Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (72)

Search Parameters:
Keywords = groundwater salt ions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12399 KiB  
Article
Preventive Diagnosis of Biological Colonization and Salt-Related Decay on the Frescoes of the “Oratorio dell’Annunziata” (Riofreddo, Latium, Italy) to Improve Conservation Plans
by Flavia Bartoli, Annalaura Casanova Municchia, Marco Tescari, Ilaria Ciccone, Paolo Rosati, Alessandro Lazzara and Maria Catrambone
Appl. Sci. 2025, 15(15), 8762; https://doi.org/10.3390/app15158762 - 7 Aug 2025
Viewed by 326
Abstract
The frescoed Annunziata Oratory chapel in Riofreddo (Italy), a unique testimony to the pontificate of Martin V, sheds light on the trade routes of Ninfa in the first half of the 15th century. Despite having undergone several restorations in the past (the most [...] Read more.
The frescoed Annunziata Oratory chapel in Riofreddo (Italy), a unique testimony to the pontificate of Martin V, sheds light on the trade routes of Ninfa in the first half of the 15th century. Despite having undergone several restorations in the past (the most recent in the 2010s), the Oratory presents serious conservation issues. At first glance, there are no evident signs of biological colonization; rather, the most obvious damage is attributed to detachments and saline efflorescence. Biological colonization at several points was identified using various diagnostic field and laboratory techniques such as ATPase point analysis, field stereoscopy in visible and UV light, culture-based and molecular approaches, Raman spectroscopy, and SEM analysis, biological colonization at several points was identified. The characterization of salt efflorescence was carried out using ion chromatography analysis. The presence of bacteria, fungi and algae, which are also linked to saline efflorescence, was observed. A clear correlation between the biological colonization and salt efflorescence composition was highlighted by our results, as well as the potential sources of microorganisms and salts via the capillary rise of groundwater. This early diagnostic approach regarding the presence of lithobionts and salt efflorescence demonstrates the complex interplay between environmental factors and microbial colonization, which can lead to biodeterioration processes. Full article
(This article belongs to the Special Issue Application of Biology to Cultural Heritage III)
Show Figures

Graphical abstract

17 pages, 4007 KiB  
Article
Variations in Soil Salt Ions and Salinization Degree in Shallow Groundwater Areas During the Freeze–Thaw Period
by Chao Han, Qiang Meng, Junfeng Chen, Lihong Cui, Jing Xue, Hongwu Liu and Rong Yan
Water 2025, 17(15), 2234; https://doi.org/10.3390/w17152234 - 26 Jul 2025
Viewed by 639
Abstract
In shallow groundwater areas, the freeze–thaw process can easily exacerbate soil salinization. The variations and migrations of Na+, K+, Ca2+, Mg2+, Cl, SO42−, and HCO3 at the depth [...] Read more.
In shallow groundwater areas, the freeze–thaw process can easily exacerbate soil salinization. The variations and migrations of Na+, K+, Ca2+, Mg2+, Cl, SO42−, and HCO3 at the depth of 0–100 cm under shallow groundwater depth (2.63–2.87 m) during the freeze–thaw period were analyzed. And a multi-index comprehensive evaluation method based on factor analysis was employed to investigate the soil salinization degree. The results show that K+, Mg2+, and HCO3 exhibited surface enrichment during the freeze–thaw period, while Na+, Cl, and SO42− accumulated in the frozen layer during the freezing stage. However, there is no surface enrichment of Ca2+. During the freezing stage, Mg2+ and Cl exhibited the strongest migration capabilities among cations and anions, respectively. During the thawing stage, K+ and HCO3 were the cation and anion with the highest ionic migration capabilities, respectively. Total salinity (TS), Cl, SO42−, HCO3, Na+, K+, Mg2+, and residual sodium carbonate (RSC) were identified as the dominant factors influencing the salinization degree during the freeze–thaw period. During the freezing stage, soil salt ions predominantly migrated from the unfrozen to the frozen layer, and the salinization degree in the frozen layer increased with the development of the frozen layer. In the thawing stage, soil salt ions migrated upward from the thawing front, and the salinization degree at the depth of 0–30 cm increased. This study provides insights for the prevention and control of soil salinization in arid regions. Full article
(This article belongs to the Special Issue Advances in Soil Water Dynamics Research)
Show Figures

