external pressure coefficients or correction factors may be used to improve the ability of the standard to provide safer design loads. Full article
(This article belongs to the Special Issue Wind Loads on Buildings and Structures)
Show Figures

Figure 1

15 pages, 4075 KB  
Article
Impact of Meteorological Conditions on Overhead Transmission Line Outages in Lithuania
by Egidijus Rimkus, Edvinas Stonevičius, Indrė Gečaitė, Viktorija Mačiulytė and Donatas Valiukas
Atmosphere 2024, 15(11), 1349; https://doi.org/10.3390/atmos15111349 - 10 Nov 2024
Viewed by 1621
Abstract
This study investigates the impact of meteorological conditions on unplanned outages of overhead transmission lines (OHTL) in Lithuania’s 0.4–35 kV power grid from January 2013 to March 2023. Data from the Lithuanian electricity distribution network operator and the Lithuanian Hydrometeorological Service were integrated [...] Read more.
This study investigates the impact of meteorological conditions on unplanned outages of overhead transmission lines (OHTL) in Lithuania’s 0.4–35 kV power grid from January 2013 to March 2023. Data from the Lithuanian electricity distribution network operator and the Lithuanian Hydrometeorological Service were integrated to attribute outage events with weather conditions. A Bayesian change point analysis identified thresholds for these meteorological factors, indicating points at which the probability of outages increases sharply. The analysis reveals that wind gust speeds, particularly those exceeding 21 m/s, are significant predictors of increased outage rates. Precipitation also plays a critical role, with a 15-fold increase in the relative number of outages observed when 3 h accumulated rainfall exceeds 32 mm, and a more than 50-fold increase for 12 h snowfall exceeding 22 mm. This study underscores the substantial contribution of lightning discharges to the number of outages. In forested areas, the influence of meteorological conditions is more significant. Furthermore, the research emphasizes that combined meteorological factors, such as strong winds accompanied by rain or snow, significantly increase the risk of outages, particularly in these forested regions. These findings emphasize the need for enhanced infrastructure resilience and targeted preventive measures to mitigate the impact of extreme weather events on Lithuania’s power grid. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

29 pages, 11561 KB  
Article
Coupling Vibration Characteristics and Wind-Induced Responses of Large-Span Transmission Lines Under Multi-Dimensional Wind
by Wenping Xie, Zhenhua Li, Wenlong Du and Xing Fu
Buildings 2024, 14(11), 3462; https://doi.org/10.3390/buildings14113462 - 30 Oct 2024
Cited by 1 | Viewed by 1156
Abstract
Transmission lines, crucial for power and urban infrastructure, are vulnerable to wind damage; this paper addresses research gaps in tower-line systems under multi-dimensional wind loads and aerodynamic damping. By incorporating multi-dimensional aerodynamic damping and conducting comprehensive multi-dimensional wind response analysis, it examines parameters [...] Read more.
Transmission lines, crucial for power and urban infrastructure, are vulnerable to wind damage; this paper addresses research gaps in tower-line systems under multi-dimensional wind loads and aerodynamic damping. By incorporating multi-dimensional aerodynamic damping and conducting comprehensive multi-dimensional wind response analysis, it examines parameters like ground roughness and wind attack angles that significantly influence the tower responses, offering a holistic understanding of system behavior under real wind conditions. This study analyzes wind-induced responses of a large-span Chinese transmission line using a finite element model (FEM) with three spans and two towers. This paper conducts modal analyses of a single tower and the tower-line system, comparing their vibration characteristics under one- and multi-dimensional wind loads generated via harmonic superposition methods. Incorporating the multi-dimensional aerodynamic damping, the impact of wind velocity, ground roughness, and wind attack angle on the tower-line system is analyzed through time-history results and gust response factor. The findings reveal that under the premise of multi-dimensional aerodynamic damping, multi-dimensional wind loads significantly amplify responses compared to one-dimensional loads. As wind speed, ground roughness, and wind attack angle increase, responses are elevated, causing complex changes in gust response factors, underscoring the importance of considering multi-dimensional wind loads. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop