Phyto-Synthesis and Characterization of Silver Nanoparticles Using Box-Behnken Design and Its Anti-Alternaria Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Isolation and Characterization of Fungal Pathogen
2.3. Preparation of Plant Extract
2.4. Phyto-Synthesis of Silver Nanoparticles
Characterization of Silver Nanoparticles
2.5. Design of Experiment
2.6. Anti-Alternaria Activity of Ag-NPs
2.7. Effect of Ag-NPs on Mycelial Morphology and Ultrastructure of A. alternata
2.8. Biochemical and Enzymatic Analysis of A. alternata Treated with Ag Nanoparticles
2.8.1. Quantification of Extracellular and Intracellular Polysaccharides
2.8.2. Estimation of Chitin Content
2.8.3. Cellulase Activity
2.8.4. Lipase Activity
2.9. Data Analysis
3. Results
3.1. Phyto-Synthesis and Characterization of Ag-NPs
3.2. Optimization Analysis of Phyto-Synthesized Ag-Nps
3.3. In Vitro Anti-Alternaria Activity of Phyto-Synthesized Ag-NPs
3.4. Effects of Ag-NPs Treatment on Biochemical Contents and Enzyme Activity of A. alternata
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malandrakis, A.A.; Kavroulakis, N.; Chrysikopoulos, C.V. Zinc nanoparticles: Mode of action and efficacy against boscalid-resistant Alternaria alternata isolates. Sci. Total Environ. 2022, 829, 154638. [Google Scholar] [CrossRef] [PubMed]
- Troncoso-Rojas, R.; Tiznado-Hernández, M.E. Alternaria alternata (black rot, black spot). In Postharvest Decay; Elsevier: Amsterdam, The Netherlands, 2014; pp. 147–187. [Google Scholar]
- Wojciechowska, E.; Weinert, C.H.; Egert, B.; Trierweiler, B.; Schmidt-Heydt, M.; Horneburg, B.; Graeff-Hönninger, S.; Kulling, S.E.; Geisen, R. Chlorogenic acid, a metabolite identified by untargeted metabolome analysis in resistant tomatoes, inhibits the colonization by Alternaria alternata by inhibiting alternariol biosynthesis. Eur. J. Plant Pathol. 2014, 139, 735–747. [Google Scholar] [CrossRef]
- Corkley, I.; Fraaije, B.; Hawkins, N. Fungicide resistance management: Maximizing the effective life of plant protection products. Plant Pathol. 2022, 71, 150–169. [Google Scholar] [CrossRef]
- Malandrakis, A.A.; Apostolidou, Z.A.; Louka, D.; Markoglou, A.; Flouri, F. Biological and molecular characterization of field isolates of Alternaria alternata with single or double resistance to respiratory complex II and III inhibitors. Eur. J. Plant Pathol. 2018, 152, 199–211. [Google Scholar] [CrossRef]
- Malandrakis, A.A.; Vattis, K.N.; Markoglou, A.N.; Karaoglanidis, G.S. Characterization of boscalid-resistance conferring mutations in the SdhB subunit of respiratory complex II and impact on fitness and mycotoxin production in Penicillium expansum laboratory strains. Pestic. Biochem. Physiol. 2017, 138, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Avenot, H.; Michailides, T. Detection of isolates of Alternaria alternata with multiple-resistance to fludioxonil, cyprodinil, boscalid and pyraclostrobin in California pistachio orchards. Crop Prot. 2015, 78, 214–221. [Google Scholar] [CrossRef]
- Sang, H.; Lee, H.B. Molecular mechanisms of succinate dehydrogenase inhibitor resistance in phytopathogenic fungi. Res. Plant Dis. 2020, 26, 1–7. [Google Scholar]
- Sierotzki, H.; Scalliet, G. A review of current knowledge of resistance aspects for the next-generation succinate dehydrogenase inhibitor fungicides. Phytopathology 2013, 103, 880–887. [Google Scholar] [CrossRef]
- Malandrakis, A.A.; Kavroulakis, N.; Chrysikopoulos, C.V. Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Sci. Total Environ. 2019, 670, 292–299. [Google Scholar] [CrossRef]