Figure 1

30 pages, 14799 KiB  
Article
Fluoride Removal and Recovery from Groundwater Using an Integrated Reverse Osmosis–Membrane Crystallization Process
by Wuhib Zeine Ousman, Esayas Alemayehu and Patricia Luis
Clean Technol. 2025, 7(2), 40; https://doi.org/10.3390/cleantechnol7020040 - 20 May 2025
Cited by 1 | Viewed by 2420
Abstract
Elevated fluoride levels in drinking water pose a significant health risk for communities relying on groundwater in the Ethiopian Central Rift Valley. This study aims at characterizing real groundwater samples from the Ethiopian Central Rift Valley and evaluating the performance of an integrated [...] Read more.
Elevated fluoride levels in drinking water pose a significant health risk for communities relying on groundwater in the Ethiopian Central Rift Valley. This study aims at characterizing real groundwater samples from the Ethiopian Central Rift Valley and evaluating the performance of an integrated membrane process based on reverse osmosis (RO) and membrane crystallization (MCr) for fluoride removal and its recovery as mixed fluoride salts. Groundwater analysis revealed fluoride concentrations of 20.8 mgL−1 at the Meki-01 site and 22.7 mgL−1 at the Meki-02 site, both exceeding the WHO guideline of 1.5 mgL−1. In addition, total dissolved solids exceeded 1000 mgL−1 at both sites, classifying the water as brackish. A commercial RO membrane demonstrated excellent fluoride and ion rejection, with fluoride removal rates exceeding 99%. The total dissolved solids (TDS) removal efficiency reached 89%. The mean water permeability of the membrane was 4.52 Lm−2h−1bar−1. The retentate produced in the RO unit reached a concentration of 70 mgL−1, which was then treated using osmotic membrane distillation–crystallization (OMD-Cr) and/or vacuum membrane crystallization (VM-Cr). This process facilitated the recovery of mixed salts while achieving an almost zero-liquid discharge. The study confirms the successful removal of fluoride and its recovery as mixed salt, along with the recovery of water in an environmentally friendly and manageable way. Full article
Show Figures

