Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = green (phyto) synthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2483 KiB  
Article
Phyto-Fabrication, Structural Characterization and Antibacterial Properties of Hybanthus enneaspermus-Assisted Mn-Doped ZnO Nanocomposites
by Kanmani Kannan, Sankareswaran Muruganandham, Archana Ganeshan, Rajiv Periakaruppan, Nithish Kathiravan and Sathyabama Narayanan
Eng 2025, 6(2), 21; https://doi.org/10.3390/eng6020021 - 21 Jan 2025
Cited by 1 | Viewed by 993
Abstract
Green synthesis of nanocomposites offers an eco-friendly and viable solution to overcome the limitations of conventional chemical and physical methods as it uses biological agents to act as reducing and stabilizing agents. The current study’s novelty is phyto-fabricated manganese (Mn)-doped zinc oxide (ZnO) [...] Read more.
Green synthesis of nanocomposites offers an eco-friendly and viable solution to overcome the limitations of conventional chemical and physical methods as it uses biological agents to act as reducing and stabilizing agents. The current study’s novelty is phyto-fabricated manganese (Mn)-doped zinc oxide (ZnO) nanocomposites using aqueous extract of H. enneaspermus by a biological method. Mn-doped ZnO nanocomposites were synthesized using manganese acetate and zinc acetate. The synthesized nanocomposites were characterized by XRD, FTIR, SEM, and EDX analysis. XRD shows the crystalline nature of nanocomposites with particle sizes of 30–40 nm, and FTIR reveals the presence of functional groups responsible for capping and stabilization. SEM analysis indicates spherical morphology with minor aggregation due to phytochemical interactions. EDX analysis of Mn-doped ZnO nanocomposites was used to verify the elemental composition, including Mn, Zn, O, and C. The anti-bacterial property of Mn-doped ZnO nanocomposites was assessed using the agar well-diffusion method against pathogens. The results of the anti-bacterial investigation proved that Mn-doped ZnO nanocomposites inhibit the growth of pathogens at different concentrations. The research concludes that the extract of H. enneaspermus acts as a capping and reducing agent in the synthesis process. The process can offer bio-compatible nanocomposites for new drug development against pathogens. Full article
Show Figures

Figure 1

17 pages, 4683 KiB  
Article
Syzygium aromaticum Bud Extracted Core–Shell Ag–Fe Bimetallic Nanoparticles: Phytotoxic, Antioxidant, Insecticidal, and Antibacterial Properties
by Farah Murtaza, Naseem Akhter, Muhammad Azam Qamar, Asma Yaqoob, Anis Ahmad Chaudhary, Bhagyashree R. Patil, Salah Ud-Din Khan, Nasir Adam Ibrahim, Nosiba S. Basher, Mohammed Saad Aleissa, Iqra Kanwal and Mohd Imran
Crystals 2024, 14(6), 510; https://doi.org/10.3390/cryst14060510 - 27 May 2024
Cited by 6 | Viewed by 1854
Abstract
Today, there is the roar of sustainable material development around the globe. Green nanotechnology is one of the extensions of sustainability. Due to its sustainable approach, the green fabrication of nanoparticles has recently surpassed their classical synthesis in popularity. Among metal nanoparticles, contemporary [...] Read more.
Today, there is the roar of sustainable material development around the globe. Green nanotechnology is one of the extensions of sustainability. Due to its sustainable approach, the green fabrication of nanoparticles has recently surpassed their classical synthesis in popularity. Among metal nanoparticles, contemporary findings have demonstrated that bimetallic nanoparticles possess more potential for different applications than monometallic nanoparticles due to the synergistic effects of the two metals. So, we are presenting facile, one-vessel, and one-step phyto-fabrication of Ag–Fe BMNPs using the bud extract of Syzygiumaromaticum. The synthesized nanoparticles were characterized by UV-VIS, XRD, EDX, FTIR, and SEM. The synthesized NPs and the extract underwent biological studies. The radical scavenging potential of the NPs and the extract was found to be 64% and 73%, and the insecticidal potential was found to be 80% and 100%, respectively. Similarly, the NPs and the extract both exhibited good antibacterial activity. The zone of inhibition using 100 mg/mL of extract and NPs was found to be 1 cm against all bacterial species, i.e., K. pneumonia, E. coli, and S. aureus. It was 1.5 cm, 1.3 cm, and 1 cm against K. pneumonia, E. coli, and S. aureus, respectively, showing that the antibacterial activity of the extract is higher than that of the NPs. So, this study unlocks the synthesis of Ag–Fe bimetallic nanoparticles using eco-safe, cost-effective, facile, and least-harmful green methodology with potential applications of both NPs and SA extract in medical and agricultural fields, a step towards sustainability. Full article
(This article belongs to the Special Issue Metal Oxide Thin Films, Nanomaterials and Nanostructures)
Show Figures

