Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (268)

Search Parameters:
Keywords = green ships

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8099 KiB  
Article
Machine Learning-Based Recursive Prediction and Application of Green’s Function of Water-Wave Radiation and Diffraction
by Minmin Zheng, Xinsheng Fan, Chuanqing Li, Jianpeng Li, Duolun He and Renchuan Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1488; https://doi.org/10.3390/jmse13081488 (registering DOI) - 1 Aug 2025
Abstract
The frequency-domain free-surface Green’s function method is widely used in solving ship hydrodynamic problems, with its core challenge lying in the computation of the Green’s function and its partial derivatives. This study analyzes the relationship between the free-surface Green’s function and its derivatives, [...] Read more.
The frequency-domain free-surface Green’s function method is widely used in solving ship hydrodynamic problems, with its core challenge lying in the computation of the Green’s function and its partial derivatives. This study analyzes the relationship between the free-surface Green’s function and its derivatives, proposing a machine learning-based recursive prediction method termed the pulsating source recursive prediction method. The accuracy and efficiency of this method under various parameter settings are investigated, and its application to the hydrodynamic calculations of container ship S175 and a bulk carrier is demonstrated. Results show that the predicted Green’s function achieves an accuracy of 3–6 decimals, with computational efficiency surpassing numerical methods and matching analytical approaches. The hydrodynamic results are reliable, confirming the method’s practical value. Full article
(This article belongs to the Special Issue Advancements in Marine Hydrodynamics and Structural Optimization)
Show Figures

Figure 1

18 pages, 3770 KiB  
Article
Emission Reduction Potential of Hydrogen-Powered Aviation Between Airports in Proximity of Seaports
by Nico Flüthmann, Tim Schunkert, Marc Gelhausen and Alexandra Leipold
Aerospace 2025, 12(8), 661; https://doi.org/10.3390/aerospace12080661 - 25 Jul 2025
Viewed by 282
Abstract
Green hydrogen will play a crucial role in the future of emission reduction in air traffic in the long-term, as it will completely eliminate CO2 emissions and significantly reduce other pollutants such as contrails and nitrogen oxides. Hydrogen offers a promising alternative [...] Read more.
Green hydrogen will play a crucial role in the future of emission reduction in air traffic in the long-term, as it will completely eliminate CO2 emissions and significantly reduce other pollutants such as contrails and nitrogen oxides. Hydrogen offers a promising alternative to kerosene for short- and medium-haul flights, particularly through direct combustion and hydrogen fuel cell technology in new aircraft concepts. Against the background of the immense capital-intensive infrastructure adjustments that are required at airports for this purpose and the simultaneously high future hydrogen demand for the shipping industry, this paper analyses the emission savings potential in Europe if airports near seaports would switch to hydrogen-powered flight connections. Full article
Show Figures

Figure 1

35 pages, 2044 KiB  
Review
Overview of Sustainable Maritime Transport Optimization and Operations
by Lang Xu and Yalan Chen
Sustainability 2025, 17(14), 6460; https://doi.org/10.3390/su17146460 - 15 Jul 2025
Viewed by 623
Abstract
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, [...] Read more.
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, this study systematically examines representative studies from the past decade, focusing on three dimensions, technology, management, and policy, using data sourced from the Web of Science (WOS) database. Building on this analysis, potential avenues for future research are suggested. Research indicates that the technological field centers on the integrated application of alternative fuels, improvements in energy efficiency, and low-carbon technologies in the shipping and port sectors. At the management level, green investment decisions, speed optimization, and berth scheduling are emphasized as core strategies for enhancing corporate sustainable performance. From a policy perspective, attention is placed on the synergistic effects between market-based measures (MBMs) and governmental incentive policies. Existing studies primarily rely on multi-objective optimization models to achieve a balance between emission reductions and economic benefits. Technological innovation is considered a key pathway to decarbonization, while support from governments and organizations is recognized as crucial for ensuring sustainable development. Future research trends involve leveraging blockchain, big data, and artificial intelligence to optimize and streamline sustainable maritime transport operations, as well as establishing a collaborative governance framework guided by environmental objectives. This study contributes to refining the existing theoretical framework and offers several promising research directions for both academia and industry practitioners. Full article
(This article belongs to the Special Issue The Optimization of Sustainable Maritime Transportation System)
Show Figures

