Optimizing Urban Green–Gray Stormwater Infrastructure Through Resilience–Cost Trade-Off: An Application in Fengxi New City, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Framework
2.2. Study Area and Data Collection
2.3. Suitability Analysis of GI
2.4. SWMM Model Configuration
2.4.1. Design Storms
2.4.2. SWMM Model Calibration and Parameter Determination
2.5. Drainage Pipe Network Importance Assessment
2.6. GI–GREI Optimization via the NSGA-II Algorithm
2.6.1. Development of the NSGA-II Model
2.6.2. Objective Functions
- (1)
- Life-Cycle Cost (LCC)
- (2)
- Urban Drainage System Resilience
2.6.3. Decision Variables
2.6.4. Constraints
2.6.5. Formulation of the Multi-Objective Optimization Model
2.7. Entropy-Weighted TOPSIS Comprehensive Evaluation
- (1)
- Weighted normalized decision matrix
- (2)
- Positive/negative ideal solutions
- (3)
- Separation measures (Euclidean distance)
- (4)
- Closeness coefficient and rankingwhere a larger indicates a scheme closer to the PIS and farther from the NIS. Rank the schemes in descending order of to obtain the TOPSIS preference ordering for return period .
3. Results
3.1. GI Suitability Evaluation Results
3.2. Pipe Network Importance Evaluation
3.3. Multi-Objective Optimization Results
3.4. Comprehensive Evaluation of the Pareto Set
4. Discussion
4.1. GI Suitability and Drainage Pipe Network Importance Analysis
4.2. Multi-Objective Optimization
4.3. Comprehensive Evaluation by TOPSIS
Recommendations for the Green and Gray Infrastructure Construction Practice
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hathaway, J.M.; Bean, E.Z.; Bernagros, J.T.; Christian, D.P.; Davani, H.; Ebrahimian, A.; Fairbaugh, C.M.; Gulliver, J.S.; McPhillips, L.E.; Palino, G.; et al. A Synthesis of Climate Change Impacts on Stormwater Management Systems: Designing for Resiliency and Future Challenges. J. Sustain. Water Built Environ. 2024, 10, 04023014. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, Z.; Wang, M.; Gan, W.; Zhao, Z.; Wu, Z. Impacts of Building Configurations on Urban Stormwater Management at a Block Scale Using XGBoost. Sustain. Cities Soc. 2022, 87, 104235. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, J.; Li, Y.; Gao, J.; Xia, J. Influence of Rainfall Pattern and Infiltration Capacity on the Spatial and Temporal Inundation Characteristics of Urban Waterlogging. Environ. Sci. Pollut. Res. 2024, 31, 12387–12405. [Google Scholar] [CrossRef]
- Yuan, F.; Xu, Y.; Li, Q.; Mostafavi, A. Spatio-Temporal Graph Convolutional Networks for Road Network Inundation Status Prediction during Urban Flooding. Comput. Environ. Urban Syst. 2022, 97, 101870. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, D.; Wang, M.; Liu, Z.; Gan, W.; Zhao, Z.; Xue, S.; Müller, B.; Zhou, M.; Ni, X. Risk-Driven Composition Decoupling Analysis for Urban Flooding Prediction in High-Density Urban Areas Using Bayesian-Optimized LightGBM. J. Clean. Prod. 2024, 457, 142286. [Google Scholar] [CrossRef]
- Nika, C.E.; Gusmaroli, L.; Ghafourian, M.; Atanasova, N.; Buttiglieri, G.; Katsou, E. Nature-Based Solutions as Enablers of Circularity in Water Systems: A Review on Assessment Methodologies, Tools and Indicators. Water Res. 2020, 183, 115988. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.; Wang, J.; Xu, X.; Shao, Y.; Zhang, Q.; Liu, Y.; Qi, L.; Wang, H. Current Status, Existent Problems, and Coping Strategy of Urban Drainage Pipeline Network in China. Environ. Sci. Pollut. Res. 2021, 28, 43035–43049. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, J.; Mei, C.; Wang, H.; Lu, J. A Multi-Objective Optimization Model for Synergistic Effect Analysis of Integrated Green-Gray-Blue Drainage System in Urban Inundation Control. J. Hydrol. 2022, 609, 127725. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, S.; Wang, M.; Zhang, D. Cost-Benefit Analysis of Low-Impact Development at Hectare Scale for Urban Stormwater Source Control in Response to Anticipated Climatic Change. J. Environ. Manag. 2020, 264, 110483. [Google Scholar] [CrossRef]