Figure 1

23 pages, 9681 KiB  
Article
Phyto-Mediated Green Synthesis of Silver Nanoparticles Using an Aqueous Leaf Extract of Momordica cymbalaria: Antioxidant, Cytotoxic, Antibacterial, and Photocatalytic Properties
by Madasamy Sundar, Gopalan Rajagopal, Ambikapathi Nivetha, Seetharaman Prabu Kumar and Selvaraj Muthukumar
Separations 2024, 11(2), 61; https://doi.org/10.3390/separations11020061 - 17 Feb 2024
Cited by 9 | Viewed by 3624
Abstract
In this study, we biosynthesized the stable silver nanoparticles (AgNPs) from Momordica cymbalaria leaves to evaluate their antioxidant, antibacterial, cytotoxic, and photocatalytic properties. Initially, we screened the bioactive compounds from M. cymbalaria extract using GC-MS. The biosynthesis of Mc-AgNPs was confirmed using [...] Read more.
In this study, we biosynthesized the stable silver nanoparticles (AgNPs) from Momordica cymbalaria leaves to evaluate their antioxidant, antibacterial, cytotoxic, and photocatalytic properties. Initially, we screened the bioactive compounds from M. cymbalaria extract using GC-MS. The biosynthesis of Mc-AgNPs was confirmed using instruments, such as UV-visible spectroscopy FT-IR, XRD, SEM with EDX, and HR-TEM analyses. The UV-visible spectrum indicated absorbance at 425 nm. The crystallite size of the M. cymbalaria-stabilized nanoparticles was determined to be 20.14 nm. The morphology and size of the synthesized Mc-AgNPs were confirmed via SEM-EDX and HR-TEM analyses, with a size range from 16 to 22 nm. The synthesized Mc-AgNPs exhibited a photocatalytic yield of 60%. The biosynthesized Mc-AgNPs demonstrated strong antioxidant properties and prominent antibacterial activity against human pathogenic bacteria. The cytotoxicity study revealed that Mc-AgNPs were effective against MCF-7 cells in a dose-dependent manner. The recognized bioactivities confirm that the synthesized Mc-AgNPs act as effective catalysts in oxidation and serve as potent antioxidant, anticancer, and antibacterial agents. Full article
(This article belongs to the Section Materials in Separation Science)
Show Figures

Figure 1

24 pages, 1782 KiB  
Review
Metal Oxide Nanoparticles’ Green Synthesis by Plants: Prospects in Phyto- and Bioremediation and Photocatalytic Degradation of Organic Pollutants
by Mohamed Ashour, Abdallah Tageldein Mansour, Abdelwahab M. Abdelwahab and Ahmed E. Alprol
Processes 2023, 11(12), 3356; https://doi.org/10.3390/pr11123356 - 2 Dec 2023
Cited by 28 | Viewed by 5290
Abstract
Over the past few decades, the production of metal oxide nanoparticles (MONPs) has developed into an exciting and sophisticated research area. Green metal oxide nanoparticles have played an extremely imperative role in various fields, including biomedical, environmental, energy, agricultural applications, catalytic, bioactive, antibacterial, [...] Read more.
Over the past few decades, the production of metal oxide nanoparticles (MONPs) has developed into an exciting and sophisticated research area. Green metal oxide nanoparticles have played an extremely imperative role in various fields, including biomedical, environmental, energy, agricultural applications, catalytic, bioactive, antibacterial, poisonous, and biocompatible. To achieve sustainability and adopt environmentally friendly practices, the production of MONPs is now increasingly focused on exploring green chemistry and alternative pathways. When made using green synthesis techniques, the metal oxide nanoparticles are especially important because they do not require external stabilizers, capping agents, dangerous chemicals, or harsh operating conditions (high pressure and temperature). Plant-mediated synthesis of different MONPs using either whole cells or extracts has several advantages, including rapid synthesis (compared with other biogenic processes (using fungi and bacteria)), being more stable than other types, being available in nature, and being non-toxic. This review provides a comprehensive overview of the green synthesis of MONPs using plant parts, factors affecting the synthesis, and the characterization of synthesized NPs. Additionally, it highlights the potential of these environmentally friendly nanoparticles that are widely used to treat environmental pollutants, including the removal of heavy metals, antibacterials, and the degradation of organic pollutants. Full article
(This article belongs to the Special Issue Remediation Process of Environmental Pollution)
Show Figures