Figure 1

17 pages, 6538 KiB  
Article
The Hydrogeochemical Characteristics and Formation Mechanisms of the High-Salinity Groundwater in Yuheng Mining Area of the Jurassic Coalfield, Northern Shaanxi, China
by Yuanhong Han, Hongchao Zhao, Yongtao Ji, Yue Wang and Liwei Zhang
Water 2025, 17(10), 1459; https://doi.org/10.3390/w17101459 - 12 May 2025
Viewed by 534
Abstract
In the Yuheng mining area (Jurassic coalfield, northern Shaanxi, China), the Yan’an Formation groundwater is characterized by elevated salinity, posing challenges for mine water pollution control and regional water resource management. However, the spatial distribution patterns and formation mechanisms of this high-salinity groundwater [...] Read more.
In the Yuheng mining area (Jurassic coalfield, northern Shaanxi, China), the Yan’an Formation groundwater is characterized by elevated salinity, posing challenges for mine water pollution control and regional water resource management. However, the spatial distribution patterns and formation mechanisms of this high-salinity groundwater remain poorly studied. This study integrates hydrogeochemical data from 18 coal mines, analyzing the spatial salinity variations, major ion compositions and isotopic signatures. Combined with the evolution characteristics of ancient sedimentary environments and the composition analysis of rock salt minerals in the coal rock interlayers, the formation mechanism of high salinity water was explored. The results indicate that the groundwater mineralization degree of the Yan’an Formation in the Jurassic strata encountered in the Yuheng mining area is the highest, showing a decreasing trend upwards. On the plane, the western and northern regions are generally higher than the eastern and southern regions. The highest mineralization level of groundwater can reach 36.25g/L, and the high mineralization hydrochemical type is mainly SO4-Na·Ca type, with occasional Cl-Na type in areas with extremely high mineralization level. The cause analysis shows that the highly mineralized groundwater in the Yuheng mining area comes from atmospheric precipitation, which infiltrates and dissolves salt rocks. In addition, the mining area is located in the arid area of northern Shaanxi, with insufficient water supply and no obvious structural faults, and has good sealing properties, thus exhibiting the characteristics of high mineralization. These mechanisms provide a formation model for the high-salinity groundwater in Jurassic coal-bearing strata, offering critical implications for predictive hydrogeochemical modeling and sustainable water management in arid mining regions. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 5224 KiB  
Article
Impacts of Natural Organic Matter and Dissolved Solids on Fluoride Retention of Polyelectrolyte Multilayer-Based Hollow Fiber Nanofiltration Membranes
by Hussein Abuelgasim, Nada Nasri, Martin Futterlieb, Radhia Souissi, Fouad Souissi, Stefan Panglisch and Ibrahim M. A. ElSherbiny
Membranes 2025, 15(4), 110; https://doi.org/10.3390/membranes15040110 - 2 Apr 2025
Cited by 1 | Viewed by 1072
Abstract
This study examines the effects of natural organic matter (NOM) and dissolved solids on fluoride (F) retention in polyelectrolyte multilayer-based hollow-fiber nanofiltration membranes (dNF40). Lab-scale filtration experiments were conducted under varying operating conditions (initial salt concentration, NOM concentration, permeate flux, crossflow [...] Read more.
This study examines the effects of natural organic matter (NOM) and dissolved solids on fluoride (F) retention in polyelectrolyte multilayer-based hollow-fiber nanofiltration membranes (dNF40). Lab-scale filtration experiments were conducted under varying operating conditions (initial salt concentration, NOM concentration, permeate flux, crossflow velocity, and recovery rate). dNF40 membranes exhibited F retention above 70% ± 1.2 in the absence of NOM and competing ions. However, when filtering synthetic model water (SMW) designed to simulate groundwater contaminated with high total dissolved solids (TDSs) and NOM, F retention decreased to approximately 60% ± 0.7, which was generally attributed to ion competition. Furthermore, despite limited declines in normalized permeability, the addition of NOM to SMW notably deceased F retention in the steady state to~20% due to fouling effects. The facilitated transport of the divalent cations Ca2+ and Mg2+ could be observed, as they accumulated in the organic fouling layer. While SO42− retention remained relatively stable, the retention of monovalent anions (NO3, Cl, and F) decreased substantially due to drag effects. Na+ retention improved slightly to maintain electroneutrality. Feed salinity was shown to significantly affect separation efficiency, with PEC layers undergoing swelling and certain structural changes as the ionic strength increased. During batch filtration experiments at varying recovery rates, the retention of monovalent anions further decreased, with F retention reducing to just ~10% at a 90% recovery rate. This study provides valuable insights into better understanding and optimizing the performance of PEC-based NF membranes across diverse water treatment scenarios. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

14 pages, 2961 KiB  
Article
Research on the Features and Driving Factors of Shallow Groundwater Quality in Arid Areas, Northwest China
by Long Wang, Nan Yang, Yang Zhao and Qianqian Zhang
Water 2025, 17(7), 934; https://doi.org/10.3390/w17070934 - 22 Mar 2025
Cited by 2 | Viewed by 505
Abstract
Given the increasing threat of groundwater pollution, comprehending the trends and influencing factors of groundwater quality variation is essential for effective mitigation strategies. This study addresses groundwater quality variations in the Beichuan River, a critical area in China’s arid region. Using hydrochemical analysis [...] Read more.
Given the increasing threat of groundwater pollution, comprehending the trends and influencing factors of groundwater quality variation is essential for effective mitigation strategies. This study addresses groundwater quality variations in the Beichuan River, a critical area in China’s arid region. Using hydrochemical analysis and multivariate statistics, we identified key factors influencing groundwater quality. Groundwater is mildly alkaline, with HCO3-Ca as the dominant hydrochemical type. The concentrations of major ions increase during the high-flow period due to rainfall effects. The dissolution of rock salt primarily contributes to the presence of Na+ and Cl ions. Meanwhile, the weathering of silicate and carbonate rocks is the main origin of Ca2+, Mg2+, and HCO3 ions. Additionally, the dissolution of evaporite rocks is identified as the principal source of SO42−. Human activities, particularly sewage discharge and fertilization, significantly contribute to nitrate contamination. Principal component analysis revealed that the weathering of rocks and industrial activities are the main controlling factors during the high-flow season, while the hydrochemistry of groundwater during the low-flow season is mainly influenced by the weathering of silicate rocks, evaporite rocks, and rock salt. Our findings provide a scientific basis for preventing groundwater quality deterioration and ecological environmental protection in arid regions. Full article
(This article belongs to the Special Issue Water Quality Assessment of River Basins)
Show Figures