- Huang, W.; Wang, C.; Duan, H.; Bi, Y.; Wu, D.; Du, J.; Yu, H. Synergistic antifungal effect of biosynthesized silver nanoparticles combined with fungicides. Int. J. Agric. Biol. 2018, 20, 1225–1229. [Google Scholar]
- Malandrakis, A.A.; Kavroulakis, N.; Avramidou, M.; Papadopoulou, K.K.; Tsaniklidis, G.; Chrysikopoulos, C.V. Metal nanoparticles: Phytotoxicity on tomato and effect on symbiosis with the Fusarium solani FsK strain. Sci. Total Environ. 2021, 787, 147606. [Google Scholar] [CrossRef] [PubMed]
- Elshafei, A.M.; Othman, A.M.; Elsayed, M.A.; Al-Balakocy, N.G.; Hassan, M.M. Green synthesis of silver nanoparticles using Aspergillus oryzae NRRL447 exogenous proteins: Optimization via central composite design, characterization and biological applications. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100553. [Google Scholar] [CrossRef]
- Barabadi, H.; Honary, S.; Ebrahimi, P.; Alizadeh, A.; Naghibi, F.; Saravanan, M. Optimization of myco-synthesized silver nanoparticles by response surface methodology employing Box-Behnken design. Inorg. Nano-Met. Chem. 2019, 49, 33–43. [Google Scholar] [CrossRef]
- Castro-Mayorga, J.L.; Freitas, F.; Reis, M.; Prieto, M.A.; Lagaron, J. Biosynthesis of silver nanoparticles and polyhydroxybutyrate nanocomposites of interest in antimicrobial applications. Int. J. Biol. Macromol. 2018, 108, 426–435. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, M.; Gopinath, V.; Chaurasia, M.K.; Syed, A.; Ameen, F.; Purushothaman, N. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb. Pathog. 2018, 115, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Singh, S.; Srivastava, B.; Bhadouria, R.; Singh, R. Green synthesis of silver nanoparticles using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J. Environ. Chem. Eng. 2019, 7, 103094. [Google Scholar] [CrossRef]
- Vasantharaj, S.; Sathiyavimal, S.; Saravanan, M.; Senthilkumar, P.; Gnanasekaran, K.; Shanmugavel, M.; Manikandan, E.; Pugazhendhi, A. Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: Characterization of antibacterial activity and dye degradation potential. J. Photochem. Photobiol. B Biol. 2019, 191, 143–149. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Mahmoudi-Gom Yek, S.; Motahharifar, N.; Ghafori Gorab, M. Recent developments in the plant-mediated green synthesis of Ag-based nanoparticles for environmental and catalytic applications. Chem. Rec. 2019, 19, 2436–2479. [Google Scholar] [CrossRef]
- Gour, A.; Jain, N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 844–851. [Google Scholar] [CrossRef]
- Akintelu, S.A.; Folorunso, A.S.; Folorunso, F.A.; Oyebamiji, A.K. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 2020, 6, e04508. [Google Scholar] [CrossRef]
- Huang, L.; Luo, F.; Chen, Z.; Megharaj, M.; Naidu, R. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Jacob, P.J.; Masarudin, M.J.; Hussein, M.Z.; Rahim, R.A. Optimization of process parameters influencing the sustainable construction of iron oxide nanoparticles by a novel tropical wetlands Streptomyces spp. J. Clean. Prod. 2019, 232, 193–202. [Google Scholar] [CrossRef]
- Chowdhury, S.; Yusof, F.; Faruck, M.O.; Sulaiman, N. Process optimization of silver nanoparticle synthesis using response surface methodology. Procedia Eng. 2016, 148, 992–999. [Google Scholar] [CrossRef]
- Castaldi, S.; Zorrilla, J.G.; Petrillo, C.; Russo, M.T.; Ambrosino, P.; Masi, M.; Cimmino, A.; Isticato, R. Alternaria alternata isolated from infected pears (Pyrus communis) in Italy produces non-host toxins and hydrolytic enzymes as infection mechanisms and exhibits competitive exclusion against Botrytis cinerea in co-infected host fruits. J. Fungi 2023, 9, 326. [Google Scholar] [CrossRef] [PubMed]
