Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = guaiacyl lignin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1784 KiB  
Article
Formation and Chemical Structure of Carbon-13 Tracer Lignin-Carbohydrate Complexes (LCCs) During Kraft Pulping
by Zhi Wang, Yimin Xie and Boxuan Zhao
Molecules 2025, 30(5), 1077; https://doi.org/10.3390/molecules30051077 - 26 Feb 2025
Viewed by 498
Abstract
In this study, a modified synthetic method for labeling a lignin dimer (guaiacylglycerol-β-guaiacyl ether-[α-13C]) was developed. The chemical structure of the target compound was analyzed using 1H-NMR, 13C-NMR, and other analytical techniques. Then, the 13C-labeled phenolic lignin model [...] Read more.
In this study, a modified synthetic method for labeling a lignin dimer (guaiacylglycerol-β-guaiacyl ether-[α-13C]) was developed. The chemical structure of the target compound was analyzed using 1H-NMR, 13C-NMR, and other analytical techniques. Then, the 13C-labeled phenolic lignin model compound was subjected to kraft pulping in the presence of xylose. Finally, the resulting reaction products were fractionated using acid precipitation and ethyl acetate extraction, and each fraction was analyzed by carbon-13 nuclear magnetic resonance (13C-NMR) and two-dimensional heteronuclear multiple quantum coherence (HMQC) spectroscopy. This aimed to investigate the occurrence of lignin–carbohydrate complexes (LCCs) during the conventional kraft pulping process. Employing ethanol as the reaction medium facilitated the bromination of 4-acetylguaiacol-[α-13C], resulting in a homogeneous reaction and significantly improving the yield of the brominated product to over 90%. Additionally, kraft pulping of the phenolic lignin model compound in the presence of xylose led to the occurrence of minor quantities of benzyl ether-type lignin–carbohydrate complex (LCC) structures, which were predominantly detected in the ethyl acetate extractive. Full article
Show Figures

Figure 1

21 pages, 2080 KiB  
Review
Effects of Elevated CO2 on Maize Physiological and Biochemical Processes
by Pirzada Khan, Tariq Aziz, Rahmatullah Jan and Kyung-Min Kim
Agronomy 2025, 15(1), 202; https://doi.org/10.3390/agronomy15010202 - 15 Jan 2025
Cited by 1 | Viewed by 2276
Abstract
Maize (Zea mays) is a critical global crop, serving as a source of food, livestock feed, and industrial raw materials. Climate changes, driven by rising atmospheric carbon dioxide (CO2) levels, have substantial effects on maize physiology, growth, and nutrient [...] Read more.
Maize (Zea mays) is a critical global crop, serving as a source of food, livestock feed, and industrial raw materials. Climate changes, driven by rising atmospheric carbon dioxide (CO2) levels, have substantial effects on maize physiology, growth, and nutrient content. This review investigates the impact of elevated CO2 on maize, with a particular focus on photosynthesis enhancement as it improves water use efficiency (WUE), which can lead to increased biomass production. Despite this, elevated CO2 results in a decreased concentration of essential nutrients, including nitrogen, phosphorus, potassium, and folate. The reduction in folate, which is vital for both plant development and human nutrition, poses challenges, especially for population heavily reliant on maize. Additionally, biofortification through traditional breeding and genetic engineering is proposed as a strategy to enhance folate level in maize to mitigate nutritional deficiencies. Elevated CO2 stimulates lignin production, improving stress resistance and carbon sequestration capacity. However, the increase in guaiacyl-rich lignin may negatively affect biomass degradability and efficiency in biofuel production. The findings emphasize the importance of balancing maize’s stress resilience, nutrient profile, and lignin composition to address future climate challenges. This balance is essential for optimizing maize cultivation for food security, biofuel production, and environmental sustainability. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