Figure 1

17 pages, 5853 KiB  
Article
A Study of Composite Salt Erosion Resistance of Nano-Modified Cement Mortar in Early Ages
by Jia Guo, Tao Zheng, Fei Mou, Yang Qin, Zhi Wang, Shiyi Zhang and Hui Li
Buildings 2025, 15(2), 278; https://doi.org/10.3390/buildings15020278 - 18 Jan 2025
Cited by 2 | Viewed by 1182
Abstract
Corrosion of traditional cement mortar is a critical issue in karst areas. Composite salt, i.e., sulfate–chloride salt, represents a typical corrosion agent due to the abundance of Cl and SO42− ions in such geological environments. In this study, we used [...] Read more.
Corrosion of traditional cement mortar is a critical issue in karst areas. Composite salt, i.e., sulfate–chloride salt, represents a typical corrosion agent due to the abundance of Cl and SO42− ions in such geological environments. In this study, we used nano-metakaolin to enhance the physical and mechanical properties of cement mortar in the early aging stages, simulating groundwater corrosion by a compound salt solution in the karst region. The appearance and the change in the flexural/compressive strength of cement mortar upon the nano-metakaolin addition in the early aging stages under dry and wet cycling conditions were analyzed and combined with the results of scanning electron microscopy, thermogravimetric analysis, and other methods, revealing the underpinning mechanism behind the function changes of nano-metakaolin-modified cement mortar. The results show that nano-metakaolin effectively promotes cement hydration in the early aging stages. The flexural/compressive strength after 7 days of aging with 1% of added nano-metakaolin increased by 10.38% and 4.41%, respectively, compared to ordinary cement mortar. Furthermore, adding 1–5% of nano-metakaolin under dry and wet cycling and the coupling effect of chloride and sulfate erosion effectively reduce the damage of harmful ions on the cement mortar, leading to evident corrosion inhibition. The generation of hydration products increased after adding the Ghanaian metakaolin, filling the microcracks and micropores, and increasing the overall microstructural compactness. Full article
Show Figures