- Chi, N.T.L.; Narayanan, M.; Chinnathambi, A.; Govindasamy, C.; Subramani, B.; Brindhadevi, K.; Pimpimon, T.; Pikulkaew, S. Fabrication, characterization, anti-inflammatory, and anti-diabetic activity of silver nanoparticles synthesized from Azadirachta indica kernel aqueous extract. Environ. Res. 2022, 208, 112684. [Google Scholar]
- Bashir, M.R.; Atiq, M.; Sajid, M.; Mohsan, M.; Abbas, W.; Alam, M.W.; Bashair, M. Antifungal exploitation of fungicides against Fusarium oxysporum f. sp. capsici causing Fusarium wilt of chilli pepper in Pakistan. Environ. Sci. Pollut. Res. 2018, 25, 6797–6801. [Google Scholar] [CrossRef]
- Philippe, S.; Souaïbou, F.; Guy, A.; Sébastien, D.T.; Boniface, Y.; Paulin, A.; Issaka, Y.; Dominique, S. Chemical Composition and Antifungal activity of Essential oil of Fresh leaves of Ocimum gratissimum from Benin against six Mycotoxigenic Fungi isolated from traditional cheese wagashi. Int. Res. J. Biol. Sci. 2012, 1, 22–27. [Google Scholar]
- Li, J.; Fu, S.; Fan, G.; Li, D.; Yang, S.; Peng, L.; Pan, S. Active compound identification by screening 33 essential oil monomers against Botryosphaeria dothidea from postharvest kiwifruit and its potential action mode. Pestic. Biochem. Physiol. 2021, 179, 104957. [Google Scholar] [CrossRef]
- Raliya, R.; Tarafdar, J.C.; Biswas, P. Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J. Agric. Food Chem. 2016, 64, 3111–3118. [Google Scholar] [CrossRef]
- Ospina Álvarez, S.P.; Ramírez Cadavid, D.A.; Escobar Sierra, D.M.; Ossa Orozco, C.P.; Rojas Vahos, D.F.; Zapata Ocampo, P.; Atehortúa, L. Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. Biomed Res. Int. 2014, 2014, 169071. [Google Scholar] [CrossRef]
- Sinegani, A.A.S.; Emtiazi, G. The relative effects of some elements on the DNS method in cellulase assay. J. Appl. Sci. Environ. Manag. 2006, 10, 93–96. [Google Scholar] [CrossRef]
- Ang, S.; Shaza, E.; Adibah, Y.; Suraini, A.; Madihah, M. Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 2013, 48, 1293–1302. [Google Scholar] [CrossRef]
- Dhiman, S.; Varma, A.; Prasad, R.; Goel, A. Mechanistic Insight of the Antifungal Potential of Green Synthesized Zinc Oxide Nanoparticles against Alternaria brassicae. J. Nanomater. 2022, 2022, 7138843. [Google Scholar] [CrossRef]
- Iftikhar, T.; Abdullah, R.; Iqtedar, M.; Kaleem, A.; Aftab, M.; Niaz, M.; Sidra, B.T.; Majeed, H. Production of lipases by Alternaria sp.(mbl 2810) through optimization of environmental conditions using submerged fermentation technique. Int. J. Biosci. 2015, 6655, 178–186. [Google Scholar]
- Selvam, K.; Vishnupriya, B.; Bose, V.S.C. Screening and quantification of marine actinomycetes producing industrial enzymes amylase, cellulase and lipase from south coast of India. Int. J. Pharma Bio Sci. 2011, 2, 1481–1487. [Google Scholar]
- Akintelu, S.A.; Olugbeko, S.C.; Folorunso, A.S.; Oyebamiji, A.K.; Folorunso, F.A. Potentials of phytosynthesized silver nanoparticles in biomedical fields: A review. Int. Nano Lett. 2021, 11, 273–293. [Google Scholar] [CrossRef]
- Folorunso, A.; Akintelu, S.; Oyebamiji, A.K.; Ajayi, S.; Abiola, B.; Abdusalam, I.; Morakinyo, A. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J. Nanostruct. Chem. 2019, 9, 111–117. [Google Scholar] [CrossRef]
- Khan, M.N.; Khan, T.A.; Khan, Z.; Al-Thabaiti, S.A. Green synthesis of biogenic silver nanomaterials using Raphanus sativus extract, effects of stabilizers on the morphology, and their antimicrobial activities. Bioprocess Biosyst. Eng. 2015, 38, 2397–2416. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef]