Figure 1

21 pages, 4166 KiB  
Article
Phyto-Synthesis and Characterization of Silver Nanoparticles Using Box-Behnken Design and Its Anti-Alternaria Activity
by Augustine Innalegwu Daniel, Ali Al-Hashimi, Marshall Keyster and Ashwil Klein
Clean Technol. 2023, 5(4), 1381-1401; https://doi.org/10.3390/cleantechnol5040068 - 30 Nov 2023
Cited by 5 | Viewed by 3373
Abstract
Alternaria alternata is a global fungal pathogen that causes symptoms such as leaf blight and seed rot resulting in economically significant yield losses in different varieties of crops. Green synthesis of nanoparticles is preferred over other methods of synthesis due to their safety, [...] Read more.
Alternaria alternata is a global fungal pathogen that causes symptoms such as leaf blight and seed rot resulting in economically significant yield losses in different varieties of crops. Green synthesis of nanoparticles is preferred over other methods of synthesis due to their safety, eco-friendly approach, and cost-effectiveness. Phyto-synthesis of silver nanoparticles (Ag-NPs) using seed extract of Abrus precatorious was optimized and characterized using the Box-Behnken design (BBD). Ag-NPs with a UVmax of 409.01 nm and a crystallite and particle size of 23.75 and 34.36 nm, respectively, were synthesized. In vitro anti-alternaria activity of Ag-NPs showed a concentration-dependent inhibition of the mycelia with a maximum inhibition of 54.61% at 200 ppm which was significantly different (p < 0.05) from propiconazole (1 ppm) with 100% inhibition. A scanning electron micrograph (SEM) of mycelia treated with 200 ppm of Ag-NPs showed a shrunken and shriveled mycelia while the ultrastructure of the mycelia under a transmission electron microscope (TEM) showed the alteration of the fungus cell wall and disappearance of cellular organelles compared to the control sample, while energy dispersive x-ray spectroscopy (EDX) analysis of the mycelia showed the localization of elemental Ag (0.95%) within the cell of the fungus compared to the control. The results of this study highlighted the antifungal potential of Ag-NPs against fungicide-resistant Alternaria alternata to reduce the environmental impact of synthetic fungicides. Full article
Show Figures

Figure 1

18 pages, 9756 KiB  
Article
Investigation of In Vitro Anticancer and Apoptotic Potential of Biofabricated Silver Nanoparticles from Cardamine hirsuta (L.) Leaf Extract against Caco-2 Cell Line
by Halaswamy Hire Math, Kariyellappa Nagaraja Shashiraj, Raju Suresh Kumar, Muthuraj Rudrappa, Meghashyama Prabhakara Bhat, Dhanyakumara Shivapoojar Basavarajappa, Abdulrahman I. Almansour, Karthikeyan Perumal and Sreenivasa Nayaka
Inorganics 2023, 11(8), 322; https://doi.org/10.3390/inorganics11080322 - 31 Jul 2023
Cited by 37 | Viewed by 2852
Abstract
Green nanoparticle (NPs) synthesis is eco-friendly, non-toxic, and the NPs have demonstrated improved biocompatibility for use in healthcare. This study evaluated the biogenic synthesis of AgNPs from the leaves of Cardamine hirsuta L. and their biological properties. The UV-Vis. spectra at 411 nm [...] Read more.
Green nanoparticle (NPs) synthesis is eco-friendly, non-toxic, and the NPs have demonstrated improved biocompatibility for use in healthcare. This study evaluated the biogenic synthesis of AgNPs from the leaves of Cardamine hirsuta L. and their biological properties. The UV-Vis. spectra at 411 nm exhibited a distinct resonance spectrum for C-AgNPs produced from C. hirsuta L. FT-IR analysis exhibited the presence of functional groups of phyto-compounds of C. hirsuta responsible of silver salt reduction and capping agents of C-AgNPs. The microscopic-based study, such as HR-TEM analysis, showed that the particles were uniformly distributed, spherical, and ranged in size from 5.36 to 87.65 nm. EDX analysis confirmed a silver (Ag) content of 36.3% by weight, and XRD analysis exhibited the face-centred cubic (FCC) crystalline nature of C-AgNPs. DLS measured the mean particle size of 76.5 nm. The zeta potential was significant at −27.9 mV, and TGA analysis revealed that C-AgNPs had higher thermal stability. C-AgNPs demonstrated moderate antimicrobial activity against the tested pathogens. In addition, the anti-proliferative activity measured by the MTT assay on the Caco-2 cell line demonstrated decreased cell viability with increasing C-AgNPs dosage, with an IC50 concentration of 49.14 µg/mL. In addition, an Annexin-V/Propidium iodide flow cytometric study was utilized to evaluate the induction of apoptosis in cancer cells. Early and late apoptosis cell populations increased significantly compared to the untreated control. Therefore, green-synthesized C-AgNPs have significant antimicrobial and anti-proliferative abilities, making them intriguing options for future biomedical applications. Full article
(This article belongs to the Special Issue Functional Inorganic Materials for Biomedical Application)
Show Figures