Figure 1

15 pages, 5853 KiB  
Article
Spatiotemporal Evolution Mine Groundwater’s Hydrogeochemical Characteristics Under Influence of Mining and Grouting in Gubei Coal Mine, China
by Guanhong Xiao and Haifeng Lu
Water 2024, 16(22), 3217; https://doi.org/10.3390/w16223217 - 8 Nov 2024
Viewed by 1138
Abstract
Geological conditions or human activities will affect the hydrochemical characteristics and formation mechanism of mine groundwater to varying degrees. The northern part of the Beiyi mining area of Gubei Coal Mine is taken as the research area in this study. Based on the [...] Read more.
Geological conditions or human activities will affect the hydrochemical characteristics and formation mechanism of mine groundwater to varying degrees. The northern part of the Beiyi mining area of Gubei Coal Mine is taken as the research area in this study. Based on the data of 52 groups of limestone water (Taihui water) samples in the primary environment, in the mining stage and after grouting, the spatial and temporal variation trend of the chemical characteristics of Taihui water was studied by means of constant index mathematical statistics, a Piper diagram, total ionic salinity, correlation analysis, the ion ratio method and the saturation index. The purpose of this study is to analyze the influence of special geological structures, mining activities and grouting treatment on the formation process of the chemical characteristics of Taihui water, and to provide a basis for the identification of water inrush sources and the resource utilization of deep mine water in this area. The results show that in the three stages, the order of cation concentration is Na+ + K+ > Ca2+ > Mg2+, and the order of anion concentration is changed from Cl > SO42− > HCO3 to Cl > HCO3 > SO42−. The hydrochemical type is the most abundant in the mining stage, and tends to be unified after grouting. The dissolution of carbonate minerals, gypsum, rock salt and silicate minerals; cation exchange; pyrite oxidation; and the mixing of grouting precipitation liquid mainly occur in the limestone water. These effects are enhanced or weakened due to the influence of pumping and drainage and grouting precipitation liquid. The results of this study may be beneficial to the sustainable utilization of deep groundwater resources in other similar mines, and promote the establishment of data management and identification mechanisms of water inrush sources in deep coal seams. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 8713 KiB  
Article
Hydrogeochemical Characteristics and Sulfate Source of Groundwater in Sangu Spring Basin, China
by Zhanxue Bai, Xinwei Hou, Xiangquan Li, Zhenxing Wang, Chunchao Zhang, Chunlei Gui and Xuefeng Zuo
Water 2024, 16(20), 2884; https://doi.org/10.3390/w16202884 - 11 Oct 2024
Cited by 1 | Viewed by 1172
Abstract
The Sangu Spring Basin is located in an important economic area, and groundwater is the main source of water for local life and industry. Understanding the sources of chemical components in groundwater is important for the development and utilization of groundwater. In this [...] Read more.
The Sangu Spring Basin is located in an important economic area, and groundwater is the main source of water for local life and industry. Understanding the sources of chemical components in groundwater is important for the development and utilization of groundwater. In this paper, we analyzed the origin of the chemical components of groundwater and their evolution in the Sangu Spring Basin using statistical analysis, Piper diagrams, Gibbs diagrams, ion ratios, and combined hydrochemistry–isotope analyses. The results show that the groundwater in the Sangu Spring Basin is mainly derived from atmospheric precipitation, that the groundwater in stagnant and confined environment zones was formed under colder climatic conditions, and that the surface water (SW) has a close hydraulic relation with the groundwater. Water–rock interaction is the main factor controlling the composition of groundwater. The compositions of groundwater are mainly derived from carbonate weathering, silicate weathering, and dissolution of gypsum. Na+ and K+ in groundwater mainly come from the dissolution of albite and potassium feldspar, rather than rock salt. Ion exchange occurs in karst groundwater (KGW) and fissure groundwater (FGW), and ion exchange is dominated by the exchange of Mg2+ and Ca2+ in the groundwater with Na+ and K+ in the rock or soil. Sulfate in groundwater is derived from dissolution of gypsum, infiltration of atmospheric precipitation, and leakage of SW. Groundwaters with the highest sulfate content are located in the vicinity of SW, as a result of receiving recharge from SW seepage. Groundwaters with higher sulfate contents are located in the stagnant and deeply buried zones, where sulfate is mainly derived from the dissolution of gypsum. SW seepage recharges groundwater, resulting in increased levels of Cl, NO3 and SO42− in groundwater. These insights can provide assistance in the protection and effective management of groundwater. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

30 pages, 11211 KiB  
Article
Hydro-Geochemistry and Water Quality Index Assessment in the Dakhla Oasis, Egypt
by Mahmoud H. Darwish, Hanaa A. Megahed, Asmaa G. Sayed, Osman Abdalla, Antonio Scopa and Sedky H. A. Hassan
Hydrology 2024, 11(10), 160; https://doi.org/10.3390/hydrology11100160 - 30 Sep 2024
Cited by 3 | Viewed by 1846
Abstract
Water quality is crucial to the environmental system and thus its chemistry is important, and can be directly related to the water’s source, the climate, and the geology of the region. This study focuses on analyzing the hydrochemistry of specific locations within the [...] Read more.
Water quality is crucial to the environmental system and thus its chemistry is important, and can be directly related to the water’s source, the climate, and the geology of the region. This study focuses on analyzing the hydrochemistry of specific locations within the Dakhla Oasis in Egypt. A total of thirty-nine groundwater samples representing the Nubian Sandstone Aquifer (NSSA) and seven surface water samples from wastewater lakes and canals were collected for analysis. Key parameters such as pH, electrical conductivity (EC), and total dissolved solids (TDS) were measured on-site, while major ions and trace elements (Fe+2 and Mn+2) were analyzed in the laboratory. The water quality index (WQI) method was employed to assess the overall water quality. Hydro-chemical facies were investigated using Piper’s, Scholler’s, and Stiff diagrams, revealing sodium as the dominant cation and chloride, followed by bicarbonate as the dominant anion. The hydro-chemical composition indicates that Na–Cl constitutes the primary water type in this study. This points to the dissolution of evaporates and salt enrichment due to intense evaporation resulting from the region’s hyper-aridity. In groundwater samples, the order of hydro-chemical facies is HCO3 > Cl > SO4−2 > Na+ > Ca+2 > K+ > Mg+2, while in wastewater samples, it is Cl > Na+ > SO4−2 > HCO3 > Ca+2 > Mg+2 > K+. When considering iron and manganese parameters, the water quality index (WQI) values suggest that most groundwater samples exhibit excellent to good quality but become poor or very poor when these elements are included. This study could prove valuable for water resource management in the Dakhla Oasis. Full article
Show Figures