- Sahayaraj, K.; Balasubramanyam, G.; Chavali, M. Green synthesis of silver nanoparticles using dry leaf aqueous extract of Pongamia glabra Vent (Fab.), Characterization and phytofungicidal activity. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100349. [Google Scholar] [CrossRef]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Siti, R.M.; Khairunisak, A.R.; Aziz, A.A.; Noordin, R. Green synthesis of 10 nm gold nanoparticles via seeded-growth method and its conjugation properties on lateral flow immunoassay. Adv. Mater. Res. 2013, 686, 8–12. [Google Scholar] [CrossRef]
- Usman, A.I.; Aziz, A.A.; Sodipo, B.K. Application of central composite design for optimization of biosynthesized gold nanoparticles via sonochemical method. SN Appl. Sci. 2019, 1, 403. [Google Scholar] [CrossRef]
- Verma, A.; Mehata, M.S. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J. Radiat. Res. Appl. Sci. 2016, 9, 109–115. [Google Scholar] [CrossRef]
- Traiwatcharanon, P.; Timsorn, K.; Wongchoosuk, C. Effect of pH on the green synthesis of silver nanoparticles through reduction with pistiastratiotes l. extract. Adv. Mater. Res. 2016, 1131, 223–226. [Google Scholar] [CrossRef]
- Muthu, K.; Priya, S. Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 179, 66–72. [Google Scholar] [CrossRef]
- Fanoro, O.T.; Parani, S.; Maluleke, R.; Lebepe, T.C.; Varghese, R.J.; Mgedle, N.; Mavumengwana, V.; Oluwafemi, O.S. Biosynthesis of smaller-sized platinum nanoparticles using the leaf extract of Combretum erythrophyllum and its antibacterial activities. Antibiotics 2021, 10, 1275. [Google Scholar] [CrossRef]
- Khalil, M.M.; Ismail, E.H.; El-Baghdady, K.Z.; Mohamed, D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab. J. Chem. 2014, 7, 1131–1139. [Google Scholar] [CrossRef]
- Seifipour, R.; Nozari, M.; Pishkar, L. Green synthesis of silver nanoparticles using Tragopogon collinus leaf extract and study of their antibacterial effects. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2926–2936. [Google Scholar] [CrossRef]
- Villamizar-Gallardo, R.; Cruz, J.F.O.; Ortíz-Rodriguez, O.O. Fungicidal effect of silver nanoparticles on toxigenic fungi in cocoa. Pesqui. Agropecuária Bras. 2016, 51, 1929–1936. [Google Scholar] [CrossRef]
- Abdel-Hafez, S.I.; Nafady, N.A.; Abdel-Rahim, I.R.; Shaltout, A.M.; Daròs, J.-A.; Mohamed, M.A. Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech 2016, 6, 199. [Google Scholar] [CrossRef]
- Cai, L.; Chen, J.; Liu, Z.; Wang, H.; Yang, H.; Ding, W. Magnesium oxide nanoparticles: Effective agricultural antibacterial agent against Ralstonia solanacearum. Front. Microbiol. 2018, 9, 790. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, L.; Lu, M.; Lu, S.; Li, Z.; Ding, W. Comparative study on the fungicidal activity of metallic MgO nanoparticles and macroscale MgO against soilborne fungal phytopathogens. Front. Microbiol. 2020, 11, 365. [Google Scholar] [CrossRef] [PubMed]
- Munro, C.A. Chitin and glucan, the yin and yang of the fungal cell wall, implications for antifungal drug discovery and therapy. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2013; Volume 83, pp. 145–172. [Google Scholar]
- Gow, N.A.; Latge, J.-P.; Munro, C.A. The fungal cell wall: Structure, biosynthesis, and function. Microbiol. Spectr. 2017, 5, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, H.; Semlali, A.; Perraud, L.; Chmielewski, W.; Zakrzewski, A.; Rouabhia, M. Cigarette smoke-exposed Candida albicans increased chitin production and modulated human fibroblast cell responses. BioMed Res. Int. 2014, 2014, 963156. [Google Scholar] [CrossRef]
