Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (863)

Search Parameters:
Keywords = green infrastructure system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3037 KB  
Article
Water Security with Social Organization and Forest Care in the Megalopolis of Central Mexico
by Úrsula Oswald-Spring and Fernando Jaramillo-Monroy
Water 2025, 17(22), 3245; https://doi.org/10.3390/w17223245 (registering DOI) - 13 Nov 2025
Abstract
This article examines the effects of climate change on the 32 million inhabitants of the Megalopolis of Central Mexico (MCM), which is threatened by chaotic urbanization, land-use changes, the deforestation of the Forest of Water by organized crime, unsustainable agriculture, and biodiversity loss. [...] Read more.
This article examines the effects of climate change on the 32 million inhabitants of the Megalopolis of Central Mexico (MCM), which is threatened by chaotic urbanization, land-use changes, the deforestation of the Forest of Water by organized crime, unsustainable agriculture, and biodiversity loss. Expensive hydraulic management extracting water from deep aquifers, long pipes exploiting water from neighboring states, and sewage discharged outside the endorheic basin result in expensive pumping costs and air pollution. This mismanagement has increased water scarcity. The overexploitation of aquifers and the pollution by toxic industrial and domestic sewage mixed with rainfall has increased the ground subsidence, damaging urban infrastructure and flooding marginal neighborhoods with toxic sewage. A system approach, satellite data, and participative research methodology were used to explore potential water scarcity and weakened water security for 32 million inhabitants. An alternative nature-based approach involves recovering the Forest of Water (FW) with IWRM, including the management of Natural Protected Areas, the rainfall recharge of aquifers, and cleaning domestic sewage inside the valley where the MCM is found. This involves recovering groundwater, reducing the overexploitation of aquifers, and limiting floods. Citizen participation in treating domestic wastewater with eco-techniques, rainfall collection, and purification filters improves water availability, while the greening of urban areas limits the risk of climate disasters. The government is repairing the broken drinking water supply and drainage systems affected by multiple earthquakes. Adaptation to water scarcity and climate risks requires the recognition of unpaid female domestic activities and the role of indigenous people in protecting the Forest of Water with the involvement of three state authorities. A digital platform for water security, urban planning, citizen audits against water authority corruption, and aquifer recharge through nature-based solutions provided by the System of Natural Protected Areas, Biological and Hydrological Corridors [SAMBA] are improving livelihoods for the MCM’s inhabitants and marginal neighborhoods, with greater equity and safety. Full article
Show Figures

Figure 1

26 pages, 11874 KB  
Article
Is the Concept of a 15-Minute City Feasible in a Medium-Sized City? Spatial Analysis of the Accessibility of Municipal Services in Koszalin (Poland) Using Gis Modelling
by Maciej Szkoda, Maciej Michnej, Beata Baziak, Marek Bodziony, Alicja Hrehorowicz-Nowak, Hanna Hrehorowicz-Gaber, Marcin Wołek, Aleksander Jagiełło, Sandra Żukowska and Renata Szott
Sustainability 2025, 17(22), 10157; https://doi.org/10.3390/su172210157 - 13 Nov 2025
Abstract
Currently, an active debate is underway among the academic community, urban planners, and policymakers regarding optimal models of urban development, given that the majority of the population now resides in cities. One concept under discussion is the 15 min city, which posits that [...] Read more.
Currently, an active debate is underway among the academic community, urban planners, and policymakers regarding optimal models of urban development, given that the majority of the population now resides in cities. One concept under discussion is the 15 min city, which posits that all urban residents should be able to reach key, frequently used services within a 15 min walk or cycle. Although the literature suggests numerous potential benefits, debate persists about whether such cities would be optimal from the standpoint of sustainable development objectives and residents’ quality of life. The ongoing discussion also concerns the extent to which existing cities are capable of aligning with this concept. This is directly linked to the actual spatial distribution of individual services within the city. The literature indicates a research gap arising from a shortage of robust case studies that would enable a credible assessment of the practical implementation of this idea across diverse cities, countries, and regions. This issue pertains to Poland as well as to other countries. A desirable future scenario would involve comprehensive mapping of all cities, with respect to both the spatial distribution of specific services and related domains such as the quality and coherence of linear infrastructure. This article presents an analysis of the spatial accessibility of basic urban services in the context of implementing the 15 min city concept, using the city of Koszalin (Poland) as a case study. This city was selected due to its representative character as a medium-sized urban centre, both in terms of population and area, as well as its subregional functions within Poland’s settlement structure. Koszalin also exhibits a typical spatial and functional layout characteristic of many Polish cities. In light of growing challenges related to urbanisation, climate change, and the need to promote sustainable mobility, this study focuses on evaluating access to services such as education, healthcare, retail, public transport, and green spaces. The use of Geographic Information System (GIS) tools enabled the identification of spatial variations in service accessibility across the city. The results indicate that only 11% of Koszalin’s area fully meets the assumptions of the 15 min city concept, providing pedestrians with convenient access to all key services. At the same time, 92% of the city’s area offers access to at least one essential service within a 15 min walk. Excluding forested areas not intended for development increases these values to 14% and 100%, respectively. This highlights the extent to which methodological choices in assessing pedestrian accessibility can shape analytical outcomes and the interpretations drawn from them. Moreover, given this article’s objective and the adopted analytical procedure, the assumed pedestrian walking speed is the key parameter. Accordingly, a sensitivity analysis was conducted, comparing the reference scenario (4 km/h) with alternative variants (3 and 5 km/h). This approach demonstrates the extent to which a change in a single parameter affects estimates of urban-area coverage by access to individual services reachable on foot within 15 min. The analysis reveals limited integration of urban functions at the local scale, highlighting areas in need of planning intervention. This article proposes directions for action to improve pedestrian accessibility within the city. Full article
Show Figures