Figure 1

15 pages, 7611 KiB  
Article
The Hydrochemical Characteristics and Formation Mechanism of Highly Mineralized Coal Mine Water in Semi-Arid Regions in Northwest China
by Jian Yang, Wei Zhao, Xiangyang Liang and Feng Xu
Water 2024, 16(16), 2244; https://doi.org/10.3390/w16162244 - 8 Aug 2024
Viewed by 1714
Abstract
The over-exploitation of groundwater and the deterioration of its quality have heightened the importance of non-traditional water resources, such as mine water. The study of the water’s chemical characteristics and the formation mechanism of high-salinity mine water in semi-arid regions holds significant importance [...] Read more.
The over-exploitation of groundwater and the deterioration of its quality have heightened the importance of non-traditional water resources, such as mine water. The study of the water’s chemical characteristics and the formation mechanism of high-salinity mine water in semi-arid regions holds significant importance for zero discharge and the resource utilization of mine water in Northwest China. In this study, a total of 38 groundwater and mine water samples were collected to examine the hydrogeochemical characteristics of high-salinity mine water using Piper diagrams and Gibbs diagrams, as well as isotope analyses and ion ratio coefficients. Additionally, the corresponding mine water treatment recommendations were put forward. The results show that the TDS content of groundwater increases with hydrographic depth. The average TDS concentration of Quaternary, Luohe, and Anding groundwater is 336.87, 308.67, and 556.29 mg/L, respectively. However, the TDS concentration of Zhiluo groundwater and mine water is 2768.57 and 3826.40 mg/L, respectively, which belong to high-salinity water. The Quaternary, Luohe, and Anding groundwater hydrochemical type is predominantly HCO3-Ca type, and the Zhiluo groundwater and mine water hydrochemical type is predominantly the SO4-Na type. Furthermore, there is minimal difference observed in δD and δ18O values among these waters. It can be inferred that the Zhiluo Formation in groundwater serves as the primary source of mine water supply, primarily influenced by the processes of concentration caused by evaporation. The high salinity of mine water is closely related to the high salinity of Zhiluo groundwater. The high salinity of groundwater has evolved gradually under the control of the concentration caused by evaporation and rock-weathering processes. The dissolution of salt rock, gypsum, along with other minerals, serves as the material basis for high-salinity groundwater formation. In addition, the evolution of major ions is also affected by cation exchange. The TDS concentration of mine water ranges from 3435.4 mg/L to 4414.3 mg/L, and the combined treatment process of nanofiltration and reverse osmosis can be selected to remove the salt. After treatment, mine water can be used for productive, domestic, and ecological demands. Full article
Show Figures