- Coletta, V.R.; Pagano, A.; Zimmermann, N.; Davies, M.; Butler, A.; Fratino, U.; Giordano, R.; Pluchinotta, I. Socio-Hydrological Modelling Using Participatory System Dynamics Modelling for Enhancing Urban Flood Resilience through Blue-Green Infrastructure. J. Hydrol. 2024, 636, 131248. [Google Scholar] [CrossRef] [PubMed]
- Ambily, P.; Chithra, N.R.; Mohammed Firoz, C. A Framework for Urban Pluvial Flood Resilient Spatial Planning through Blue-Green Infrastructure. Int. J. Disaster Risk Reduct. 2024, 103, 104342. [Google Scholar] [CrossRef]
- Yin, D.; Zhang, X.; Cheng, Y.; Jia, H.; Jia, Q.; Yang, Y. Can Flood Resilience of Green-Grey-Blue System Cope with Future Uncertainty? Water Res. 2023, 242, 120315. [Google Scholar] [CrossRef]
- McFarland, A.R.; Larsen, L.; Yeshitela, K.; Engida, A.N.; Love, N.G. Guide for Using Green Infrastructure in Urban Environments for Stormwater Management. Environ. Sci. Water Res. Technol. 2019, 5, 643–659. [Google Scholar] [CrossRef]
- Ying, J.; Zhang, X.; Zhang, Y.; Bilan, S. Green Infrastructure: Systematic Literature Review. Econ. Res.-Ekon. Istraživanja 2022, 35, 343–366. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, T.; Li, J.; Feng, P.; Miao, Y. Optimal Designs of LID Based on LID Experiments and SWMM for a Small-Scale Community in Tianjin, North China. J. Environ. Manag. 2023, 334, 117442. [Google Scholar] [CrossRef]
- Wang, M.; Chen, F.; Zhang, D.; Chen, Z.; Su, J.; Zhou, S.; Li, J.; Chen, J.; Li, J.; Tan, S.K. Data-Driven Approach to Spatiotemporal Dynamic Risk Assessment of Urban Flooding Based on Shared Socio-Economic Pathways. Ecol. Indic. 2023, 154, 110764. [Google Scholar] [CrossRef]
- Xu, C.; Tang, T.; Jia, H.; Xu, M.; Xu, T.; Liu, Z.; Long, Y.; Zhang, R. Benefits of Coupled Green and Grey Infrastructure Systems: Evidence Based on Analytic Hierarchy Process and Life Cycle Costing. Resour. Conserv. Recycl. 2019, 151, 104478. [Google Scholar] [CrossRef]
- Lu, P.; Sun, Y.; Steffen, N. Scenario-Based Performance Assessment of Green-Grey-Blue Infrastructure for Flood-Resilient Spatial Solution: A Case Study of Pazhou, Guangzhou, Greater Bay Area. Landsc. Urban Plan. 2023, 238, 104804. [Google Scholar] [CrossRef]
- Kim, J.; Kang, J. Development of Hazard Capacity Factor Design Model for Net-Zero: Evaluation of the Flood Adaptation Effects Considering Green-Gray Infrastructure Interaction. Sustain. Cities Soc. 2023, 96, 104625. [Google Scholar] [CrossRef]
- Liu, Z.; Han, Z.; Shi, X.; Liao, X.; Leng, L.; Jia, H. Multi-Objective Optimization Methodology for Green-Gray Coupled Runoff Control Infrastructure Adapting Spatial Heterogeneity of Natural Endowment and Urban Development. Water Res. 2023, 233, 119759. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lai, C.; Zhang, Y.; Chen, B.; Wang, M. Multi-Objective Optimisation of Integrated Grey-Green Infrastructure in Response to Climate Change from a Life Cycle Perspective. J. Clean. Prod. 2025, 498, 145162. [Google Scholar] [CrossRef]