- Lenardon, M.D.; Munro, C.A.; Gow, N.A. Chitin synthesis and fungal pathogenesis. Curr. Opin. Microbiol. 2010, 13, 416–423. [Google Scholar] [CrossRef]
- Meneses, C.; Silva, B.; Medeiros, B.; Serrato, R.; Johnston-Monje, D. A metagenomic advance for the cloning and characterization of a cellulase from red rice crop residues. Molecules 2016, 21, 831. [Google Scholar] [CrossRef]
- Sharma, A.; Tewari, R.; Rana, S.S.; Soni, R.; Soni, S.K. Cellulases: Classification, methods of determination and industrial applications. Appl. Biochem. Biotechnol. 2016, 179, 1346–1380. [Google Scholar] [CrossRef]
Factors | −1 | 0 | 1 |
---|---|---|---|
pH | 3 | 7.5 | 12 |
Temperature (°C) | 30 | 60 | 90 |
Reaction time (mins) | 30 | 75 | 120 |
Concentration (mM) | 1 | 3 | 5 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 16,627.92 | 14 | 1187.71 | 492.56 | <0.0001 |
A-pH | 6228.05 | 1 | 6228.05 | 2582.86 | <0.0001 |
B-Temperature | 6.31 | 1 | 6.31 | 2.62 | 0.1281 |
C-Reaction time | 569.67 | 1 | 569.67 | 236.25 | <0.0001 |
D-Concentration | 3.14 | 1 | 3.14 | 1.30 | 0.2728 |
AB | 4290.91 | 1 | 4290.91 | 1779.50 | <0.0001 |
AC | 101.20 | 1 | 101.20 | 41.97 | <0.0001 |
AD | 1273.42 | 1 | 1273.42 | 528.10 | <0.0001 |
BC | 103.23 | 1 | 103.23 | 42.81 | <0.0001 |
BD | 3980.98 | 1 | 3980.98 | 1650.96 | <0.0001 |
CD | 60.37 | 1 | 60.37 | 25.04 | 0.0002 |
A2 | 9.82 | 1 | 9.82 | 4.07 | 0.0632 |
B2 | 0.7074 | 1 | 0.7074 | 0.2934 | 0.5966 |
C2 | 0.0685 | 1 | 0.0685 | 0.0284 | 0.8686 |
D2 | 0.0316 | 1 | 0.0316 | 0.0131 | 0.9105 |
Residual | 33.76 | 14 | 2.41 | ||
Lack of Fit | 30.36 | 10 | 3.04 | 3.58 | 0.1155 |
Pure Error | 3.40 | 4 | 0.8492 | ||
Cor Total | 16,661.68 | 28 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 4052.17 | 14 | 289.44 | 19.80 | <0.0001 |
A-pH | 499.62 | 1 | 499.62 | 34.18 | <0.0001 |
B-Temperature | 738.21 | 1 | 738.21 | 50.50 | <0.0001 |
C-Reaction time | 52.75 | 1 | 52.75 | 3.61 | 0.0783 |
D-Concentration | 164.80 | 1 | 164.80 | 11.27 | 0.0047 |
AB | 44.22 | 1 | 44.22 | 3.03 | 0.1039 |
AC | 127.24 | 1 | 127.24 | 8.70 | 0.0105 |
AD | 0.0210 | 1 | 0.0210 | 0.0014 | 0.9703 |
BC | 132.02 | 1 | 132.02 | 9.03 | 0.0095 |
BD | 97.61 | 1 | 97.61 | 6.68 | 0.0216 |
CD | 222.90 | 1 | 222.90 | 15.25 | 0.0016 |
A2 | 954.22 | 1 | 954.22 | 65.28 | <0.0001 |
B2 | 1354.88 | 1 | 1354.88 | 92.69 | <0.0001 |
C2 | 140.86 | 1 | 140.86 | 9.64 | 0.0078 |
D2 | 240.68 | 1 | 240.68 | 16.46 | 0.0012 |
Residual | 204.65 | 14 | 14.62 | ||
Lack of Fit | 204.03 | 10 | 20.40 | 131.74 | 0.0001 |
Pure Error | 0.6195 | 4 | 0.1549 | ||
Cor Total | 4256.83 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniel, A.I.; Al-Hashimi, A.; Keyster, M.; Klein, A. Phyto-Synthesis and Characterization of Silver Nanoparticles Using Box-Behnken Design and Its Anti-Alternaria Activity. Clean Technol. 2023, 5, 1381-1401. https://doi.org/10.3390/cleantechnol5040068
Daniel AI, Al-Hashimi A, Keyster M, Klein A. Phyto-Synthesis and Characterization of Silver Nanoparticles Using Box-Behnken Design and Its Anti-Alternaria Activity. Clean Technologies. 2023; 5(4):1381-1401. https://doi.org/10.3390/cleantechnol5040068
Chicago/Turabian StyleDaniel, Augustine Innalegwu, Ali Al-Hashimi, Marshall Keyster, and Ashwil Klein. 2023. "Phyto-Synthesis and Characterization of Silver Nanoparticles Using Box-Behnken Design and Its Anti-Alternaria Activity" Clean Technologies 5, no. 4: 1381-1401. https://doi.org/10.3390/cleantechnol5040068
APA StyleDaniel, A. I., Al-Hashimi, A., Keyster, M., & Klein, A. (2023). Phyto-Synthesis and Characterization of Silver Nanoparticles Using Box-Behnken Design and Its Anti-Alternaria Activity. Clean Technologies, 5(4), 1381-1401. https://doi.org/10.3390/cleantechnol5040068