Figure 1

16 pages, 5320 KiB  
Article
Strontium Isotopic Composition as Tracers for Identifying Groundwater Recharge Sources in the Choushui River Alluvial Plain, Western Taiwan
by Hao-Wei Huang, Shiuh-Tsuen Huang, Ruo-Mei Wang, Wen-Fu Chen, Chuan-Hsiung Chung and Chen-Feng You
Water 2024, 16(15), 2151; https://doi.org/10.3390/w16152151 - 30 Jul 2024
Cited by 1 | Viewed by 1728
Abstract
Groundwater is a vital resource in the Chuoshui River alluvial plain (CSAP), a key agricultural area in Taiwan. Understanding groundwater recharge is crucial for sustainable water management amidst changing climatic conditions and increasing water demand. This study investigates the major ion composition, solute [...] Read more.
Groundwater is a vital resource in the Chuoshui River alluvial plain (CSAP), a key agricultural area in Taiwan. Understanding groundwater recharge is crucial for sustainable water management amidst changing climatic conditions and increasing water demand. This study investigates the major ion composition, solute Sr concentrations, and 87Sr/86Sr ratios in groundwater and stream water from the Choushui River (CSR) to trace groundwater recharge sources. The Piper diagram reveals that most groundwater samples are of the freshwater Ca–HCO3 type, aligning with the total dissolved solids (TDS) classification. TDS and major ion compositions indicate that groundwater near Baguashan Terrace (BGT) and Douliu Hill (DLH) primarily derives from stream water and rainwater. Na+ and Cl enrichment in some aquifers of BGT and DLH is attributed to the dissolution of paleo-sea salt and mixing with paleo-seawater from sedimentary porewater. Elevated dissolved Sr concentrations and lower 87Sr/86Sr ratios in these aquifers further support the intrusion of paleo-seawater. Groundwater in the proximal fan shows high TDS due to intensive weathering, complicating the use of TDS as a tracer. Sr isotopic compositions and solute Sr2+ concentrations effectively distinguish recharge sources, revealing that the CSR mainstream primarily recharges the proximal fan and BGT region, while CSR tributaries and rainwater mainly recharge the DLH region. This study concludes that Sr isotopic compositions and solute Sr2+ concentrations are more reliable than TDS and major ion compositions in identifying groundwater recharge sources, enhancing our understanding of groundwater origins and the processes affecting water quality. Full article
(This article belongs to the Special Issue New Application of Isotopes in Hydrology and Hydrogeology)
Show Figures

Figure 1

17 pages, 2913 KiB  
Article
Long-Term Performance Evaluation and Fouling Characterization of a Full-Scale Brackish Water Reverse Osmosis Desalination Plant
by Sabrine Chebil, A. Ruiz-García, Soumaya Farhat and Mahmoud Bali
Water 2024, 16(13), 1892; https://doi.org/10.3390/w16131892 - 1 Jul 2024
Cited by 2 | Viewed by 2235
Abstract
Water scarcity in Tunisia’s semi-arid regions necessitates advanced brackish water desalination solutions. This study evaluates the long-term performance and fouling characteristics of the largest brackish water reverse osmosis desalination plant in southern Tunisia over a period of 5026 days. The plant employs two-stage [...] Read more.
Water scarcity in Tunisia’s semi-arid regions necessitates advanced brackish water desalination solutions. This study evaluates the long-term performance and fouling characteristics of the largest brackish water reverse osmosis desalination plant in southern Tunisia over a period of 5026 days. The plant employs two-stage spiral-wound membrane elements to treat groundwater with a salinity of 3.2 g L−1. The pre-treatment process includes oxidation, sand filtration, and cartridge filtration, along with polyphosphonate antiscalant dosing. Membrane performance was assessed through the analysis of operational data, standardization of permeate flow (Qps) and salt passage (SPs), and the calculation of water (A), solute (B), and ionic (Bj) permeability coefficients. Over the operational period, there was an increase in operating pressure, pressure drop, and permeate conductivity, accompanied by a gradual increase in SPs as well as in the solute B and ionic Bj permeability coefficients. The average B increased by 82%, reflecting a decrease in solute rejection over time. Additionally, the ionic permeability coefficients for both SO42− and Cl ions increased, with Cl showing an 88% increase and SO42− showing an 87% increase. The produced water’s salinity increased by 67%, indicating a significant loss of membrane performance. To identify the cause of these problems, membrane characterization was analyzed using visual inspection, X-ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR). The characterization revealed the complex nature of the foulants, with a predominant presence of calcium sulfate, along with minor quantities of calcite, dolomite, and silica. The extent of CaSO4 deposition suggests poor antiscaling efficiency, highlighting the critical importance of selecting an effective antiscalant to mitigate membrane fouling. Full article
(This article belongs to the Topic Membrane Separation Technology Research)
Show Figures