- Tansar, H.; Duan, H.-F.; Mark, O. A Multi-Objective Decision-Making Framework for Implementing Green-Grey Infrastructures to Enhance Urban Drainage System Resilience. J. Hydrol. 2023, 620, 129381. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Stewart-Koster, B.; Green, P.A.; Boone, E.L.; Flörke, M.; Fischer, G.; Wiberg, D.A.; Bunn, S.E.; Bhaduri, A.; McIntyre, P.B. A Green-Gray Path to Global Water Security and Sustainable Infrastructure. Glob. Environ. Change 2021, 70, 102344. [Google Scholar] [CrossRef]
- Mao, Y.; Li, Y.; Bai, X.; Yang, X.; Han, Y.; Fu, X. Scenario-Based Green Infrastructure Installations for Building Urban Stormwater Resilience—A Case Study of Fengxi New City, China. Sustainability 2024, 16, 3990. [Google Scholar] [CrossRef]
- Zhou, S.; Diao, H.; Wang, J.; Jia, W.; Xu, H.; Xu, X.; Wang, M.; Sun, C.; Qiao, R.; Wu, Z. Multi-Stage Optimization Framework for Synergetic Grey-Green Infrastructure in Response to Long-Term Climate Variability Based on Shared Socio-Economic Pathways. Water Res. 2025, 274, 123091. [Google Scholar] [CrossRef]
- Ye, C.; Gao, J.; Nachabe, M.; Charkhgard, H.; Zhang, Y.; Zhang, Q. Optimization of Green and Grey Infrastructure for Performance Enhancement of Urban Drainage System under Future Conditions. J. Environ. Manag. 2025, 376, 124518. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Liu, Z.; Xu, C.; Chen, Z.; Zhang, X.; Xia, J.; Yu, S.L. Adaptive Pressure-Driven Multi-Criteria Spatial Decision-Making for a Targeted Placement of Green and Grey Runoff Control Infrastructures. Water Res. 2022, 212, 118126. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Li, J.; Zeng, J.; Huang, G.; Chen, W. Application of a Time-Dependent Performance-Based Resilience Metric to Establish the Potential of Coupled Green-Grey Infrastructure in Urban Flood Management. Sustain. Cities Soc. 2024, 112, 105608. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, C.; Xu, T.; Jia, H.; Zhang, X.; Chen, Z.; Yin, D. Integrating Socioecological Indexes in Multiobjective Intelligent Optimization of Green-Grey Coupled Infrastructures. Resour. Conserv. Recycl. 2021, 174, 105801. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, H.; Zhang, D.; Kong, F.; Xu, J.; Wang, M.; Yuan, H. Enhancing Resilience of Green-Grey Infrastructure by Integrating Two Redundancy Strategies into a Multi-Objective Optimization and Service Period Assessment Framework. Sustain. Cities Soc. 2025, 128, 106474. [Google Scholar] [CrossRef]
- Chen, W.; Wang, W.; Mei, C.; Chen, Y.; Zhang, P.; Cong, P. Multi-Objective Decision-Making for Green Infrastructure Planning: Impacts of Rainfall Characteristics and Infrastructure Configuration. J. Hydrol. 2024, 628, 130572. [Google Scholar] [CrossRef]
- Zhou, S.; Jia, W.; Wang, M.; Liu, Z.; Wang, Y.; Wu, Z. Synergistic Assessment of Multi-Scenario Urban Waterlogging through Data-Driven Decoupling Analysis in High-Density Urban Areas: A Case Study in Shenzhen, China. J. Environ. Manag. 2024, 369, 122330. [Google Scholar] [CrossRef] [PubMed]
- Bakhshipour, A.E.; Bakhshizadeh, M.; Dittmer, U.; Haghighi, A.; Nowak, W. Hanging Gardens Algorithm to Generate Decentralized Layouts for the Optimization of Urban Drainage Systems. J. Water Resour. Plan. Manag. 2019, 145, 04019034. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, C.; Liu, Z.; Yin, D.; Jia, H.; Guan, Y. Spatial Layout Optimization of Green Infrastructure Based on Life-Cycle Multi-Objective Optimization Algorithm and SWMM Model. Resour. Conserv. Recycl. 2023, 191, 106906. [Google Scholar] [CrossRef]
- Guo, K.; Guan, M.; Yu, D. Urban Surface Water Flood Modelling—A Comprehensive Review of Current Models and Future Challenges. Hydrol. Earth Syst. Sci. 2021, 25, 2843–2860. [Google Scholar] [CrossRef]