Figure 1

24 pages, 1517 KiB  
Article
Developing a Competency-Based Transition Education Framework for Marine Superintendents: A DACUM-Integrated Approach in the Context of Eco-Digital Maritime Transformation
by Yung-Ung Yu, Chang-Hee Lee and Young-Joong Ahn
Sustainability 2025, 17(14), 6455; https://doi.org/10.3390/su17146455 - 15 Jul 2025
Viewed by 375
Abstract
Amid structural changes driven by the greening and digital transformation of the maritime industry, the demand for career transitions of seafarers with onboard experience to shore-based positions—particularly ship superintendents—is steadily increasing. However, the current lack of a systematic education and career development framework [...] Read more.
Amid structural changes driven by the greening and digital transformation of the maritime industry, the demand for career transitions of seafarers with onboard experience to shore-based positions—particularly ship superintendents—is steadily increasing. However, the current lack of a systematic education and career development framework to support such transitions poses a critical challenge for shipping companies seeking to secure sustainable human resources. The aim of this study was to develop a competency-based training program that facilitates the effective transition of seafarers to shore-based ship superintendent roles. We integrated a developing a curriculum (DACUM) analysis with competency-based job analysis to achieve this aim. The core competencies required for ship superintendent duties were identified through three expert consultations. In addition, social network analysis (SNA) was used to quantitatively assess the structure and priority of the training content. The analysis revealed that convergent competencies, such as digital technology literacy, responsiveness to environmental regulations, multicultural organizational management, and interpretation of global maritime regulations, are essential for a successful career shift. Based on these findings, a modular training curriculum comprising both common foundational courses and specialized advanced modules tailored to job categories was designed. The proposed curriculum integrated theoretical instruction, practical training, and reflective learning to enhance both applied understanding and onsite implementation capabilities. Furthermore, the concept of a Seafarer Success Support Platform was proposed to support a lifecycle-based career development pathway that enables rotational mobility between sea and shore positions. This digital learning platform was designed to offer personalized success pathways aligned with the career stages and competency needs of maritime personnel. Its cyclical structure, comprising career transition, competency development, field application, and performance evaluation, enables seamless career integration between shipboard- and shore-based roles. Therefore, the platform has the potential to evolve into a practical educational model that integrates training, career development, and policies. This study contributes to maritime human resource development by integrating the DACUM method with a competency-based framework and applying social network analysis (SNA) to quantitatively prioritize training content. It further proposes the Seafarer Success Support Platform as an innovative model to support structured career transitions from shipboard roles to shore-based supervisory positions. Full article
Show Figures