Figure 1

14 pages, 3141 KiB  
Article
Hydrochemical Characteristics and Origin Analysis of Groundwater in Nanling County, Anhui Province
by Mingjiang Yan, Lu Wang, Qian Wang and Zhongpei Liu
Water 2024, 16(11), 1579; https://doi.org/10.3390/w16111579 - 31 May 2024
Cited by 3 | Viewed by 1754
Abstract
Nanling County, situated on the southern bank of the Yangtze River’s middle and lower reaches in China, and has not yet carried out hydrogeochemical geological surveys. This study is pivotal in ensuring the reliability of the drinking water supply, particularly during emergencies. Utilizing [...] Read more.
Nanling County, situated on the southern bank of the Yangtze River’s middle and lower reaches in China, and has not yet carried out hydrogeochemical geological surveys. This study is pivotal in ensuring the reliability of the drinking water supply, particularly during emergencies. Utilizing an array of analytical methods—statistical analysis, Shularev classification, Piper trilinear diagram, Gibbs diagram, ion ratio method, and mineral saturation index—this research elucidates the hydrogeochemical characteristics and principal water–salt interactions in Nanling’s shallow groundwater. Our findings, derived from the Shularev classification and Piper trilinear diagram, reveal that, in the southern mountainous and river valley plain regions, the primary hydrogeochemical type of groundwater is HCO3-Ca. Conversely, in the northern area of Sanli Town and the adjoining plain, groundwater predominantly falls under the HCO3-Na•Ca category, with some regions showing the characteristics of HCO3•Cl-Ca, HCO3•Cl-Na•Ca, and, occasionally, HCO3•SO4-Na•Ca. According to the Gibbs diagram analysis, the predominant source of groundwater in this region is attributed to water–rock dissolution processes occurring during groundwater runoff. The increase in Na+, Ca2+, Cl, HCO3, and SO42− concentrations in the water–rock interaction in the study area is mainly due to the dissolution of rock salt, gypsum, calcite, and dolomite, and the alternating cation adsorption occurs during the reaction. Finally, the mineral saturation index points to the ongoing dissolution of gypsum, calcite, and dolomite, until a state of precipitation–dissolution equilibrium is reached. This comprehensive study provides vital insights into the hydrogeochemical dynamics of Nanling County’s groundwater, contributing significantly to our understanding of regional water quality and its management. Full article
Show Figures

Figure 1

21 pages, 4514 KiB  
Article
Comprehensive Analysis of Groundwater Suitability for Irrigation in Rural Hyderabad, Sindh, Pakistan
by Shoukat Ali Soomro, Li Hao, Gulsher Ali Memon, Abdul Rahim Junejo, Wenquan Niu, Zahid Ali Channa, Muhammad Kareem Chandio, Jamshed Ali Channa, Jawaher Alkahtani and Jahangeer Dahri
Agronomy 2024, 14(5), 1072; https://doi.org/10.3390/agronomy14051072 - 18 May 2024
Cited by 3 | Viewed by 3195
Abstract
An irrigation quality assessment for rural Hyderabad was made by determining the pH, EC, TDS and TH beside major cations and anions. This study employed various parameters to determine the suitability of groundwater for irrigation and its hydrochemistry. Permissible limits of major cations [...] Read more.
An irrigation quality assessment for rural Hyderabad was made by determining the pH, EC, TDS and TH beside major cations and anions. This study employed various parameters to determine the suitability of groundwater for irrigation and its hydrochemistry. Permissible limits of major cations and anions revealed that approximately 26% of samples exceeded acceptable levels for Electrical Conductivity (EC), 87% for Ca2+, 89% for Mg2+, and 60% for Na+, while none exceeded the limits for K+. Conversely, 47% of samples for HCO3, 91% for Cl, and 100% for SO42−, NO3, and CO32− proved suitability for irrigation. Notably, irrigation indices highlighted favorable results, with 100% conformity for SAR, SSP, RSP, and PI values, and substantial percentages of 78% and 85% for MH and KR values, respectively, affirming their suitability for irrigation practices. Employing the USSL diagram, 22%, 65%, and 11% of samples fall into the C2S1, C3S1, and C4S1 categories. According to the Wilcox diagram, 25%, 43%, 30%, and 2% are classified under C1, C2, C3, and C4 categories, respectively. The Gibbs ratio shows a concentration within the evaporation dominance, and CAI values showed positive ion exchange. Overall, Hyderabad’s rural areas are generally suitable for irrigation, apart from certain areas where water quality may not be acceptable for plants lacking high salt tolerance. Full article
Show Figures

Figure 1

Back to TopTop