9 pages, 6846 KiB  
Article
Atomistic Simulations of Mechanical Properties of Lignin
by Siteng Zhang, Yishayah Bension, Michael Shimizu and Ting Ge
Polymers 2024, 16(24), 3552; https://doi.org/10.3390/polym16243552 - 19 Dec 2024
Cited by 2 | Viewed by 1052
Abstract
The mechanical properties of lignin, an aromatic heteropolymer constituting 20–30% plant biomass, are important to the fabrication and processing of lignin-based sustainable polymeric materials. In this study, atomistic simulations are performed to provide microscopic insights into the mechanics of lignin. Representative samples of [...] Read more.
The mechanical properties of lignin, an aromatic heteropolymer constituting 20–30% plant biomass, are important to the fabrication and processing of lignin-based sustainable polymeric materials. In this study, atomistic simulations are performed to provide microscopic insights into the mechanics of lignin. Representative samples of miscanthus, spruce, and birch lignin are studied. At room temperature below the glass transition temperature, the stress–strain curves for uniaxial compression and tensile loading are calculated and analyzed. The results show that lignin possesses rigidity with a Young’s modulus in the order of GPa and exhibits strain hardening under strong compression. Meanwhile, lignin is brittle and fails through the microscopic mechanism of cavitation and chain pullout under local tensile loading. In addition to the three common lignin samples, minimalist model systems of monodisperse linear chains consisting of only guaiacyl units and β-O-4 linkages are simulated. Systematic variation of the model lignin chain length allows a focused examination of the molecular weight effects. The results show that the molecular weight does not affect the Young’s modulus much, but higher molecular weight results in stronger strain hardening under compression. In the range of molecular weight studied, the lignin chains are not long enough to arrest the catastrophic chain pullout, explaining the brittleness of real lignin samples. This work demonstrates that the recently modified CHARMM force fields and the accompanying structural information of real lignin samples properly capture the mechanics of lignin, offering an in silico microscope to explore the atomistic details necessary for the valorizaiton of lignin. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

16 pages, 2076 KiB  
Article
Unlocking Molecular Fingerprint of an Ombrotrophic Peat Bog: Advanced Characterization Through Hexamethyldisilazane Thermochemolysis and Principal Component Analysis
by Sara Moghnie, Emil Obeid, Jalal Halwani, Laurent Grasset and Khaled Younes
Molecules 2024, 29(23), 5537; https://doi.org/10.3390/molecules29235537 - 23 Nov 2024
Viewed by 984
Abstract
This study examines a boreal peatland (the Sagnes peatland, Fanay, Limousin, France) with a depth of 1 m. This peatland is currently in the late stages of organic deposition, as evidenced by the growth of Carex species, along with Sphagnum mosses, in the [...] Read more.
This study examines a boreal peatland (the Sagnes peatland, Fanay, Limousin, France) with a depth of 1 m. This peatland is currently in the late stages of organic deposition, as evidenced by the growth of Carex species, along with Sphagnum mosses, in the uppermost level. To gain molecular insights, we conducted an analysis of the lignin and polyphenolic counterparts using HMDS (hexamethyldisilazane) thermochemolysis, enabling the identification of lignin degradation proxies. The goal was to develop characteristic indicators for the state of lignin degradation based on the relative distribution of lignin phenols, measured by gas chromatography coupled with mass spectrometry (GC-MS) after the HMDS thermochemolysis. For that purpose, the singular contribution of the 11 aromatic moieties yielded, along with SGC (sum of lignin moieties) and the most lignin degradation proxies, were applied. It has been shown that HMDS thermochemolysis exhibited the capacity to reveal oxidized and degraded lignin fractions, following the increasing trend yielded for most moieties and SGC proxy, in the mesotelm and catotelm layers. In addition, the C/G (Cinnamyl/Guaiacyl) and S/G (Syringyl/Guaiacyl) ratios showed their highest input in the upper half of the core. This bias in the aforementioned ratios could indicate that HMDS thermochemolysis is to be applied for geological samples, where low G-compounds exist. For the sake of validating HMDS thermochemolysis’ application, Principal Component Analysis (PCA) was then applied to the molecular fingerprint. For ratios and proxies of aromatic moieties of HMDS thermochemolysis, the PCA approach exhibited a higher contribution (79%). This indicates the efficiency of these ratios in describing the molecular fingerprint of peat depth records. In addition, a higher separation between the contributions of the investigated variables (molecular proxies) along the first two PCs was noticed. In other words, the variables that showed a high contribution towards PC1 exhibited a low contribution towards PC2, and vice versa. These findings indicate the high reliance of applying the ratios and proxies of HMDS thermochemolysis. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