Figure 1

29 pages, 1474 KiB  
Review
Berth Allocation and Quay Crane Scheduling in Port Operations: A Systematic Review
by Ndifelani Makhado, Thulane Paepae, Matthews Sejeso and Charis Harley
J. Mar. Sci. Eng. 2025, 13(7), 1339; https://doi.org/10.3390/jmse13071339 - 13 Jul 2025
Viewed by 426
Abstract
Container terminals are facing significant challenges in meeting the increasing demands for volume and throughput, with limited space often presenting as a critical constraint. Key areas of concern at the quayside include the berth allocation problem, the quay crane assignment, and the scheduling [...] Read more.
Container terminals are facing significant challenges in meeting the increasing demands for volume and throughput, with limited space often presenting as a critical constraint. Key areas of concern at the quayside include the berth allocation problem, the quay crane assignment, and the scheduling problem. Effectively managing these issues is essential for optimizing port operations; failure to do so can lead to substantial operational and economic ramifications, ultimately affecting competitiveness within the global shipping industry. Optimization models, encompassing both mathematical frameworks and metaheuristic approaches, offer promising solutions. Additionally, the application of machine learning and reinforcement learning enables real-time solutions, while robust optimization and stochastic models present effective strategies, particularly in scenarios involving uncertainties. This study expands upon earlier foundational analyses of berth allocation, quay crane assignment, and scheduling issues, which have laid the groundwork for port optimization. Recent developments in uncertainty management, automation, real-time decision-making approaches, and environmentally sustainable objectives have prompted this review of the literature from 2015 to 2024, exploring emerging challenges and opportunities in container terminal operations. Recent research has increasingly shifted toward integrated approaches and the utilization of continuous berthing for better wharf utilization. Additionally, emerging trends, such as sustainability and green infrastructure in port operations, and policy trade-offs are gaining traction. In this review, we critically analyze and discuss various aspects, including spatial and temporal attributes, crane handling, sustainability, model formulation, policy trade-offs, solution approaches, and model performance evaluation, drawing on a review of 94 papers published between 2015 and 2024. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 2671 KiB  
Review
Navigational Safety Hazards Posed by Offshore Wind Farms: A Comprehensive Literature Review and Bibliometric Analysis
by Vice Milin, Ivica Skoko, Željana Lekšić and Zlatko Boko
J. Mar. Sci. Eng. 2025, 13(7), 1330; https://doi.org/10.3390/jmse13071330 - 11 Jul 2025
Viewed by 202
Abstract
As global energy production progressively turns toward a green environment and economy, one of the safety challenges to the maritime industry that has arisen lies within offshore wind farms (OWFs). As renewable sources of energy whose numbers are rapidly expanding, their impact to [...] Read more.
As global energy production progressively turns toward a green environment and economy, one of the safety challenges to the maritime industry that has arisen lies within offshore wind farms (OWFs). As renewable sources of energy whose numbers are rapidly expanding, their impact to the safety of navigation of the ships that navigate in their vicinity ought to be examined further. An ever-growing number of OWFs has led to safety concerns that have never been taken into consideration before. This article gives a structured quantitative analysis and an in-depth review of the literature connected to the safety of navigation, collision probability, and risk assessment that OWFs pose to all maritime industry agents. In this article, the main concerns of the impact of OWFs to the safety of navigation are analyzed using a combination of both the PRISMA and PICOC methodologies. Various types of scientific papers such as journal articles, conference proceedings, MSc theses, PhD theses, and online works of research are collated into a detailed bibliometric analysis and categorized by the most relevant parameters providing valuable perspectives on the current state of art in the field. The findings of this research emphasize the need for a further and more thorough analysis on the theoretical installment of OWFs and their inevitable impact on increasing maritime traffic complexity. The results of this article can form a strong basis for further scientific development in the field and can give useful insights to all maritime industry stakeholders dealing with OWFs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 5796 KiB  
Article
Analysis of Carbon Density Influencing Factors and Ecological Effects of Green Space Planning in Dongjiakou Port Area
by Yuanhao Guo, Yaou Ji, Qianqian Sheng, Cheng Zhang, Ning Feng, Guodong Xu, Dexing Ma, Qingling Yin, Yingdong Yuan and Zunling Zhu
Plants 2025, 14(14), 2145; https://doi.org/10.3390/plants14142145 - 11 Jul 2025
Viewed by 406
Abstract
Port green spaces are essential protective barriers, enhancing safety and environmental resilience in high-activity port regions. Given the intensity of human activities in these areas, understanding the factors influencing the carbon sequestration capacity and ecological benefits of port green spaces is crucial for [...] Read more.
Port green spaces are essential protective barriers, enhancing safety and environmental resilience in high-activity port regions. Given the intensity of human activities in these areas, understanding the factors influencing the carbon sequestration capacity and ecological benefits of port green spaces is crucial for developing sustainable green ports. This study integrated field investigations and remote sensing data to estimate carbon density and carbon sequestration capacity in the Dongjiakou Port area, examining their relationship with port green space planning. The results indicated that carbon density in green spaces showed a significant negative correlation with the number of lanes in adjacent roads, where an increase in lane numbers corresponded to lower carbon density. Additionally, carbon density decreased significantly with increasing distance from the shipping center. In contrast, a significant positive correlation was observed between carbon density and distance from large water bodies, indicating that green spaces closer to large water bodies exhibited smaller carbon density. Infrastructure development in Dongjiakou substantially negatively impacted vegetation carbon sequestration capacity, with effects not reversible in the short term. However, green space enhancement efforts provided additional ecological benefits, leading to a 50.9 ha increase in green space area. When assessing carbon density in urbanizing areas, geographical influences should be prioritized. Furthermore, the long-term environmental impacts of urban expansion must be considered at the early planning stages, ensuring the implementation of proactive protective measures to mitigate potential ecological disruptions. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