Figure 1

24 pages, 10841 KB  
Article
Optimizing Urban Green–Gray Stormwater Infrastructure Through Resilience–Cost Trade-Off: An Application in Fengxi New City, China
by Zhaowei Tang, Yanan Li, Mintong Hao, Sijun Huang, Xin Fu, Yuyang Mao and Yujiao Zhang
Land 2025, 14(11), 2241; https://doi.org/10.3390/land14112241 - 12 Nov 2025
Abstract
Accelerating urbanization and the intensifying pace of climate change have heightened the occurrence of urban pluvial flooding, threatening urban sustainability. As the preferred approach to urban stormwater management, coupled gray and green infrastructure (GI–GREI) integrates GREI’s rapid runoff conveyance with GI’s infiltration and [...] Read more.
Accelerating urbanization and the intensifying pace of climate change have heightened the occurrence of urban pluvial flooding, threatening urban sustainability. As the preferred approach to urban stormwater management, coupled gray and green infrastructure (GI–GREI) integrates GREI’s rapid runoff conveyance with GI’s infiltration and storage capacities, and their siting and scale can affect life-cycle cost (LCC) and urban drainage system (UDS) resilience. Focusing on Fengxi New City, China, this study develops a multi-objective optimization framework for the GI–GREI system that integrates GI suitability and pipe-network importance assessments and evaluates the Pareto set through entropy-weighted TOPSIS. Across multiple rainfall return periods, the study explores optimal trade-offs between UDS resilience and LCC. Compared with the scenario where all suitable areas are implemented with GI (maximum), the TOPSIS-optimal schemes reduce total life-cycle cost (LCC) by CNY 3.762–4.298 billion (53.36% on average), rebalance cost shares between GI (42.8–47.2%) and GREI (52.8–57.2%), and enhance UDS resilience during periods of higher rainfall return (P = 20 and 50). This study provides an integrated optimization framework and practical guidance for designing cost-effective and resilient GI–GREI systems, supporting infrastructure investment decisions and climate-adaptive urban development. Full article
Show Figures