Graphical abstract

13 pages, 3816 KiB  
Article
Antibacterial and Antibiofilm Activity of Ficus carica-Mediated Calcium Oxide (CaONPs) Phyto-Nanoparticles
by Asif Ullah Khan, Tahir Hussain, Abdullah, Mubarak Ali Khan, Mervt M. Almostafa, Nancy S. Younis and Galal Yahya
Molecules 2023, 28(14), 5553; https://doi.org/10.3390/molecules28145553 - 20 Jul 2023
Cited by 25 | Viewed by 4131
Abstract
The significance of nanomaterials in biomedicines served as the inspiration for the design of this study. In this particular investigation, we carried out the biosynthesis of calcium oxide nanoparticles (CaONPs) by employing a green-chemistry strategy and making use of an extract of Ficus [...] Read more.
The significance of nanomaterials in biomedicines served as the inspiration for the design of this study. In this particular investigation, we carried out the biosynthesis of calcium oxide nanoparticles (CaONPs) by employing a green-chemistry strategy and making use of an extract of Ficus carica (an edible fruit) as a capping and reducing agent. There is a dire need for new antimicrobial agents due to the alarming rise in antibiotic resistance. Nanoparticles’ diverse antibacterial properties suggest that they might be standard alternatives to antimicrobial drugs in the future. We describe herein the use of a Ficus carica extract as a capping and reducing agent in the phyto-mediated synthesis of CaONPs for the evaluation of their antimicrobial properties. The phyto-mediated synthesis of NPs is considered a reliable approach due to its high yield, stability, non-toxicity, cost-effectiveness and eco-friendliness. The CaONPs were physiochemically characterized by UV-visible spectroscopy, energy-dispersive X-ray (EDX), scanning-electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The biological synthesis of the calcium oxide nanoparticles revealed a characteristic surface plasmon resonance peak (SPR) at 360 nm in UV-Vis spectroscopy, which clearly revealed the successful reduction of the Ca2+ ions to Ca0 nanoparticles. The characteristic FTIR peak seen at 767 cm−1 corresponded to Ca-O bond stretching and, thus, confirmed the biosynthesis of the CaONPs, while the scanning-electron micrographs revealed near-CaO aggregates with an average diameter of 84.87 ± 2.0 nm. The antibacterial and anti-biofilm analysis of the CaONPs showed inhibition of bacteria in the following order: P. aeruginosa (28 ± 1.0) > S. aureus (23 ± 0.3) > K. pneumoniae (18 ± 0.9) > P. vulgaris (13 ± 1.6) > E. coli (11 ± 0.5) mm. The CaONPs were shown to considerably inhibit biofilm formation, providing strong evidence for their major antibacterial activity. It is concluded that this straightforward environmentally friendly method is capable of synthesizing stable and effective CaONPs. The therapeutic value of CaONPs is indicated by their potential as a antibacterial and antibiofilm agents in future medications. Full article
(This article belongs to the Special Issue Advances in Potential Bioapplications of Functional Nanomaterials)
Show Figures