13 pages, 6819 KiB  
Article
Structural and Chemical Analysis of Three Regions of Bamboo (Phyllostachys Edulis)
by Shaohua Gu, Ana Lourenço, Xin Wei, Jorge Gominho, Ge Wang and Haitao Cheng
Materials 2024, 17(20), 5027; https://doi.org/10.3390/ma17205027 - 14 Oct 2024
Cited by 2 | Viewed by 1739
Abstract
This study focuses on three different regions of moso bamboo (Phyllostachys edulis): an inner layer (IB), middle layer (MB), and outer layer (OB), to comprehensively characterize the structural features, chemical composition (ash, extractives and lignin contents), and the lignin monomeric composition as determined [...] Read more.
This study focuses on three different regions of moso bamboo (Phyllostachys edulis): an inner layer (IB), middle layer (MB), and outer layer (OB), to comprehensively characterize the structural features, chemical composition (ash, extractives and lignin contents), and the lignin monomeric composition as determined by analytical pyrolysis. The results show that bamboo presents a gradient structure. From the IB to OB, the vascular bundle density and fiber sheath ratio increase, the porosity decreases (from 45.92% to 18.14%), and the vascular bundle diameter–chord ratio increases (from 0.85 to 1.48). In terms of chemical composition, the ash, extractives, and acid-soluble lignin content gradually decrease from IB to OB. The holocellulose content follows the trend: MB (66.3%) > OB (65.9%) > IB (62.8%), while the acid-insoluble lignin content exhibits the opposite trend: IB (22.6%) > OB (17.8%) > MB (17.7%). Pyrolysis products reveal the diversity of carbohydrates and lignin derivatives, with a lignin monomeric composition rich in syringyl and guaiacyl units and lower amounts of H-units: the IB has an H:G:S relation of 18:26:55, while 15:27:58 is the ratio for the MB and 15:40:45 for the OB; S/G ratio values were, respectively, 1.22, 1.46, and 0.99. A comprehensive analysis highlights significant gradient variations in the structure and chemistry of bamboo, providing robust support for the classification and refinement methods of bamboo residues for potential applications. Full article
Show Figures

Figure 1

16 pages, 1784 KiB  
Article
A Quantitative Evaluation of the Influence of Chemical Variables of Biomasses of Poplar SRC Commercial Clones in Torrefaction
by Abel Martins Rodrigues, Ana Alves, José Graça and José Rodrigues
Molecules 2024, 29(19), 4542; https://doi.org/10.3390/molecules29194542 - 25 Sep 2024
Viewed by 1042
Abstract
This study aimed to evaluate the influence in torrefaction of the chemical structure of biomasses from nine poplar commercial SRC clones, evaluated through analytical pyrolysis. The chemical data were integrated into a dataset including LHV gain, representative of torrefaction aptitude and six chemical [...] Read more.
This study aimed to evaluate the influence in torrefaction of the chemical structure of biomasses from nine poplar commercial SRC clones, evaluated through analytical pyrolysis. The chemical data were integrated into a dataset including LHV gain, representative of torrefaction aptitude and six chemical variables obtained through analytical pyrolysis, which were: (i) CH2Cl2 extractives; (ii) total extractives; (iii) Py-lignin; (iv) holocellulose; (v) (syringil/guaiacyl) ratio; and (vi) (pentosan/hexosan) ratio. Significant univariate and bivariate linear relations were obtained with LHV gain from torrefaction as dependent variable vs. Py-lignin, CH2Cl2 extractives and (cP/cH) ratio. Representative results were: (i) a negative correlation of −0.82 and −0.76 between LHV gain and the (pentosan/hexosan) ratio and Py-lignin, respectively, and (ii) a positive correlation of 0.79 between LHV gain and CH2Cl2 extractive amounts. Factorial and discriminant analysis allowed for clustering the tested clones in three groups, evidencing relevant influences of (S/G) ratio, Py-lignin, and, to a lesser extent, (cP/cH) ratio in the classification of these groups, clearly showing the impact of chemical variables of feedstock in torrefaction. The results contribute: (i) to the validation of use of the expedite analytical pyrolysis technique for classification of biomasses in accordance with their torrefaction aptitude and, thereby, (ii) to optimizing strategies in technological issues as diverse as poplar clone genetic breeding and modeling biomass torrefaction and pyrolysis. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