30 pages, 15347 KiB  
Article
Research on Optimization Design of Ice-Class Ship Form Based on Actual Sea Conditions
by Yu Lu, Xuan Cao, Jiafeng Wu, Xiaoxuan Peng, Lin An and Shizhe Liu
J. Mar. Sci. Eng. 2025, 13(7), 1320; https://doi.org/10.3390/jmse13071320 - 9 Jul 2025
Viewed by 250
Abstract
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake [...] Read more.
With the natural evolution of the Arctic route and advancements in related technologies, the development of new green ice-class ships is becoming a key technological breakthrough for the global shipbuilding industry. As a special vessel form that must perform icebreaking operations and undertake long-distance ocean voyages, an ice-class ship requires sufficient icebreaking capacity to navigate ice-covered water areas. However, since such ships operate for most of their time under open water conditions, it is also crucial to consider their resistance characteristics in these environments. Firstly, this paper employs linear interpolation to extract wind, wave, and sea ice data along the route and calculates the proportion of ice-covered and open water area in the overall voyage. This provides data support for hull form optimization based on real sea state conditions. Then, a resistance optimization platform for ice-class ships is established by integrating hull surface mixed deformation control within a scenario analysis framework. Based on the optimization results, comparative analysis is conducted between the parent hull and the optimized hull under various environmental resistance scenarios. Finally, the optimization results are evaluated in terms of energy consumption using a fuel consumption model of the ship’s main engine. The optimized hull achieves a 16.921% reduction in total resistance, with calm water resistance and wave-added resistance reduced by 5.92% and 27.6%, respectively. Additionally, the optimized hull shows significant resistance reductions under multiple wave and floating ice conditions. At the design speed, calm water power and hourly fuel consumption are reduced by 7.1% and 7.02%, respectively. The experimental results show that the hull form optimization process in this paper can take into account both ice-region navigation and ice-free navigation. The design ideas and solution methods can provide a reference for the design of ice-class ships. Full article
Show Figures

Figure 1

8 pages, 1034 KiB  
Proceeding Paper
Investigation of the Mechanical Properties of Thermosetting Polymers Reinforced with Carbon Particles
by Boyan Dochev, Desislava Dimova, Mihail Zagorski, Filip Ublekov, Nikola Tomanov and Daniela Valeva
Eng. Proc. 2025, 100(1), 21; https://doi.org/10.3390/engproc2025100021 - 7 Jul 2025
Viewed by 132
Abstract
In this work, the mechanical properties of composites with a polymer matrix and reinforced with carbon particles have been studied. It has been established that the obtained engineering materials have increased elastic and plastic characteristics. The thermosetting polymers used are epoxy, polyester, and [...] Read more.
In this work, the mechanical properties of composites with a polymer matrix and reinforced with carbon particles have been studied. It has been established that the obtained engineering materials have increased elastic and plastic characteristics. The thermosetting polymers used are epoxy, polyester, and vinylester resins. The carbon particles are carbon nanotubes and waste carbon from the plasma decomposition of methane in the production of green hydrogen. The carbon particles used are in an amount of 1 wt% and 2 wt% of the weight of the composite, and they are not subjected to pre-treatment (modification). The studied composites are used in shipping, automotive, and aviation technology, and the presence of carbon particles in them is a prerequisite for improving their anti-radar properties. Full article
Show Figures