Figure 1

18 pages, 19744 KiB  
Article
Biosynthesis of Silver Nanoparticles from Fermented Bush Tea (Athrixia phylicoides DC) Leaf Extract and Evaluation of Their Antioxidant and Antimicrobial Properties
by Mpho Edward Mashau, Theshano Mamagau, Kgethego Foforane, Bono Nethathe, Maanea Lonia Ramphinwa and Fhatuwani Nixwell Mudau
Fermentation 2023, 9(7), 648; https://doi.org/10.3390/fermentation9070648 - 10 Jul 2023
Cited by 3 | Viewed by 2248
Abstract
Green synthesis is a promising strategy for producing eco-friendly, non-toxic, and less expensive metallic nanoparticles from plants and microorganisms. This research synthesized silver nanoparticles (AgNPs) from fermented leaf extract of bush tea (Athrixia phylicoides DC). The physicochemical characterization of AgNPs was conducted [...] Read more.
Green synthesis is a promising strategy for producing eco-friendly, non-toxic, and less expensive metallic nanoparticles from plants and microorganisms. This research synthesized silver nanoparticles (AgNPs) from fermented leaf extract of bush tea (Athrixia phylicoides DC). The physicochemical characterization of AgNPs was conducted by UV-vis spectroscopy, Fourier Transform Infrared Spectrometry (FTIR), and Differential Scanning Calorimetry (DSC). In addition, the total phenolic and flavonoid contents, antioxidant and antimicrobial activities of AgNPs were evaluated. The results indicated the successful formation of AgNPs by a visual change of color in fermented bush tea leaf extract from black to brown and in unfermented bush tea leaf crude extract from dark brown to light brown. The UV-vis spectrum of the reaction of the mixture of synthesized AgNPs with unfermented and fermented bush tea showed maximum absorbance at 457 nm and 450 nm, which confirmed the formation of AgNPs. FTIR revealed the functional groups of a leaf extract from bush tea that contributed to the reduction and capping process. The thermal properties suggest that low thermal stable compounds contributed to the reduction of Ag+ to Ag° in the phyto compounds found in the extract. The total phenolic content was higher in fermented AgNPs (290.44 mg/g GAE) compared to unfermented AgNPs (171.34 mg/g GAE). On the other hand, the total flavonoid content was higher in unfermented AgNPs (17.87 mg/g CE) than in fermented AgNPs (9.98 mg/g CE). Regarding antioxidant activity values, unfermented AgNPs had the highest FRAP (535.30 TE/mL) and 47.58% for DPPH. Fermented AgNPs had more antimicrobial activity than unfermented AgNPs. The results show that bush tea leaf extract can be used in different industries such as food, cosmetics, and biomedical. Full article
Show Figures

Figure 1

22 pages, 6277 KiB  
Article
Novel Copper Oxide Phyto-Nanocatalyst Utilized for the Synthesis of Sustainable Biodiesel from Citrullus colocynthis Seed Oil
by Aqsa Aziz, Mushtaq Ahmad, Muhammad Zafar, Abdel-Rhman Z. Gaafar, Mohamed S. Hodhod, Shazia Sultana, Mohammad Athar, Fethi Ahmet Ozdemir, Trobjon Makhkamov, Akramjon Yuldashev, Oybek Mamarakhimov, Maxsuda Nizomova, Salman Majeed and Bisha Chaudhay
Processes 2023, 11(6), 1857; https://doi.org/10.3390/pr11061857 - 20 Jun 2023
Cited by 21 | Viewed by 2663
Abstract
The green chemistry method for nanocatalyst synthesis along with environmentally feasible non-edible sources are promising alternatives to fossil fuels. The current study focuses on the synthesis of copper oxide phyto-nanocatalyst and the identification of a new renewable feedstock, Citrullus colocynthis, to reduce [...] Read more.
The green chemistry method for nanocatalyst synthesis along with environmentally feasible non-edible sources are promising alternatives to fossil fuels. The current study focuses on the synthesis of copper oxide phyto-nanocatalyst and the identification of a new renewable feedstock, Citrullus colocynthis, to reduce environmental pollution. The highest biodiesel yield (95%) was obtained under optimum conditions of a 1:8 oil-to-methanol ratio and reaction temperature of 85 °C for 120 min with a 0.365 wt% catalyst concentration. The phyto-nanocatalyst was synthesized using seed oil cake after extracting oil with the salt of copper (copper oxide). The catalyst was then subjected to various analyses, namely, EDX, FT-IR, SEM, and XRD. The catalyst was proved to be efficient and effective after being reused five times and still there was a very small difference in biodiesel yield. All the analyses also show sustainable and stable results. Thus, copper oxide phyto-nanocatalyst with non-edible Citrullus colocynthis proved to be highly effective, sustainable, and a better alternative source to the future biodiesel industry. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