Figure 1

25 pages, 4994 KB  
Article
Evaluation of the Impact of Sustainable Drainage Systems (SuDSs) on Stormwater Drainage Network Using Giswater: A Case Study in the Metropolitan Area of Barcelona, Spain
by Suelen Ferreira de Araújo, Rui Lança, Carlos Otero Silva, Xavier Torret, Fernando Miguel Granja-Martins and Helena Maria Fernandez
Water 2025, 17(22), 3231; https://doi.org/10.3390/w17223231 - 12 Nov 2025
Abstract
To mitigate the impacts of urbanisation and the attendant surface sealing, appropriate measures are required when adapting urban spaces and drainage infrastructure. In this context, the deployment of Sustainable Drainage Systems (SuDSs) has emerged as a viable alternative, delivering highly positive outcomes by [...] Read more.
To mitigate the impacts of urbanisation and the attendant surface sealing, appropriate measures are required when adapting urban spaces and drainage infrastructure. In this context, the deployment of Sustainable Drainage Systems (SuDSs) has emerged as a viable alternative, delivering highly positive outcomes by enhancing hydrological, hydraulic and landscape performance while restoring ecosystem services to the community. This study evaluates the relative performance of five SuDS typologies, green roofs, bioretention cells, infiltration trenches, permeable pavements, and rain barrels, implemented in a 64 ha subbasin of the metropolitan area of Barcelona, Spain. Using Giswater integrated with the SWMM, the stormwater drainage network was modelled under multiple rainfall scenarios. Performance was assessed using two qualitative indicators, the junction index (Ij) and the conduit index (Ic), which measure surcharge levels in manholes and pipes, respectively. The results show that SuDS implementation affecting 42.8% of the drained area can enhance network performance by 35.6% and reduce flooded junctions by 67%. Among the typologies, rain barrels and bioretention cells were the most effective. The study concludes that SuDS construction, supported by open-source tools and performance-based indicators, constitutes a replicable and technically robust strategy for mitigating the effects of surface sealing and increasing urban resilience. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

28 pages, 2202 KB  
Article
Spatiotemporal Patterns and Influencing Factors of the “Three Modernizations” Integrated Development in China’s Oil and Gas Industry
by Yi Wang and Shuo Fan
Sustainability 2025, 17(22), 10119; https://doi.org/10.3390/su172210119 - 12 Nov 2025
Abstract
Against the backdrop of China’s “carbon peaking” and “carbon neutrality” goals, as well as the advancement of new industrialization, the oil and gas industry is undergoing a critical transformation from resource-dependent growth toward innovation-driven, low-carbon, and high-quality development. The integrated advancement of high-end, [...] Read more.
Against the backdrop of China’s “carbon peaking” and “carbon neutrality” goals, as well as the advancement of new industrialization, the oil and gas industry is undergoing a critical transformation from resource-dependent growth toward innovation-driven, low-carbon, and high-quality development. The integrated advancement of high-end, intelligent, and green transformation—collectively referred to as the “Three Modernizations”—has become a vital pathway for promoting industrial upgrading and sustainable growth. Based on panel data from 30 Chinese provinces from 2009 to 2023, this study constructs a comprehensive evaluation index system covering 19 secondary indicators across three dimensions: high-end, intelligent, and green development. Using the entropy-weighted TOPSIS method, kernel density estimation, Dagum Gini coefficient decomposition, and σ–β convergence models, the study examines the spatiotemporal evolution, regional disparities, and convergence characteristics of HIG integration, and further explores its driving mechanisms through a two-way fixed effects model and mediation effect analysis. The results show that (1) the overall HIG integration index rose from 0.34 in 2009 to 0.46 in 2023, forming a spatial pattern of “high in the east, low in the west, stable in the center, and fluctuating in the northeast”; (2) regional disparities narrowed significantly, with the Gini coefficient declining from 0.093 to 0.058 and σ decreasing from 7.114 to 6.350; and (3) oil and gas resource endowment, policy support, technological innovation, and carbon emission constraints all positively promote integration, with regression coefficients of 0.152, 0.349, 0.263, and 0.118, respectively. Heterogeneity analysis reveals an increasing integration level from upstream to downstream, with eastern regions leading in innovation-driven development. Based on these findings, the study recommends strengthening policy and institutional support, accelerating technological innovation, improving intelligent infrastructure, deepening green and low-carbon transformation, promoting regional coordination, and establishing a long-term monitoring mechanism to advance the integrated high-quality development of China’s oil and gas industry. Overall, this study deepens the understanding of the internal logic and spatial dynamics of the “Three Modernizations” integration in China’s oil and gas industry, providing empirical evidence and policy insights for accelerating the construction of a low-carbon, secure, and efficient modern energy system. Full article
Show Figures