- Minh Hai, D. Optimal Planning of Low-Impact Development for TSS Control in the Upper Area of the Cau Bay River Basin, Vietnam. Water 2020, 12, 533. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Zhang, D.; Lu, Z.; Bakhshipour, A.E.; Liu, M.; Jiang, Z.; Li, J.; Tan, S.K. Multi-Stage Planning of LID-GREI Urban Drainage Systems in Response to Land-Use Changes. Sci. Total Environ. 2023, 859, 160214. [Google Scholar] [CrossRef]
- Dong, X.; Yi, W.; Yuan, P.; Song, Y. Optimization and Trade-off Framework for Coupled Green-Grey Infrastructure Considering Environmental Performance. J. Environ. Manag. 2023, 329, 117041. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, H. Low Impact Development Planning through a Comprehensive Optimization Framework: Current Gaps and Future Perspectives. Resour. Conserv. Recycl. 2023, 190, 106861. [Google Scholar] [CrossRef]
- Zhang, Y.; Yin, H.; Liu, M.; Kong, F.; Xu, J. Evaluating the Effectiveness of Environmental Sustainability Indicators in Optimizing Green-Grey Infrastructure for Sustainable Stormwater Management. Water Res. 2025, 272, 122932. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, Y.; Bakhshipour, A.E.; Liu, M.; Rao, Q.; Lu, Z. Designing Coupled LID–GREI Urban Drainage Systems: Resilience Assessment and Decision-Making Framework. Sci. Total Environ. 2022, 834, 155267. [Google Scholar] [CrossRef]
- Houle, J.J.; Roseen, R.M.; Ballestero, T.P.; Puls, T.A.; Sherrard, J. Comparison of Maintenance Cost, Labor Demands, and System Performance for LID and Conventional Stormwater Management. J. Environ. Eng. 2013, 139, 932–938. [Google Scholar] [CrossRef]
- MortezaNia, S.; Othman, F. Cost Analysis of Pipes for Application in Sewage Systems. Mater. Des. 2012, 33, 356–361. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Liu, J.; Wang, Y.; Jia, H.; Tao, S. A Flood Resilience Assessment Method of Green-Grey-Blue Coupled Urban Drainage System Considering Backwater Effects. Ecol. Indic. 2025, 170, 113032. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, W.; Zhang, Y.; Wang, F.; Sun, S. Determining the Optimal Degradation Rate of Biodegradable Films in a Maize Farmland Based on the EWM-TOPSIS Model. Agric. Water Manag. 2025, 309, 109359. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, Y.; Sun, S.; Liu, T.; Shan, Y. A Comprehensive Survey on NSGA-II for Multi-Objective Optimization and Applications. Artif. Intell. Rev. 2023, 56, 15217–15270. [Google Scholar] [CrossRef]
- Liu, Y.; Xiong, Z.; Wang, M.; Zhang, M.; Adnan, R.M.; Fu, W.; Sun, C.; Tan, S.K. Decentralized Coupled Grey–Green Infrastructure for Resilient and Cost-Effective Stormwater Management in a Historic Chinese District. Water 2025, 17, 2325. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Zhang, D.; Qi, J.; Fu, W.; Zhang, Y.; Rao, Q.; Bakhshipour, A.E.; Tan, S.K. Assessing and Optimizing the Hydrological Performance of Grey-Green Infrastructure Systems in Response to Climate Change and Non-Stationary Time Series. Water Res. 2023, 232, 119720. [Google Scholar] [CrossRef]
- Apud, A.; Faggian, R.; Sposito, V.; Martino, D. Suitability Analysis and Planning of Green Infrastructure in Montevideo, Uruguay. Sustainability 2020, 12, 9683. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, J.; Xiong, Z.; Zhuang, J.; Wang, M. Integrating Grey–Green Infrastructure in Urban Stormwater Management: A Multi–Objective Optimization Framework for Enhanced Resilience and Cost Efficiency. Appl. Sci. 2025, 15, 3852. [Google Scholar] [CrossRef]