31 pages, 5843 KiB  
Review
Recent Advances in Characterization and Valorization of Lignin and Its Value-Added Products: Challenges and Future Perspectives
by Shehbaz Ali, Abida Rani, Mudasir A. Dar, Muther Mansoor Qaisrani, Muhammad Noman, Kamaraj Yoganathan, Muhammad Asad, Ashenafi Berhanu, Mukul Barwant and Daochen Zhu
Biomass 2024, 4(3), 947-977; https://doi.org/10.3390/biomass4030053 - 2 Sep 2024
Cited by 17 | Viewed by 7964
Abstract
Lignin, the earth’s second-most abundant biopolymer after cellulose, has long been relegated to low-value byproducts in the pulp and paper industry. However, recent advancements in valorization are transforming lignin into a sustainable and versatile feedstock for producing high-value biofuels, bioplastics, and specialty chemicals. [...] Read more.
Lignin, the earth’s second-most abundant biopolymer after cellulose, has long been relegated to low-value byproducts in the pulp and paper industry. However, recent advancements in valorization are transforming lignin into a sustainable and versatile feedstock for producing high-value biofuels, bioplastics, and specialty chemicals. This review explores the conversion of lignin’s complex structure, composed of syringyl (S), guaiacyl (G), and p-hydroxyphenyl (H) units, into value-added products. We critically assess various biochemical and analytical techniques employed for comprehensive lignin characterization. Additionally, we explore strategies for lignin upgrading and functionalization to enhance its suitability for advanced biomaterials. The review emphasizes key areas of lignin valorization, including catalytic depolymerization methods, along with the associated challenges and advancements. We discuss its potential as a feedstock for diverse products such as biofuels, bioplastics, carbon fibers, adhesives, and phenolic compounds. Furthermore, the review briefly explores lignin’s inherent properties as a UV protectant and antioxidant, alongside its potential for incorporation into polymer blends and composites. By presenting recent advancements and case studies from the literature, this review highlights the significant economic and environmental benefits of lignin valorization, including waste reduction, lower greenhouse gas emissions, and decreased reliance on non-renewable resources. Finally, we address future perspectives and challenges associated with achieving large-scale, techno-economically feasible, and environmentally sustainable lignin valorization. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

13 pages, 4589 KiB  
Article
The Enhancement Origin of Antioxidant Property of Carboxylated Lignin Isolated from Herbaceous Biomass Using the Maleic Acid Hydrotropic Fractionation
by Chen Su, Xiu Wang, Yongjun Deng, Douyong Min, Guigan Fang and Chen Huang
Int. J. Mol. Sci. 2024, 25(17), 9257; https://doi.org/10.3390/ijms25179257 - 27 Aug 2024
Viewed by 1031
Abstract
Lignin is endowed with antioxidant activity due to its diverse chemical structure. It is necessary to explore the relationship between antioxidant activity and the chemical structure of the lignin to develop its high-value utilization. Herein, we employed maleic acid (MA) as a hydrotropic [...] Read more.
Lignin is endowed with antioxidant activity due to its diverse chemical structure. It is necessary to explore the relationship between antioxidant activity and the chemical structure of the lignin to develop its high-value utilization. Herein, we employed maleic acid (MA) as a hydrotropic agent to preferably isolate the lignin from distinct herbaceous sources (wheat straw and switchgrass) under atmospheric pressure conditions. The resultant acid hydrotropic lignin (AHL) isolated from wheat straw exhibited high radical scavenging rates, up to 98% toward DPPH and 94% toward ABTS. Further investigations indicated that during the MA hydrotropic fractionation (MAHF) process, lignin was carboxylated by MA at γ-OH of the side-chain, providing additional antioxidant activity from the carboxy group. It was also found that the radical scavenging rate of AHL has a positive correlation with carboxyl, phenolic hydroxyl contents, and the S–G (syringyl–guaiacyl) ratio, which could be realized by increasing the MAHF severity. Overall, this work underlies the enhancement origin of the antioxidant property of lignin, which will facilitate its application in biological fields as an efficient, cheap, and renewable antioxidant additive. Full article
Show Figures