Figure 1

25 pages, 11356 KB  
Article
Impact of Landscape Elements on Public Satisfaction in Beijing’s Urban Green Spaces Using Social Media and Expectation Confirmation Theory
by Ruiying Yang, Wenxin Kang, Yiwei Lu, Jiaqi Liu, Boya Wang and Zhicheng Liu
Sustainability 2025, 17(22), 10107; https://doi.org/10.3390/su172210107 - 12 Nov 2025
Abstract
A core challenge in urban green space (UGS) management lies in precisely identifying public demand heterogeneity toward landscape elements. Grounded in Expectation Confirmation Theory (ECT), this study aims to systematically identify the key landscape elements shaping public satisfaction and elucidate their driving mechanisms [...] Read more.
A core challenge in urban green space (UGS) management lies in precisely identifying public demand heterogeneity toward landscape elements. Grounded in Expectation Confirmation Theory (ECT), this study aims to systematically identify the key landscape elements shaping public satisfaction and elucidate their driving mechanisms to inform UGS planning. Using 107 UGS in central Beijing as case studies, this study first retrieved 712,969 social media data (SMD) from multiple online platforms. A landscape element lexicon derived from these data was then integrated with the Bidirectional Encoder Representations from Transformers (BERT) model to assess public attention and satisfaction toward the natural, cultural, and artificial attributes of UGS, achieving an accuracy of 84.4%. Finally, spatial variations and the effects of different landscape elements on public satisfaction were analyzed using GIS-based visualization, K-means clustering, and multiple linear regression. Key findings reveal the following: (1) satisfaction follows a “core-periphery” gradient, peaking in heritage-rich City Wall Parks (>0.63) and plunging in green belts due to imbalanced element configurations (~0.04); (2) naturally dominant green spaces contribute most to satisfaction, while a nonlinear relationship exists between element dominance and satisfaction: strong features enhance perception, balanced patterns mask issues; (3) regression analysis confirms natural elements (vegetation β = 0.280, water β = 0.173) as core satisfaction drivers, whereas artificial facilities (e.g., service infrastructure β = 0.112, p > 0.05) exhibit a high frequency but low satisfaction paradox. These insights culminate in a practical implementation framework for policymakers: first, establish a data-driven monitoring system to flag high-frequency, low-satisfaction facilities; second, prioritize budgeting for enhancing natural elements and contextualizing cultural elements; and finally, implement site-specific optimization based on primary UGS functions to counteract green space homogenization in high-density cities. Full article
Show Figures

Figure 1

38 pages, 5637 KB  
Article
Perceptions and Use of Urban Green Spaces, Leading Pathways to Urban Resilience
by Angeliki T. Paraskevopoulou, Eleni Mougiakou and Chrysovalantis Malesios
Sustainability 2025, 17(22), 10093; https://doi.org/10.3390/su172210093 - 12 Nov 2025
Abstract
This study examined residents’ perceptions, preferences, and experiences of urban green spaces in four regional units of the Region of Attica—West Athens, Central Athens, South Athens, and Piraeus—demonstrating how demographic diversity, urban morphology, and external stressors—such as extreme heat and the COVID-19 pandemic—shape [...] Read more.
This study examined residents’ perceptions, preferences, and experiences of urban green spaces in four regional units of the Region of Attica—West Athens, Central Athens, South Athens, and Piraeus—demonstrating how demographic diversity, urban morphology, and external stressors—such as extreme heat and the COVID-19 pandemic—shape green space use. The results show that, while green spaces are essential for health, well-being, and social cohesion, their distribution is uneven, which limits their availability (27.3%) and access (21.8%) to residents. Main concerns expressed by residents when visiting green spaces and open green spaces are poor maintenance (50.7%), lack of security (36.7%), and socially irresponsible behaviour (e.g., littering, vandalism) (32.8%). Extreme heat emerged as a major constraint on outdoor activities, particularly affecting women and the elderly. Household-associated outdoor areas (balconies, courtyards, and verandas) were highly valued (59.8%), highlighting the role of private green spaces in dense urban environments. Major metropolitan parks were the most visited and valued by residents for providing contact with nature (23.0%) and benefiting from stress relief (54.0%) while practicing their favourite activity, though their use was limited during heatwaves (30.3% of the residents do not visit). Most activities during and after the COVID-19 pandemic were reported unchanged, though reported increases in walking (34.3%) and park visits (28.3%) demonstrate the importance of green spaces in fostering urban resilience. However, the reported lack of engagement in gardening (48.0%), indoor plant care (41.2%) and bird/wildlife watching (58.3%) suggest missed opportunities for ecological and cultural enrichment. Overall, the study underscores the urgent need for integrated planning strategies to improve accessibility, maintenance, and equity in green space provision. By aligning with the sustainable development goals, the four regional units of the Region of Attica can transform its green infrastructure into an inclusive, resilient system that supports public health, social inclusion, and climate adaptation. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