- Barati, H.; Yazici, A.; Almotahari, A. A Methodology for Ranking of Critical Links in Transportation Networks Based on Criticality Score Distributions. Reliab. Eng. Syst. Saf. 2024, 251, 110332. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Wang, H.; Mei, C. Approaches to Multi-Objective Optimization and Assessment of Green Infrastructure and Their Multi-Functional Effectiveness: A Review. Water 2020, 12, 2714. [Google Scholar] [CrossRef]
- Li, E.; Fu, X.; Song, J.; Jing, L.; Zhang, B.; Wang, X. Developing a Decision Support System for Regulating Urban Runoff by Centralized Blue-Green Infrastructure. Environ. Impact Assess. Rev. 2026, 117, 108190. [Google Scholar] [CrossRef]
- Yao, Y.; Li, J.; Lv, P.; Li, N.; Jiang, C. Optimizing the Layout of Coupled Grey-Green Stormwater Infrastructure with Multi-Objective Oriented Decision Making. J. Clean. Prod. 2022, 367, 133061. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, Z.; Zhang, D.; Zhang, Y.; Liu, M.; Rao, Q.; Li, J.; Keat Tan, S. Optimization of Integrating Life Cycle Cost and Systematic Resilience for Grey-Green Stormwater Infrastructure. Sustain. Cities Soc. 2023, 90, 104379. [Google Scholar] [CrossRef]
- Sun, C.; Rao, Q.; Xiong, Z.; Liu, M.; Liu, Y.; Fan, C.; Li, J.; Keat Tan, S.; Wang, M.; Zhang, D. Optimized Resilience Coupled with Cost-Effectiveness for Grey and Green Infrastructure: A Case Study in a Historical and Cultural Area, Guangzhou, China. Ecol. Indic. 2024, 167, 112684. [Google Scholar] [CrossRef]
- Mulenga, K.; Zhao, X.; Xie, M.; Chikamba, C. Investigating the Root Causes of Major Failures of Critical Components–With a Case Study of Asbestos Cement Pipes. Eng. Fail. Anal. 2018, 84, 121–130. [Google Scholar] [CrossRef]







| Data | Type | Source | Access Date |
|---|---|---|---|
| Satellite Image | Raster | https://www.gscloud.cn/, accessed on 14 July 2024 | June 2024 |
| DEM | Raster | https://www.gscloud.cn/, accessed on 10 April 2025 | April 2025 |
| Building footprint | Vector | https://lbsyun.baidu.com/, accessed on 10 April 2025 | April 2025 |
| Sidewalks | Vector | https://lbsyun.baidu.com/, accessed on 11 April 2025 | April 2025 |
| Park boundary | Vector | https://lbsyun.baidu.com/, accessed on 11 April 2025 | April 2025 |
| Pipelines | Vector | Special Plan for Stormwater Engineering in Fengxi New City | April 2024 |
| Construction prices for GREI | Table | https://www.zjtcn.com/, accessed on 1 May 2025 | May 2025 |
| Construction prices for GI | Table | https://www.zjtcn.com/, accessed on 1 May 2025 | May 2025 |
| Category | Item | Parameter |
|---|---|---|
| Sub-catchment and Network Parameters | Manning’s n for impervious areas | 0.013 |
| Manning’s n for pervious areas | 0.25 | |
| Depression storage on impervious areas (mm) | 2.1 | |
| Depression storage on pervious areas (mm) | 3.6 | |
| Percentage of impervious area with zero depression storage (%) | 25 | |
| Horton maximum infiltration rate (mm/h) | 25.67 | |
| Horton minimum infiltration rate (mm/h) | 3.43 | |
| Horton decay constant (1/h) | 7 | |
| Drying time from saturation to fully dry (days) | 7 | |
| Manning’s n for conduits | 0.013 |
| GI | Rain Garden | Permeable Pavement | Green Roof |
|---|---|---|---|
| Construction cost (CNY/m2) | 150–1200 | 60–350 | 100–500 |
| Maintenance cost (CNY/m2/year) | 12–96 | 5–28 | 8–40 |
| Trunk Sewers | Secondary Sewers | Branch Sewers | |
|---|---|---|---|
| Diameter range (m) | 1.5–2.8 | 0.8–2.2 | 0.5–1.5 |
| Parameter | Description | Setting |
|---|---|---|
| Population size | Number of individuals per generation | 600 |