Figure 1

11 pages, 194 KiB  
Article
Green Paradox in the Carbon Neutrality Process: A Strategic Game About the Shipping Industry
by Peng Xu, Yukun Cao and Jingye Li
Sustainability 2025, 17(13), 5970; https://doi.org/10.3390/su17135970 - 29 Jun 2025
Viewed by 337
Abstract
The shipping industry plays a significant role in China’s and the global pursuit of carbon neutrality, and it is essential to be cautious about the potential risks associated with the green paradox. This study incorporates Goal Setting Theory and Value Expectations Theory into [...] Read more.
The shipping industry plays a significant role in China’s and the global pursuit of carbon neutrality, and it is essential to be cautious about the potential risks associated with the green paradox. This study incorporates Goal Setting Theory and Value Expectations Theory into the analytical framework of the green paradox and tests this framework through a strategic game research design. The study finds that, first, the green paradox of shipping companies presents hidden characteristics, and the loss caused by coping strategies is a necessary risk to be vigilant about. Second, the green paradox of shipping companies is mainly caused by the decision-makers’ goal perception of accessibility. Moreover, due to the motivation of long-term acceptance of green subsidies, decision-makers will delay the carbon neutrality process. Third, policies need to adopt a gradient increasing quota management strategy, and be accompanied by a variety of policy tools to reduce the risk of the green paradox. This study opens the theoretical “black box” of market expectations and provides a solution to reduce the risk of the green paradox. Full article
(This article belongs to the Special Issue Sustainable Maritime Logistics and Low-Carbon Transportation)
17 pages, 938 KiB  
Article
Status Quo and Future Prospects of China’s Weather Routing Services for Ocean-Going Business Vessels
by Hao Zhang, Guanjun Niu, Tao Liu, Chuanhai Qian, Wei Zhao, Xiaojun Mei and Hao Wu
Oceans 2025, 6(3), 38; https://doi.org/10.3390/oceans6030038 - 23 Jun 2025
Viewed by 518
Abstract
The global shipping industry is evolving towards deep integration of digital transformation, intelligent upgrading, and green development. Meanwhile, recent geopolitical shifts have introduced heightened uncertainties into international shipping, compounding the challenges and escalating the demands for weather routing services for ocean-going ships. This [...] Read more.
The global shipping industry is evolving towards deep integration of digital transformation, intelligent upgrading, and green development. Meanwhile, recent geopolitical shifts have introduced heightened uncertainties into international shipping, compounding the challenges and escalating the demands for weather routing services for ocean-going ships. This paper provides a systematic review and expert perspective on China’s current status and key challenges in ocean-going weather routing services. Based on operational insights from China’s national meteorological service synthesized with a review of current trends and the literature, it further explores the future development of China’s ocean-going weather routing services and technologies from multiple dimensions: enhancing maritime weather observation capabilities, developing advanced weather routing service models, upgrading autonomous and controllable global satellite communication systems, promoting intelligent navigation technologies to facilitate shipping’s low-carbon transition, and expanding meteorological support capabilities for Arctic shipping routes. The analysis identifies critical gaps and proposes strategic directions, offering a unique contribution to understanding the trajectory of weather routing services within China’s specific national context from the perspective of its primary national service provider. Full article
Show Figures