34 pages, 489 KB  
Article
Green-Certified Healthcare Facilities from a Global Perspective: Advanced and Developing Countries
by Recep Ahmed Buyukcinar, Ruveyda Komurlu and David Arditi
Sustainability 2025, 17(22), 9974; https://doi.org/10.3390/su17229974 - 7 Nov 2025
Viewed by 312
Abstract
This study compares certification systems for green healthcare facilities implemented worldwide. Healthcare facilities are complex structures designed to provide uninterrupted service while involving substantial resources, high energy consumption, and heavy human and material traffic. The COVID-19 pandemic emphasized the importance of designs that [...] Read more.
This study compares certification systems for green healthcare facilities implemented worldwide. Healthcare facilities are complex structures designed to provide uninterrupted service while involving substantial resources, high energy consumption, and heavy human and material traffic. The COVID-19 pandemic emphasized the importance of designs that ensure hygiene, reduce environmental impact, and improve energy efficiency, making green certification systems for healthcare facilities increasingly critical. Eight certification systems currently in use across eight countries were examined, four from advanced economies (LEED in the U.S., BREEAM in the U.K., Green Star in Australia, and CASBEE in Japan) and four from developing economies (YeS-TR in Türkiye, IGBC in India, GBI in Malaysia, and GREENSHIP in Indonesia). Country selection considered regional diversity, similarities in environmental policies, and the potential for healthcare infrastructure development. A literature-based comparative analysis was conducted, and seven key categories were identified for evaluating sustainability: sustainable land and transport, water and waste management, energy efficiency, material and life cycle impact, indoor environmental quality, project management process, and innovation. The comparison revealed considerable overlap among the systems but also highlighted shortcomings in addressing healthcare-specific needs. This paper contributes to the advancement of sustainability assessment in the healthcare sector by highlighting the need for certification schemes specifically designed for medical facilities. The findings emphasize the necessity of developing healthcare-tailored frameworks that not only address environmental performance but also capture the unique operational, functional, and clinical dynamics of this sector. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

19 pages, 502 KB  
Article
The Effect of the Social Credit System on China’s Green Economic Development: Evidence from a Quasi-Natural Experiment
by Wanteng Zheng, Tianbao Yin and Jiaqi Gao
Sustainability 2025, 17(22), 9958; https://doi.org/10.3390/su17229958 - 7 Nov 2025
Viewed by 285
Abstract
Improving the credit system within a market economy is key to advancing sustainable economic development in China. Using panel data from 280 cities between 2009 and 2022, this study combines a quasi-natural experiment of China’s social credit system (SCS) reform pilot program and [...] Read more.
Improving the credit system within a market economy is key to advancing sustainable economic development in China. Using panel data from 280 cities between 2009 and 2022, this study combines a quasi-natural experiment of China’s social credit system (SCS) reform pilot program and applies a difference-in-differences (DID) model to analyze the impact of SCS on green economic development. The results indicate the following: First, the SCS significantly contributes to China’s green economic development, and this conclusion remains valid under a variety of robustness tests. Second, the positive impact of the SCS is more pronounced in non-coastal, resource-based, and low-environmental-regulation regions. Third, the SCS drives the development of China’s green economy through three pathways: reducing transaction costs, optimizing the market competition environment, and stimulating green innovation. Accordingly, it is imperative to strengthen the foundational infrastructure of the SCS, implement differentiated governance frameworks, and thereby enhance the sustainable development of China’s green economy. Full article
Show Figures