Figure 1

17 pages, 1707 KiB  
Article
Physiological and Biochemical Responses of Maize to Elevated CO2 Concentrations: Implications for Growth and Metabolism
by Pirzada Khan, Fardous Mohammad Safiul Azam, Tong Lian, Ashraf M. M. Abdelbacki, Mohammed Albaqami, Rahmatullah Jan, Kyung-Min Kim and Weixuan Wang
Agronomy 2024, 14(8), 1751; https://doi.org/10.3390/agronomy14081751 - 9 Aug 2024
Viewed by 1555
Abstract
Rising atmospheric CO2 levels, a significant consequence of anthropogenic activities, profoundly impact global agriculture and food security by altering plant physiological processes. Despite extensive research, a comprehensive understanding of the specific effects of elevated CO2 on maize (Zea mays L.)’s [...] Read more.
Rising atmospheric CO2 levels, a significant consequence of anthropogenic activities, profoundly impact global agriculture and food security by altering plant physiological processes. Despite extensive research, a comprehensive understanding of the specific effects of elevated CO2 on maize (Zea mays L.)’s primary and secondary metabolism remains elusive. This study investigated the responses of maize seedlings cultivated in open-top chambers (OTCs) under three CO2 concentrations: ambient (380 ppm), elevated (600 ppm), and high (1800 ppm). Key growth parameters, including plant height, leaf area, and aboveground biomass (leaf and stem), were assessed alongside metabolic profiles encompassing nonstructural and structural carbohydrates, syringyl (S) and guaiacyl lignin, the syringyl-to-guaiacyl (S/G)-lignin ratio, photosynthetic pigments, total soluble protein, and malondialdehyde (MDA) levels. The results demonstrated that exposure to 600 ppm CO2 significantly enhanced plant height, leaf area, and aboveground biomass compared to ambient conditions. Concurrently, there were notable increases in the concentrations of primary metabolites. In contrast, exposure to 1800 ppm CO2 severely inhibited these growth parameters and induced reductions in secondary metabolites, such as chlorophyll and soluble proteins, throughout the growth stages. The findings underscore the intricate responses of maize metabolism to varying CO2 levels, highlighting adaptive strategies in primary and secondary metabolism under changing atmospheric conditions. This research contributes to a nuanced understanding of maize’s physiological adaptations to future climate scenarios characterized by elevated CO2, with implications for sustainable agriculture and food security. Full article
Show Figures

Figure 1

19 pages, 29205 KiB  
Article
The Influence of Addition of Expired Pharmaceuticals on Thermal Behaviour of Selected Types of Biomass
by Andrzej Strojwas, Valentina Zubkova, Dariusz Banas and Ilona Stabrawa
Energies 2024, 17(12), 2809; https://doi.org/10.3390/en17122809 - 7 Jun 2024
Cited by 2 | Viewed by 1431
Abstract
The influence of 2 wt.% additives of expired paracetamol and naproxen on the thermal behaviour of densified samples of pea husks (PH), corncobs (CC), and sunflower inflorescences (SI) was studied using an analytical TG/FTIR unit. Gaseous, liquid, and solid pyrolysis products were evaluated [...] Read more.
The influence of 2 wt.% additives of expired paracetamol and naproxen on the thermal behaviour of densified samples of pea husks (PH), corncobs (CC), and sunflower inflorescences (SI) was studied using an analytical TG/FTIR unit. Gaseous, liquid, and solid pyrolysis products were evaluated using XRD, SEM, and EDX techniques along with FT-IR, ATR, and UV spectroscopies. It was found that the additives changed the yield and composition of pyrolysis products differently. The addition of paracetamol increases the contribution of guaiacyl rings in the condensed material of all samples, and the addition of naproxen—that of chromophores originating from the decomposition of lignin. The additives diversely affected the contribution of hydrocarbons in the composition of volatile products of pyrolysis: they decreased this contribution in PH samples, increased it in SI samples, and did not change in CC samples. The additives used changed the morphology and composition of organic and inorganic parts of pyrolyzed biomass. These changes in inorganics caused the changes in the composition of pyrolysis products. The conducted research proves not only the possibility of the utilization of expired pharmaceuticals during their pyrolysis with densified PH and CC samples but also the ability to reduce the undesirable hydrocarbons in the obtained volatile products. Full article
(This article belongs to the Special Issue Advances in Bioenergy and Waste-to-Energy Technologies)
Show Figures