15 pages, 1544 KiB  
Article
Phyto-Assisted Synthesis of Nanoselenium–Surface Modification and Stabilization by Polyphenols and Pectins Derived from Agricultural Wastes
by Nikolina Golub, Emerik Galić, Kristina Radić, Ana-Maria Jagodić, Nela Predović, Kristina Katelan, Lucija Tesla, Sandra Pedisić, Tomislav Vinković and Dubravka Vitali Čepo
Foods 2023, 12(5), 1117; https://doi.org/10.3390/foods12051117 - 6 Mar 2023
Cited by 5 | Viewed by 2599
Abstract
Raw and purified mandarin peel-derived pectins were characterized and combined with olive pomace extract (OPE) in the green synthesis of selenium nanoparticles (SeNPs). SeNPs were characterized in terms of size distribution and zeta potential, and their stability was monitored during 30 days of [...] Read more.
Raw and purified mandarin peel-derived pectins were characterized and combined with olive pomace extract (OPE) in the green synthesis of selenium nanoparticles (SeNPs). SeNPs were characterized in terms of size distribution and zeta potential, and their stability was monitored during 30 days of storage. HepG2 and Caco-2 cell models were used for the assessment of biocompatibility, while antioxidant activity was investigated by the combination of chemical and cellular-based assays. SeNP average diameters ranged from 171.3 nm up to 216.9 nm; smaller SeNPs were obtained by the utilization of purified pectins, and functionalization with OPE slightly increased the average. At concentrations of 15 mg/L SeNPs were found to be biocompatible, and their toxicity was significantly lower in comparison to inorganic selenium forms. Functionalization of SeNPs with OPE increased their antioxidant activity in chemical models. The effect was not clear in cell-based models, even though all investigated SeNPs improved cell viability and protected intracellular reduced GSH under induced oxidative stress conditions in both investigated cell lines. Exposure of cell lines to SeNPs did not prevent ROS formation after exposure to prooxidant, probably due to low transepithelial permeability. Future studies should focus on further improving the bioavailability/permeability of SeNPs and enhancing the utilization of easily available secondary raw materials in the process of phyto-mediated SeNP synthesis. Full article
Show Figures

Figure 1

20 pages, 4452 KiB  
Article
Carbon Paper Modified with Functionalized Poly(diallyldimethylammonium chloride) Graphene and Gold Phytonanoparticles as a Promising Sensing Material: Characterization and Electroanalysis of Ponceau 4R in Food Samples
by Natalia Yu. Stozhko, Ekaterina I. Khamzina, Maria A. Bukharinova, Aleksey V. Tarasov, Veronika Yu. Kolotygina, Natalia V. Lakiza and Ekaterina D. Kuznetcova
Nanomaterials 2022, 12(23), 4197; https://doi.org/10.3390/nano12234197 - 25 Nov 2022
Cited by 9 | Viewed by 2450
Abstract
This paper presents a novel eco-friendly sensing material based on carbon paper (CP) volumetrically modified with a composite nanomodifier that includes functionalized poly(diallyldimethylammonium chloride) graphene (PDDA-G) and phytosynthesized gold nanoparticles (phyto-AuNPs). The functionalization of graphene was justified by Fourier-transform infrared spectroscopy. The phyto-AuNPs [...] Read more.
This paper presents a novel eco-friendly sensing material based on carbon paper (CP) volumetrically modified with a composite nanomodifier that includes functionalized poly(diallyldimethylammonium chloride) graphene (PDDA-G) and phytosynthesized gold nanoparticles (phyto-AuNPs). The functionalization of graphene was justified by Fourier-transform infrared spectroscopy. The phyto-AuNPs (d = 6 nm) were prepared by “green” synthesis with the use of strawberry leaf extract. The sensing material was characterized using scanning electron microscopy, electrochemical impedance spectroscopy, and voltammetry. The research results indicated a more than double increase in the electroactive surface area; a decrease in the resistance of electron transfer on nanocomposite-modified CP, compared to bare CP. The phyto-AuNPs/PDDA-G/CP was used for the electrosensing of the synthetic dye Ponceau 4R. The oxidation signal of colorant enhanced 4-fold on phyto-AuNPs/PDDA-G/CP in comparison to CP. The effect of the quantity of nanomodifier, solution pH, potential scan rate, accumulation parameters, and differential pulse parameters on the peak current of Ponceau 4R was studied. Under optimal conditions, excellent sensory characteristics were established: LOD 0.6 nM and LR 0.001–2 μM for Ponceau 4R. High selectivity and sensitivity enable the use of the sensor for analyzing the content of Ponceau 4R in food products (soft drinks, candies, and popsicles) without additional sample preparation. Full article
(This article belongs to the Special Issue Applications of Nanomaterials and Nanotechnology in Food Detection)
Show Figures