Figure 1

20 pages, 3525 KB  
Article
Automated Assessment of Green Infrastructure Using E-nose, Integrated Visible-Thermal Cameras and Computer Vision Algorithms
by Areej Shahid, Sigfredo Fuentes, Claudia Gonzalez Viejo, Bryce Widdicombe and Ranjith R. Unnithan
Sensors 2025, 25(22), 6812; https://doi.org/10.3390/s25226812 - 7 Nov 2025
Viewed by 323
Abstract
The parameterization of vegetation indices (VIs) is crucial for sustainable irrigation and horticulture management, specifically for urban green infrastructure (GI) management. However, the constraints of roadside traffic, motor and industrially related pollution, and potential public vandalism compromise the efficacy of conventional in situ [...] Read more.
The parameterization of vegetation indices (VIs) is crucial for sustainable irrigation and horticulture management, specifically for urban green infrastructure (GI) management. However, the constraints of roadside traffic, motor and industrially related pollution, and potential public vandalism compromise the efficacy of conventional in situ monitoring systems. The shortcomings of prevalent satellites, UAVs, and manual/automated sensor measurements and monitoring systems have already been reviewed. This research proposes a novel urban GI monitoring system based on an integration of gas exchange and various VIs obtained from computer vision algorithms applied to data acquired from three novel sources: (1) Integrated gas sensor data using nine different volatile organic compounds using an electronic nose (E-nose), designed on a PCB for stable performance under variable environmental conditions; (2) Plant growth parameters including effective leaf area index (LAIe), infrared index (Ig), canopy temperature depression (CTD) and tree water stress index (TWSI); (3) Meteorological data for all measurement campaigns based on wind velocity, air temperature, rainfall, air pressure, and air humidity conditions. To account for spatial and temporal data acquisition variability, the integrated cameras and the E-nose were mounted on a vehicle roof to acquire information from 172 Elm trees planted across the Royal Parade, Melbourne. Results showed strong correlations among air contaminants, ambient conditions, and plant growth status, which can be modelled and optimized for better smart irrigation and environmental monitoring based on real-time data. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

36 pages, 3991 KB  
Article
Neighborhood Decline and Green Coverage Change in Los Angeles Suburbs: A Social-Ecological Perspective
by Farnaz Kamyab and Luis Enrique Ramos-Santiago
Sustainability 2025, 17(21), 9850; https://doi.org/10.3390/su17219850 - 4 Nov 2025
Viewed by 318
Abstract
Suburban green areas provide significant health, economic, social, and ecological benefits. They are a key element in advancing sustainability at local and regional scales. However, they become threatened in the presence of other competing land uses, neighborhood-change processes, and/or weak built-environment governance. Consequently, [...] Read more.
Suburban green areas provide significant health, economic, social, and ecological benefits. They are a key element in advancing sustainability at local and regional scales. However, they become threatened in the presence of other competing land uses, neighborhood-change processes, and/or weak built-environment governance. Consequently, suburban green area loss and/or degradation is problematic. In this study, we tested whether socioeconomic decline is significantly correlated with loss or degradation of suburban green areas at a neighborhood scale. This phenomenon has been previously studied with a limited sample and methodology and needs further empirical documentation and more nuanced modeling and testing. We employed Social-Ecological System theory in scoping and framing this multidisciplinary study and informing multilevel panel-data regressions. This approach allowed us to identify key factors and lagged effects behind green area degradation in outer-ring suburbs of Los Angeles. In addition to internal socioeconomic factors, random components associated with ecological zonal distribution and county-level clustering registered significant variability in their influence on greater likelihood of green coverage loss and degradation in declining outer-ring suburbs. Findings from this study can inform intelligent spatial planning, management, and monitoring of suburban areas, and showcase the value of a social-ecological system lens in suburban green infrastructure research, as well as contribute to SES theoretical development and research methodology at the neighborhood scale. Full article
(This article belongs to the Special Issue Urban Planning and Sustainable Land Use—2nd Edition)
Show Figures