Figure 1

12 pages, 1752 KiB  
Article
Densification of Delignified Wood: Influence of Chemical Composition on Wood Density, Compressive Strength, and Hardness of Eurasian Aspen and Scots Pine
by Przemysław Mania, Carlo Kupfernagel and Simon Curling
Forests 2024, 15(6), 892; https://doi.org/10.3390/f15060892 - 21 May 2024
Cited by 7 | Viewed by 2361
Abstract
The densification of solid wood is a well-studied technique that aims to increase the strength and hardness of the material by permanently compressing the wood tissue. To optimise the densification process in this study, a pre-treatment with sodium sulphite was used (delignification). With [...] Read more.
The densification of solid wood is a well-studied technique that aims to increase the strength and hardness of the material by permanently compressing the wood tissue. To optimise the densification process in this study, a pre-treatment with sodium sulphite was used (delignification). With delignification prior to densification, one achieves higher compression ratios and better mechanical properties compared to densification without pre-treatment. The reactivity of syringyl (dominant in hardwoods) and guaiacyl (dominant in softwoods) lignin towards delignification is different. The influences of this difference on the delignification and densification of softwoods and hardwoods need to be investigated. This study aimed to densify wood after delignification and investigate how variations in chemical composition between coniferous and deciduous species affect the densification process. Scots pine and Eurasian aspen specimens with a similar initial density were investigated to study the influence of the different lignin chemistry in softwoods and hardwoods on the densification process. Both timbers were delignified with sodium sulphite and sodium hydroxide and subsequently densified. While the delignification was twice as efficient in aspen than in pine, the compression ratios were almost identical in both species. The Brinell hardness and compressive strength showed a more significant increase in aspen than in Scots pine; however, one exception was the compressive strength in a radial direction, which increased more effectively in Scots pine. Scanning electron microscopy (SEM) revealed the microstructure of densified aspen and Scots pine, showing the crushing and collapse of the cells. Full article
Show Figures

Figure 1

20 pages, 19429 KiB  
Article
Synthesis of Lignin/PAN Fibers from Sawdust
by Meruyert Nazhipkyzy, Anar B. Maltay, Bakhytzhan Lesbayev and Dana D. Assylkhanova
Fibers 2024, 12(3), 27; https://doi.org/10.3390/fib12030027 - 13 Mar 2024
Cited by 3 | Viewed by 2732
Abstract
Carbon nanofibers based on lignin from wood waste have a promising potential for the ability to produce electrodes that can modernize existing energy storage technology. The most important detail is that the low cost, as well as the availability of the initial products [...] Read more.
Carbon nanofibers based on lignin from wood waste have a promising potential for the ability to produce electrodes that can modernize existing energy storage technology. The most important detail is that the low cost, as well as the availability of the initial products for the production of lignin, will reduce the cost of energy storage devices and contribute to improving the environment. In this study, pine sawdust and elm sawdust were used as raw materials for the production of lignin, which accumulate in large quantities in metal workshops in Almaty. Lignin extraction was carried out using an organosolvent method, which is environmentally friendly, low-cost, uses minimal amounts of strong acids and metal catalysts, does not pollute water, and does not emit sulfur dioxide (SO2). A comprehensive study of the characteristics of the obtained lignins from wood waste was carried out. Infrared spectroscopy (IR) revealed that the obtained lignin contains aromatic, phenolic, hydroxyl, methyl, and methoxyl groups. The results of nuclear magnetic resonance (NMR) spectroscopy showed the presence of a high number of syringyl (S) links compared to guaiacyl (G), which contribute to increased efficiency in the thermal processing of lignin. Also, this study investigated the use of the obtained lignins to produce continuous fibers by electrospinning. The effect of lignin mass on the viscosity of the lignin/polyacrylonitrile (PAN) solution and the effect of the carbonization temperature on the physico-chemical characteristics of the lignin/PAN solution were investigated. The following research methods were used for this purpose: Raman spectroscopy, thermogravimetric analysis (TGA), electron scanning microscopy, energy dispersion analysis, IR, NMR, and optical microscopy. The conditions for the production of lignin-containing carbon fibers at temperatures of 800, 900, and the carbonation heating rate, is an important parameter in the production of carbon fibers as it strongly affects the characteristics of the resulting carbon fibers. The heating rate affects were studied, and it was found that, at a heating rate of 5 °C/min and a carbonation temperature of 800 °C, porous carbon nanofibers with a diameter of 47 nm are formed in a nitrogen medium for 60 min. Full article
(This article belongs to the Special Issue Fibers 10th Anniversary: Past, Present, and Future)
Show Figures