Graphical abstract

16 pages, 3966 KiB  
Article
Green Chemistry Based Synthesis of Zinc Oxide Nanoparticles Using Plant Derivatives of Calotropis gigantea (Giant Milkweed) and Its Biological Applications against Various Bacterial and Fungal Pathogens
by Ammara Farooq, Umair A. Khan, Haider Ali, Manda Sathish, Syed Atif Hasan Naqvi, Shehzad Iqbal, Haider Ali, Iqra Mubeen, Muhammad Bilal Amir, Walid F. A. Mosa, Alaa Baazeem, Mahmoud Moustafa, Sulaiman Alrumman, Ali Shati and Sally Negm
Microorganisms 2022, 10(11), 2195; https://doi.org/10.3390/microorganisms10112195 - 4 Nov 2022
Cited by 24 | Viewed by 4627
Abstract
Nanotechnology is a burning field of scientific interest for researchers in current era. Diverse plant materials are considered as potential tool in green chemistry based technologies for the synthesis of metal nanoparticles (NPs) to cope with the hazardous effects of synthetic chemicals, leading [...] Read more.
Nanotechnology is a burning field of scientific interest for researchers in current era. Diverse plant materials are considered as potential tool in green chemistry based technologies for the synthesis of metal nanoparticles (NPs) to cope with the hazardous effects of synthetic chemicals, leading to severe abiotic climate change issues in today’s agriculture. This study aimed to determine the synthesis and characterization of metal-based nanoparticles using extracts of the selected plant Calotropis gigantea and to evaluate the enzyme-inhibition activities and antibacterial and antifungal activity of extracts of metal-based zinc nanoparticles using C. gigantea extracts. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). C. gigantea was examined for antimicrobial activity against clinical isolates of bacteria and fungi. The water, ethanolic, and acetone extracts of C. gigantea were studied for their antagonistic action against bacterial strains (E. coli, S. aureus, P. multocida, and B. subtilis) and selected fungal strains (A. paracistic, F. solani, A. niger, S. ferrugenium, and R. nigricans). In vitro antimicrobial activity was determined by the disc diffusion method, where C. gigantea was tested for AChE and BChE inhibitory activity using Ellman’s methodology. The kinetic analysis was performed by the proverbial Berthelot reaction for urease inhibition. The results showed that out of all the extracts tested, ethanolic and water extracts possessed zinc nanoparticles. These extracts showed the maximum zone of inhibition against F. solani and P. multocida and the lowest against S. ferrugenium and B. subtilis. A potential source of AChE inhibitors is certainly provided by the abundance of plants in nature. Numerous phyto-constituents, such as AChE and BChE inhibitors, have been reported in this communication. Water extract was active and has the potential for in vitro AChE and BChE inhibitory activity. The urease inhibition with flower extracts of C. gigantea revealed zinc nanoparticles in water extracts that competitively inhibited urease enzymes. In the case of cholinesterase enzymes, it was inferred that the water extract and zinc nanoparticles have more potential for inhibition of BChE than AChE and urease inhibition. Furthermore, zinc nanoparticles with water extract are active inthe inhibition of the bacterial strains E. coli, S. aureus, and P. multocida and the fungal strains A. paracistic, F. solani, and A. niger. Full article
Show Figures

Figure 1

24 pages, 4983 KiB  
Article
Carduus edelbergii Rech. f. Mediated Fabrication of Gold Nanoparticles; Characterization and Evaluation of Antimicrobial, Antioxidant and Antidiabetic Potency of the Synthesized AuNPs
by Shahid Jamil, Ghulam Dastagir, Ahmed Ibrahim Foudah, Mohammed Hamed Alqarni, Hasan Soliman Yusufoglu, Huda Mohammed Alkreathy, Ömer Ertürk, Muhammad Abdur Rehman Shah and Rahmat Ali Khan
Molecules 2022, 27(19), 6669; https://doi.org/10.3390/molecules27196669 - 7 Oct 2022
Cited by 9 | Viewed by 2181
Abstract
Background: Due to the high expense, less effectiveness and more side effects of available synthetic medicine, the researchers and communities are focusing on phyto-based natural bioactive compounds, which are considered safer for the treatment of syndromes and chronic diseases. Aim: The current project [...] Read more.
Background: Due to the high expense, less effectiveness and more side effects of available synthetic medicine, the researchers and communities are focusing on phyto-based natural bioactive compounds, which are considered safer for the treatment of syndromes and chronic diseases. Aim: The current project was aimed to determine the phytochemicals constituents available in the aerial parts of methanol extract of Carduus edelbergii via GC-MS, fabrication of AuNPs mediated with the mentioned extract; characterization and evaluation of antimicrobial, antioxidant and antidiabetic potency of the synthesized AuNPs. Methods: Confirmation of green synthesis of AuNPs, functional groups responsible for the reduction in Au+, size and crystallinity, morphology and quantity of gold (Au) were carried out by Ultraviolet-Visible (UV-Vis) spectroscopy, Transform Infrared (FTIR) spectroscopy, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and dispersive X-ray (EDX), respectively, whereas in vitro antioxidant characteristics were assessed by DPPH and ABTS assays. Wistar albino rats were used to test the anti-diabetic properties of the methanol extract and AuNPs. Results: GC-MS revealed that the diluted methanol extract of Carduus edelbergii consists of about 19 chemical constituents. Among the identified compounds, the 13-Docosenoic acid, methyl ester, (Z)—has the highest concentration (38.16%), followed by 9-Octadecenoic acid, methyl ester, (E)—(15.72%) and n-Hexadecanoic acid (15.07%). Methanol extract and its fabricated nanoparticles showed significant antioxidant and antimicrobial activities. In vivo antidiabetic study revealed a noteworthy (p < 0.05) decline in body weight and HDL and elevated concentration of blood glucose, bilirubin, creatinine, urea, triglyceride, VLDL, LDL, ALP, ALT and AST in diabetic control. The said changes were recovered significantly (p < 0.05) by treatment of diabetic rats with methanol extract (150 and 300 mg/Kg BW) and AuNPs of Carduus edelbergii (5 and 10 mg/Kg BW). Conclusion: The green synthesized AuNPs exhibit significant antioxidant, antimicrobial and antidiabetic characteristics. Full article
Show Figures