Figure 1

25 pages, 7761 KB  
Review
Urban Forests and Green Environments for Sustainable Cities: Knowledge Landscape, Research Trends, and Future Directions
by Luling Qu, Haisong Wang and Jun Xia
Forests 2025, 16(11), 1675; https://doi.org/10.3390/f16111675 - 3 Nov 2025
Viewed by 927
Abstract
With the intensification of global urbanization and climate change challenges, urban green spaces and urban forests are playing an increasingly critical role in supporting sustainable urban development. Based on the Web of Science Core Collection, this study employed bibliometric analysis and visualization methods [...] Read more.
With the intensification of global urbanization and climate change challenges, urban green spaces and urban forests are playing an increasingly critical role in supporting sustainable urban development. Based on the Web of Science Core Collection, this study employed bibliometric analysis and visualization methods (VOSviewer 1.6.19 and Bibliometrix v5.0.1 (R package)) to systematically map the global knowledge landscape of urban green space and urban forest research from 2000 to 2025, identifying key thematic clusters and research fronts. The results show a shift in research focus from traditional green infrastructure and ecosystem service assessment to an integrated approach emphasizing multifunctionality, climate adaptation, public health, and governance innovation. Furthermore, research efforts are concentrated in rapidly urbanizing regions, and global spatial distribution remains a significant issue. Based on this, this paper proposes a strategic research agenda to promote the development of this field, including four key directions: (1) embedding social equity and people-oriented values into green space planning and management; (2) leveraging digital technologies and artificial intelligence to strengthen urban ecological governance; (3) promoting the transition of green infrastructure from fragmented to systematic ecological networks; and (4) deepening the role of urban green space in climate adaptation and sustainable urban transformation. By systematically combing through the knowledge system and governance logic of urban forests and greening, this article aims to reveal the key role of urban ecosystems in addressing climate change and promoting social well-being, and provide operational scientific basis and policy inspiration for the sustainable transformation of global cities. Full article
(This article belongs to the Special Issue Urban Forests and Greening for Sustainable Cities)
Show Figures

Figure 1

19 pages, 1791 KB  
Article
Cost-Optimal Design of a Stand-Alone PV-Driven Hydrogen Production and Refueling Station Using Genetic Algorithms
by Domenico Vizza, Roberta Caponi, Umberto Di Matteo and Enrico Bocci
Hydrogen 2025, 6(4), 98; https://doi.org/10.3390/hydrogen6040098 - 3 Nov 2025
Viewed by 469
Abstract
Driven by the growing availability of funding opportunities, electrolyzers have become increasingly accessible, unlocking significant potential for large-scale green hydrogen production. The goal of this investigation is to develop a techno-economic optimization framework for the design of a stand-alone photovoltaic (PV)-driven hydrogen production [...] Read more.
Driven by the growing availability of funding opportunities, electrolyzers have become increasingly accessible, unlocking significant potential for large-scale green hydrogen production. The goal of this investigation is to develop a techno-economic optimization framework for the design of a stand-alone photovoltaic (PV)-driven hydrogen production and refueling station, with the explicit objective of minimizing the levelized cost of hydrogen (LCOH). The system integrates PV generation, a proton-exchange-membrane electrolyzer, battery energy storage, compression, and high-pressure hydrogen storage to meet the daily demand of a fleet of fuel cell buses. Results show that the optimal configuration achieves an LCOH of 11 €/kg when only fleet demand is considered, whereas if surplus hydrogen sales are accounted for, the LCOH reduces to 7.98 €/kg. The analysis highlights that more than 75% of total investment costs are attributable to PV and electrolysis, underscoring the importance of capital incentives. Financial modeling indicates that a subsidy of about 58.4% of initial CAPEX is required to ensure a 10% internal rate of return under EU market conditions. The proposed methodology provides a reproducible decision-support tool for optimizing off-grid hydrogen refueling infrastructure and assessing policy instruments to accelerate hydrogen adoption in heavy-duty transport. Full article
Show Figures