Figure 1

17 pages, 4728 KiB  
Article
Stability and Reactivity of Guaiacylglycerol-β-Guaiacyl Ether, a Compound Modeling β-O-4 Linkage in Lignin
by Zeinab Rabiei, Andrew Simons, Magdalena Folkmanova, Tereza Vesela, Ondrej Uhlik, Evguenii Kozliak and Alena Kubátová
Separations 2024, 11(2), 59; https://doi.org/10.3390/separations11020059 - 14 Feb 2024
Cited by 2 | Viewed by 2616
Abstract
Lignin, a complex and abundant biopolymer, is a major constituent of plant cell walls. Due to its chemical and structural complexity, lignin degradation is a challenging task for both natural and engineered systems. Therefore, investigation of lignin degradation using so called “model compounds” [...] Read more.
Lignin, a complex and abundant biopolymer, is a major constituent of plant cell walls. Due to its chemical and structural complexity, lignin degradation is a challenging task for both natural and engineered systems. Therefore, investigation of lignin degradation using so called “model compounds” has been the focus of many research efforts in recent years. This study addresses the utility of guaiacylglycerol-β-guaiacyl ether (Gβ2) as a model compound for evaluating the β-O-4 bond cleavage under diverse thermal and aqueous medium conditions. Experimental conditions included varied pH (3–10), microbial biodegradation, subcritical water environment (150–250 °C), and mild pyrolysis (150–250 °C). A high-performance liquid chromatography with high-resolution mass spectrometry was employed for accurate detection and quantification of both Gβ2 and its degradation/modification products in an aqueous environment. Pyrolysis experiments were performed using gas chromatography-mass spectrometry analysis with a pyrolyzer. The results showed that Gβ2 remained stable under exposure to moderate pH and several bacterial strains, which were successfully used previously for biodegradation of other recalcitrant pollutants. We report, for the first time, differing Gβ2 breakdown pathways for subcritical water treatment vs. pyrolysis under an inert atmosphere. The scientific novelty lies in the presentation of differences in the degradation pathways of Gβ2 during subcritical water treatment compared to pyrolysis in an inert atmosphere, with water playing a key role. The observed differences are ascribed to the suppression of homolytic reactions by water as a solvent. Full article
(This article belongs to the Topic Advances in Chemistry and Chemical Engineering)
Show Figures