Figure 1

23 pages, 1438 KiB  
Article
Research on Collaborative Governance Mechanism of Air Pollutant Emissions in Ports: A Tripartite Evolutionary Game Analysis with Evidence from Ningbo-Zhoushan Port
by Kebiao Yuan, Lina Ma and Renxiang Wang
Mathematics 2025, 13(12), 2025; https://doi.org/10.3390/math13122025 - 19 Jun 2025
Cited by 1 | Viewed by 824
Abstract
Under the “Dual Carbon” strategy, collaborative governance of port atmospheric pollutants and carbon emissions is critical for low-carbon transformation. Focusing on Ningbo-Zhoushan Port (48% regional ship emissions), this study examines government, port enterprises, and public interactions. A tripartite evolutionary game model with numerical [...] Read more.
Under the “Dual Carbon” strategy, collaborative governance of port atmospheric pollutants and carbon emissions is critical for low-carbon transformation. Focusing on Ningbo-Zhoushan Port (48% regional ship emissions), this study examines government, port enterprises, and public interactions. A tripartite evolutionary game model with numerical simulation reveals dynamic patterns and key factors. The results show the following: (1) A substitution effect exists between government incentive costs and penalty intensity—increased environmental governance budgets reduce the probability of government incentives, whereas higher public reporting rewards accelerate corporate emission reduction convergence. (2) Public supervision exhibits cyclical fluctuations due to conflicts between individual rationality and collective interests, with excessive reporting rewards potentially triggering free-rider behavior. (3) The system exhibits two stable equilibria: a low-efficiency equilibrium (0,0,0) and a high-efficiency equilibrium (1,1,1). The latter requires policy cost compensation, corporate emission reduction gains exceeding investments, and a supervision benefit–cost ratio greater than 1. Accordingly, the study proposes a three-dimensional “Incentive–Constraint–Collaboration” governance strategy, recommending floating penalty mechanisms, green financial instrument innovation, and community supervision network optimization to balance environmental benefits with fiscal sustainability. This research provides a dynamic decision-making framework for multi-agent collaborative emission reduction in ports, offering both methodological innovation and practical guidance value. Full article
Show Figures

Figure 1

17 pages, 2486 KiB  
Article
Antifouling Mussel-Inspired Hydrogel with Furanone-Loaded ZIF-8 for Quorum Sensing-Mediated Marine Antifouling
by Yanbin Xiong, Junnan Cui, Xiaodan Liu, Haobo Shu and Pan Cao
Gels 2025, 11(6), 466; https://doi.org/10.3390/gels11060466 - 18 Jun 2025
Viewed by 464
Abstract
Marine biofouling, the process of marine microorganisms, algae, and invertebrates attaching to and forming biofilms on ship hulls, underwater infrastructure, and marine equipment in ocean environments, severely impacts shipping and underwater operations by increasing fuel consumption, maintenance costs, and corrosion risks, and by [...] Read more.
Marine biofouling, the process of marine microorganisms, algae, and invertebrates attaching to and forming biofilms on ship hulls, underwater infrastructure, and marine equipment in ocean environments, severely impacts shipping and underwater operations by increasing fuel consumption, maintenance costs, and corrosion risks, and by threatening marine ecosystem stability via invasive species transport. This study reports the development of a hydrogel-metal-organic framework (MOF)-quorum sensing inhibitor (QSI) antifouling coating on 304 stainless steel (SS) substrates. Inspired by mussel adhesion, a hydrophilic bionic hydrogel was first constructed via metal ion coordination. The traditional metal ion source was replaced with a zeolitic imidazolate framework-8 (ZIF-8) loaded with 2-(5H)-furanone (HF, a QSI) without altering coating formation. Physicochemical characterization using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), the Brunauer–Emmett–Teller (BET) method, and the diffraction of x-rays (XRD) confirmed successful HF loading into ZIF-8 with intact crystal structures. Antifouling tests showed HF@ZIF-8 enhanced antibacterial inhibition against Staphylococcus aureus (97.28%) and Escherichia coli (>97%) and suppressed Chromobacterium violaceum CV026 pigment synthesis at 0.25 mg/mL (sub-growth concentration). The reconstructed PG/PVP/PEI/HF@ZIF-8 coating achieved 72.47% corrosion inhibition via synergistic anodic protection and physical shielding. This work provides a novel green approach for surface antifouling and drag reduction, highlighting MOF-loaded QSIs as promising additives to enhance the antifouling performance of hydrogel coatings, anti-corrosion performance, and QSI performance for sustainable marine engineering applications. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