Figure 1

37 pages, 16191 KB  
Article
Multi-Scale Resilience Assessment and Zonal Strategies for Storm Surge Adaptation in China’s Coastal Cities
by Shibai Cui, Li Zhu, Jiaxiang Wang and Steivan Defilla
Land 2025, 14(11), 2178; https://doi.org/10.3390/land14112178 - 1 Nov 2025
Viewed by 333
Abstract
Storm surges are the leading marine disaster in China’s coastal cities, with their impacts exacerbated by climate change and rapid urbanization. Despite their significance, most existing studies focus on a single scale, neglecting the complex, multi-scale nature of urban resilience and the interrelated [...] Read more.
Storm surges are the leading marine disaster in China’s coastal cities, with their impacts exacerbated by climate change and rapid urbanization. Despite their significance, most existing studies focus on a single scale, neglecting the complex, multi-scale nature of urban resilience and the interrelated governance strategies needed to address storm surge risks. This study introduces a dual-scale resilience indicator system—macro (prefecture-level cities) and micro (coastal buffer grids)—within the “exposure–sensitivity–adaptation” framework, utilizing multi-source data for a comprehensive assessment. This research also explores the impact mechanisms of storm surges on urban areas and proposes zonal governance strategies. Findings indicate that resilience varies spatially in Chinese coastal cities, with a pattern of “high resilience in the north, low resilience in the south, and a mix in the center.” At the macro scale, key limitations include policy implementation, infrastructure capacity, and social vulnerability. At the micro scale, factors such as inadequate green space, increased impervious surfaces, limited shelter access, and low utility network density lead to the emergence of “low-resilience units” in ecologically sensitive and mixed coastal zones. The study further reveals the synergies between resilience drivers across scales, emphasizing the need for integrated cross-scale governance. This research advances resilience theory by expanding spatial scales and refining indicator systems, while proposing a zonal governance framework tailored to resilience gradation. It offers a quantitative basis and practical strategies for fostering “safe cities” and advancing “adaptive spatial planning” in the context of sustainable development. Full article
Show Figures

Figure 1

16 pages, 3690 KB  
Proceeding Paper
Mapping Green Hydrogen Research in North Africa: A Bibliometric Approach for Strategic Foresight
by Hicham Boutracheh, Mouhssine Yassine, Rachid El Ansari and Aniss Moumen
Eng. Proc. 2025, 112(1), 59; https://doi.org/10.3390/engproc2025112059 - 31 Oct 2025
Viewed by 235
Abstract
This bibliometric analysis aims to map the evolution, disciplinary structure, and collaboration dynamics of green hydrogen (GH) research in North Africa from 2019 to 2025. Drawing on a corpus of ~39,000 global publications, indexed in Scopus and analysed through SciVal, we isolate and [...] Read more.
This bibliometric analysis aims to map the evolution, disciplinary structure, and collaboration dynamics of green hydrogen (GH) research in North Africa from 2019 to 2025. Drawing on a corpus of ~39,000 global publications, indexed in Scopus and analysed through SciVal, we isolate and examine the contributions of Egypt, Morocco, Algeria, Tunisia, and Libya. Egypt leads the region with 842 publications and a field-weighted citation impact of 2.42, followed by Morocco (232 Pubs., FWCI 2.30) and Algeria (184 Pubs., FWCI 1.65). Notably, Tunisia exhibits the highest growth factor (41 times since 2019), while Libya remains marginal with only 18 publications in the GH field. The region is well represented in Energy and Environmental fields but is underrepresented in trendy areas such as Materials and Chemical Engineering, highlighting critical gaps in consistency, sophistication, and technical infrastructure. While international collaboration exceeds 69% for most countries, it rarely translates into a high impact compared to the global average. Conversely, the limited industrial collaboration shows the highest citation impact (e.g., Tunisia: 68 citations/publications). A thematic analysis reveals shared strengths in electrolytic hydrogen production and renewable energy integration, with Egypt showing diversification into microalgae and nanocomposites and Morocco excelling in techno-economic assessments and ammonia-based systems. By revealing patterns in research quality, collaboration, and thematic positioning, this study offers evidence-based insights to inform national science strategies, enhance regional cooperation, and position North Africa more strategically in the emerging global green hydrogen economy. Full article
Show Figures

Figure 1

Back to TopTop