Figure 1

17 pages, 6776 KiB  
Article
The Structural and Thermal Characteristics of Musa paradisiaca L. Lignin for Carbon Footprint Reduction Applications
by Chiosa Cletus Odili, Oludolapo Akanni Olanrewaju, Cyprian Onyedikachi Ofordile and Samson Oluropo Adeosun
Atmosphere 2024, 15(1), 55; https://doi.org/10.3390/atmos15010055 - 31 Dec 2023
Cited by 2 | Viewed by 1912
Abstract
The need for the use of suitable natural alternative materials to oil-derived carbon-based materials, largely because of carbon IV oxide emissions and the attendant global health and environmental impact, has led to the discovery of lignin, a biomass-derived material, as a precursor for [...] Read more.
The need for the use of suitable natural alternative materials to oil-derived carbon-based materials, largely because of carbon IV oxide emissions and the attendant global health and environmental impact, has led to the discovery of lignin, a biomass-derived material, as a precursor for carbon fibre (CF) manufacture and as a reinforcement for biologically derived polymers like polylactide (PLA) with a variety of biomedical and industrial applications. This study investigated the thermal, structural, and compositional properties of lignin extracted from the pseudostem of Musa paradisiaca L. (the plantain tree). Dried and milled plantain pseudostem was pretreated using diethyl ether. Lignin was extracted from the untreated and pretreated pseudostem samples using 5M HCl for 1 h at 200 °C and 250 °C (acid hydrolysis). The results revealed that lignin obtained from pretreated pseudostem at 200 °C and 250 °C possesses superior thermal stability, as shown by the thermogram, with a DTGmax of 429.97 °C and 442.62 °C in contrast to 397.22 °C and 382.53 °C for lignin from untreated pseudostem due to the removal of volatile impurities and unwanted constituents after pretreatment. The FTIR spectrum of the extracted lignin samples shows similar absorption bands, like 1703.4 cm−1 (C=O–conjugated carbonyl group), 1606–1602 cm−1 (C=C stretching–aromatic compounds, benzene ring), 1315 cm−1 (C-O stretching–syringyl units), and 1200.2 cm−1 (C-H stretching, guaiacyl units), with the pretreated biomass having higher transmittance (%) values, indicating increased purity after pretreatment. The results presented above showed that lignin has been successfully extracted and can serve as a potential precursor for the production of carbon fibre, thereby reducing dependence on fossil-fuel-based precursors, with a reduction in carbon dioxide emission pollution. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

17 pages, 2981 KiB  
Article
Study on the Relationship between the Structure and Pyrolysis Characteristics of Lignin Isolated from Eucalyptus, Pine, and Rice Straw through the Use of Deep Eutectic Solvent
by Tengfei Li, Xin Jin, Xinyao Shen, Hangdan Liu, Ruiping Tong, Xuzhen Qiu and Junfei Xu
Molecules 2024, 29(1), 219; https://doi.org/10.3390/molecules29010219 - 30 Dec 2023
Cited by 1 | Viewed by 1629
Abstract
Understanding the pyrolysis product distributions of deep eutectic solvent (DES)-isolated lignins (DESLs) from different types of biomass is of great significance for lignin valorization. The structure and pyrolysis properties of DESLs obtained from eucalyptus (E-DESL), pine (P-DESL), and rice straw (R-DESL) were studied [...] Read more.
Understanding the pyrolysis product distributions of deep eutectic solvent (DES)-isolated lignins (DESLs) from different types of biomass is of great significance for lignin valorization. The structure and pyrolysis properties of DESLs obtained from eucalyptus (E-DESL), pine (P-DESL), and rice straw (R-DESL) were studied through the use of various methods such as elemental analysis, GPC, HS-GC, and NMR techniques, and the pyrolysis characteristics and product distributions of the DESLs were also further investigated through the use of TGA, Py-GC/MS, and tubular furnace pyrolysis. DESLs with high purity (88.5–92.7%) can be efficiently separated from biomass while cellulose is retained. E-DESL has a relatively low molecular weight, and P-DESL has a relatively higher hydrogen–carbon effective ratio and a lower number of condensation structures. The Py-GC/MS results show that, during DESL pyrolysis, the monomeric aromatic hydrocarbons, p-hydroxyphenyl-type phenols, and catechol-type phenols are gradually released when the guaiacyl-type phenols and syringyl-type phenols decrease with the rising temperature. 4-methylguaiacol and 4-methylcatechol, derived from the guaiacyl-type structural units, are positively correlated with temperature, which causes a significant increase in products with a side-chain carbon number of 1 from P-DESL pyrolysis. 4-vinylphenol, as a representative product of the R-DESL, derived from p-hydroxyphenyl-type structural units, also gradually increased. In addition, the P-DESL produces more bio-oil during pyrolysis, while gases have the highest distribution in E-DESL pyrolysis. It is of great significance to study the characteristic product distribution of lignin isolated through the use of DES for lignin directional conversion into specific high-value aromatic compounds. Full article
Show Figures

Figure 1

Back to TopTop