24 pages, 1082 KiB  
Article
An Explainable Machine Learning Approach for IoT-Supported Shaft Power Estimation and Performance Analysis for Marine Vessels
by Yiannis Kiouvrekis, Katerina Gkirtzou, Sotiris Zikas, Dimitris Kalatzis, Theodor Panagiotakopoulos, Zoran Lajic, Dimitris Papathanasiou and Ioannis Filippopoulos
Future Internet 2025, 17(6), 264; https://doi.org/10.3390/fi17060264 - 17 Jun 2025
Cited by 1 | Viewed by 376
Abstract
In the evolving landscape of green shipping, the accurate estimation of shaft power is critical for reducing fuel consumption and greenhouse gas emissions. This study presents an explainable machine learning framework for shaft power prediction, utilising real-world Internet of Things (IoT) sensor data [...] Read more.
In the evolving landscape of green shipping, the accurate estimation of shaft power is critical for reducing fuel consumption and greenhouse gas emissions. This study presents an explainable machine learning framework for shaft power prediction, utilising real-world Internet of Things (IoT) sensor data collected from nine (9) Very Large Crude Carriers (VLCCs) over a 36-month period. A diverse set of models—ranging from traditional algorithms such as Decision Trees and Support Vector Machines to advanced ensemble methods like XGBoost and LightGBM—were developed and evaluated. Model performance was assessed using the coefficient of determination (R2) and RMSE, with XGBoost achieving the highest accuracy (R2=0.9490, RMSE 888) and LightGBM being close behind (R2=0.9474, RMSE 902), with both substantially exceeding the industry baseline model (R2=0.9028, RMSE 1500). Explainability was integrated through SHapley Additive exPlanations (SHAP), offering detailed insights into the influence of each input variable. Features such as draft, GPS speed, and time since last dry dock consistently emerged as key predictors. The results demonstrate the robustness and interpretability of tree-based methods, offering a data-driven alternative to traditional performance estimation techniques and supporting the maritime industry’s transition toward more efficient and sustainable operations. Full article
Show Figures

Figure 1

18 pages, 2300 KiB  
Article
Marine Biodiversity Conservation Planning in the Indo-Pacific Convergence Zone Based on Ecological Spatial Analysis
by Linlin Zhao, Tingting Li, Bailin Cong, Bei Wang, Kaiyu Liu and Shenghao Liu
Biology 2025, 14(6), 700; https://doi.org/10.3390/biology14060700 - 14 Jun 2025
Viewed by 403
Abstract
Marine biodiversity is of critical importance to global ecosystems. The Indo-Pacific Convergence Zone (IPCZ), a global marine biodiversity hotspot, faces escalating threats from human activities and climate change. This underscores the pressing need to develop effective conservation strategies for marine biodiversity in the [...] Read more.
Marine biodiversity is of critical importance to global ecosystems. The Indo-Pacific Convergence Zone (IPCZ), a global marine biodiversity hotspot, faces escalating threats from human activities and climate change. This underscores the pressing need to develop effective conservation strategies for marine biodiversity in the IPCZ. This study integrates spatial analysis of ecological sensitivity (coral reefs, mangroves, and seagrass) and anthropogenic pressures (shipping/fishing intensity) to identify biodiversity hotspots and conservation gaps. Using datasets from UNEP-WCMC, OBIS, and Global Fishing Watch, we applied GIS-based multi-criteria evaluation to 5408 grid cells (0.5° resolution) across the IPCZ. Results revealed that 14.7% of the study area constitutes biodiversity hotspots, primarily in coastal Philippines, Indonesia’s Lesser Sunda Islands, and northern Australia. However, only 6% of the IPCZ is currently protected, with merely 13.88% of hotspots overlapping existing marine protected areas (MPAs). Anthropogenic pressure hotspots (e.g., Malacca Strait) showed limited spatial overlap with biodiversity hotspots, suggesting species displacement from high-disturbance zones. Priority conservation areas were delineated by balancing ecological significance and economic activity conflicts. We propose targeted strategies, including buffer zones, seasonal no-take areas, and green shipping technologies, to reconcile conservation with sustainable development. This framework provides actionable insights for enhancing MPA networks in biogeographic transition zones. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Graphical abstract

Back to TopTop