An Explainable Machine Learning Approach for IoT-Supported Shaft Power Estimation and Performance Analysis for Marine Vessels
Abstract
Share and Cite
Kiouvrekis, Y.; Gkirtzou, K.; Zikas, S.; Kalatzis, D.; Panagiotakopoulos, T.; Lajic, Z.; Papathanasiou, D.; Filippopoulos, I. An Explainable Machine Learning Approach for IoT-Supported Shaft Power Estimation and Performance Analysis for Marine Vessels. Future Internet 2025, 17, 264. https://doi.org/10.3390/fi17060264
Kiouvrekis Y, Gkirtzou K, Zikas S, Kalatzis D, Panagiotakopoulos T, Lajic Z, Papathanasiou D, Filippopoulos I. An Explainable Machine Learning Approach for IoT-Supported Shaft Power Estimation and Performance Analysis for Marine Vessels. Future Internet. 2025; 17(6):264. https://doi.org/10.3390/fi17060264
Chicago/Turabian StyleKiouvrekis, Yiannis, Katerina Gkirtzou, Sotiris Zikas, Dimitris Kalatzis, Theodor Panagiotakopoulos, Zoran Lajic, Dimitris Papathanasiou, and Ioannis Filippopoulos. 2025. "An Explainable Machine Learning Approach for IoT-Supported Shaft Power Estimation and Performance Analysis for Marine Vessels" Future Internet 17, no. 6: 264. https://doi.org/10.3390/fi17060264
APA StyleKiouvrekis, Y., Gkirtzou, K., Zikas, S., Kalatzis, D., Panagiotakopoulos, T., Lajic, Z., Papathanasiou, D., & Filippopoulos, I. (2025). An Explainable Machine Learning Approach for IoT-Supported Shaft Power Estimation and Performance Analysis for Marine Vessels. Future Internet, 17(6), 264. https://doi.org/10.3390/fi17060264