Figure 1

22 pages, 1059 KiB  
Review
Application of Plant-Derived Nanoparticles (PDNP) in Food-Producing Animals as a Bio-Control Agent against Antimicrobial-Resistant Pathogens
by Daniel Jesuwenu Ajose, Tesleem Olatunde Abolarinwa, Bukola Opeyemi Oluwarinde, Peter Kotsoana Montso, Omolola Esther Fayemi, Adeyemi Oladapo Aremu and Collins Njie Ateba
Biomedicines 2022, 10(10), 2426; https://doi.org/10.3390/biomedicines10102426 - 28 Sep 2022
Cited by 11 | Viewed by 3639
Abstract
Antibiotics are regularly used in animal husbandry to treat diseases. This practice is beneficial to animals’ health and helps ensure food security. However, the misuse of antibiotics, especially in food-producing animals, has resulted in the advent of antimicrobial resistance (AMR) and its dissemination [...] Read more.
Antibiotics are regularly used in animal husbandry to treat diseases. This practice is beneficial to animals’ health and helps ensure food security. However, the misuse of antibiotics, especially in food-producing animals, has resulted in the advent of antimicrobial resistance (AMR) and its dissemination among foodborne pathogens. The occurrence of AMR in bacteria pathogens that cause infections in animals and those associated with food spoilage is now considered a global health concern affecting humans, animals and the environment. The search for alternative antimicrobial agents has kindled the interest of many researchers. Among the alternatives, using plant-derived nanoparticles (PDNPs) for treating microbial dysfunctions in food-producing animals has gained significant attention. In traditional medicine, plant extracts are considered as safe, efficient and natural antibacterial agents for various animal diseases. Given the complexity of the AMR and concerns about issues at the interface of human health, animal health and the environment, it is important to emphasize the role of a One Health approach in addressing this problem. This review examines the potential of PDNPs as bio-control agents in food-producing animals, intending to provide consumers with microbiologically safe food while ensuring food safety and security, better health for animals and humans and a safe environment. Full article
(This article belongs to the Special Issue Nanobiomaterials: From Fundamentals to Biomedical Applications)
Show Figures

Figure 1

27 pages, 3946 KiB  
Review
Green Synthesis of Nanoparticles by Mushrooms: A Crucial Dimension for Sustainable Soil Management
by Tamer Elsakhawy, Alaa El-Dein Omara, Mohamed Abowaly, Hassan El-Ramady, Khandsuren Badgar, Xhensila Llanaj, Gréta Törős, Peter Hajdú and József Prokisch
Sustainability 2022, 14(7), 4328; https://doi.org/10.3390/su14074328 - 6 Apr 2022
Cited by 42 | Viewed by 10257
Abstract
Soil is the main component in the agroecosystem besides water, microbial communities, and cultivated plants. Several problems face soil, including soil pollution, erosion, salinization, and degradation on a global level. Many approaches have been applied to overcome these issues, such as phyto-, bio-, [...] Read more.
Soil is the main component in the agroecosystem besides water, microbial communities, and cultivated plants. Several problems face soil, including soil pollution, erosion, salinization, and degradation on a global level. Many approaches have been applied to overcome these issues, such as phyto-, bio-, and nanoremediation through different soil management tools. Mushrooms can play a vital role in the soil through bio-nanoremediation, especially under the biological synthesis of nanoparticles, which could be used in the bioremediation process. This review focuses on the green synthesis of nanoparticles using mushrooms and the potential of bio-nanoremediation for polluted soils. The distinguished roles of mushrooms of soil improvement are considered a crucial dimension for sustainable soil management, which may include controlling soil erosion, improving soil aggregates, increasing soil organic matter content, enhancing the bioavailability of soil nutrients, and resorting to damaged and/or polluted soils. The field of bio-nanoremediation using mushrooms still requires further investigation, particularly regarding the sustainable management of soils. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

Back to TopTop