| Tournament size | Tournament size for parent selection | 2 |
| Crossover probability | Probability that genetic crossover occurs | 0.8 |
| Crossover distribution index | SBX distribution index controlling offspring proximity to parents | 5 |
| Mutation probability | Probability that mutation occurs | 0.25 |
| Mutation distribution index | Polynomial-mutation distribution index controlling mutation magnitude | 8 |
| Number of generations | Maximum number of algorithm iterations | 100 |
| GI Type | Criterion | Weight |
|---|---|---|
| Green roof | Roof type | 0.7231 |
| Building service life | 0.1364 | |
| Structural system | 0.1405 | |
| Rain garden | Slope | 0.1832 |
| Soil type | 0.7081 | |
| Distance from buildings | 0.1087 | |
| Permeable pavement | Slope | 0.1137 |
| Soil type | 0.6654 | |
| Distance from buildings | 0.2209 |
| Pipe ID | Upstream Contributing Area (ha) | Importance Index | Rank |
|---|---|---|---|
| C00411 | 1193.492 | 1.0000 | 1 |
| C00410 | 584.517 | 0.4979 | 61 |
| C00426 | 205.574 | 0.1718 | 193 |
| Return Period (P) | LCC Min (CNY Billion) | LCC Max (CNY Billion) | Min | Max | Number of Frontier Points |
|---|---|---|---|---|---|
| P = 2 | 2.17 | 6.43 | 0.672 | 0.983 | 46 |
| P = 5 | 2.98 | 6.32 | 0.692 | 0.943 | 63 |
| P = 10 | 2.94 | 6.98 | 0.642 | 0.922 | 63 |
| P = 20 | 3.05 | 6.51 | 0.608 | 0.887 | 60 |
| P = 50 | 2.98 | 7.12 | 0.545 | 0.861 | 58 |
| Rainfall Return Period (P) | P = 2 | P = 5 | P = 10 | P = 20 | P = 50 |
|---|---|---|---|---|---|
| LCC | 0.67 | 0.61 | 0.64 | 0.71 | 0.69 |
| UDS resilience | 0.33 | 0.39 | 0.36 | 0.29 | 0.31 |
| Rainfall Return Period (P) | Initial-Generation Mean LCC (CNY Billion) | Final-Generation Mean LCC (CNY Billion) | Initial-Generation Mean Rf | Final-Generation Mean Rf | Inflection Generation (LCC Mean) | Inflection Generation (Rf Mean) |
|---|---|---|---|---|---|---|
| P = 2 | 5.804 | 3.285 | 0.830 | 0.961 | 94 | 88 |
| P = 5 | 5.805 | 3.250 | 0.760 | 0.923 | 92 | 87 |
| P = 10 | 5.802 | 3.151 | 0.714 | 0.899 | 92 | 90 |
| P = 20 | 5.800 | 3.240 | 0.674 | 0.873 | 95 | 89 |
| P = 50 | 5.799 | 3.265 | 0.629 | 0.844 | 94 | 86 |
| Rainfall Return Period (P) | P = 2 | P = 5 | P = 10 | P = 20 | P = 50 |
|---|---|---|---|---|---|
| GREI LCC (CNY billion) | 1.858 | 2.013 | 1.770 | 1.906 | 2.034 |
| GI LCC (CNY billion) | 1.658 | 1.754 | 1.461 | 1.591 | 1.519 |
| UDS-R | 0.9664 | 0.9334 | 0.9078 | 0.8831 | 0.8572 |
| ) | 0.7012 | 0.7934 | 0.7715 | 0.8052 | 0.7755 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Z.; Li, Y.; Hao, M.; Huang, S.; Fu, X.; Mao, Y.; Zhang, Y. Optimizing Urban Green–Gray Stormwater Infrastructure Through Resilience–Cost Trade-Off: An Application in Fengxi New City, China. Land 2025, 14, 2241. https://doi.org/10.3390/land14112241
Tang Z, Li Y, Hao M, Huang S, Fu X, Mao Y, Zhang Y. Optimizing Urban Green–Gray Stormwater Infrastructure Through Resilience–Cost Trade-Off: An Application in Fengxi New City, China. Land. 2025; 14(11):2241. https://doi.org/10.3390/land14112241
Chicago/Turabian StyleTang, Zhaowei, Yanan Li, Mintong Hao, Sijun Huang, Xin Fu, Yuyang Mao, and Yujiao Zhang. 2025. "Optimizing Urban Green–Gray Stormwater Infrastructure Through Resilience–Cost Trade-Off: An Application in Fengxi New City, China" Land 14, no. 11: 2241. https://doi.org/10.3390/land14112241
APA StyleTang, Z., Li, Y., Hao, M., Huang, S., Fu, X., Mao, Y., & Zhang, Y. (2025). Optimizing Urban Green–Gray Stormwater Infrastructure Through Resilience–Cost Trade-Off: An Application in Fengxi New City, China. Land, 14(11), 2241. https://doi.org/10.3390/land14112241

