Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = gravity segregation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8278 KiB  
Article
Impact of Gravity Segregation on Gas Injection Development in Condensate Gas Reservoirs: A Numerical Simulation Study
by Fangfang Chen, Mengqin Li, Yang Yang, Qizhu Zhang, Ning Lin and Keliu Wu
Processes 2025, 13(6), 1659; https://doi.org/10.3390/pr13061659 - 26 May 2025
Viewed by 491
Abstract
Gravity segregation is a critical phenomenon in thick condensate gas reservoirs, significantly influencing fluid composition and phase behavior. Reservoir-scale numerical simulation, serving as an indispensable technical approach in modern petroleum engineering, provides both quantitative data support and theoretical frameworks for development strategy optimization. [...] Read more.
Gravity segregation is a critical phenomenon in thick condensate gas reservoirs, significantly influencing fluid composition and phase behavior. Reservoir-scale numerical simulation, serving as an indispensable technical approach in modern petroleum engineering, provides both quantitative data support and theoretical frameworks for development strategy optimization. However, the impact of gravity segregation on the distribution of initial fluid compositions is often overlooked in conventional numerical simulations due to data limitations or underestimated importance. This oversight leads to systematic deviations between simulated reservoir performance and actual field observations, ultimately compromising the efficient development of reservoirs. This study analyzed PVT data from reservoir fluid samples at different depths to determine the initial fluid composition distribution. Two models were developed: one incorporating gravity segregation and another neglecting it, to evaluate their performance during gas injection. Key findings include: (i) Gravity segregation alters the initial fluid composition, creating lighter components near the reservoir top and heavier ones at the bottom, resulting in distinct phase behaviors and production dynamics. (ii) The model accounting for gravity segregation aligns better with historical production data, while the model neglecting it underestimates oil production rates by about 9% and overestimates oil recovery by 2–5% during gas injection, due to inaccurate fluid composition assumptions. (iii) The model without gravity segregation also underestimates differences in oil recovery between injection–production strategies, such as top versus bottom injection. This study highlights the critical role of gravity segregation in reservoir simulation and provides valuable insights for optimizing the development of condensate gas reservoirs with complex fluid distributions. The findings reveal that accounting for gravity segregation in reservoir simulation models through proper initialization of fluid distribution leads to improved simulation accuracy, thereby enabling more precise development strategy design. Full article
Show Figures

Figure 1

18 pages, 4820 KiB  
Review
Research and Application of Oxygen-Reduced-Air-Assisted Gravity Drainage for Enhanced Oil Recovery
by Jiangfei Wei, Hongwei Yu, Ming Gao, Peifeng Yan, Kesheng Tan, Yutong Yan, Keqiang Wei, Mingyan Sun, Xianglong Yu, Zhihua Chen and Qiang Chen
Energies 2025, 18(3), 557; https://doi.org/10.3390/en18030557 - 24 Jan 2025
Cited by 1 | Viewed by 862
Abstract
This paper summarizes the research progress and applications of oxygen-reduced-air-assisted gravity drainage (OAGD) in enhanced oil recovery (EOR). The fundamental principles and key technologies of OAGD are introduced, along with a review of domestic and international field trials. Factors influencing displacement performance, including [...] Read more.
This paper summarizes the research progress and applications of oxygen-reduced-air-assisted gravity drainage (OAGD) in enhanced oil recovery (EOR). The fundamental principles and key technologies of OAGD are introduced, along with a review of domestic and international field trials. Factors influencing displacement performance, including low-temperature oxidation reactions, injection rates, and reservoir dip angles, are discussed in detail. The findings reveal that low-temperature oxidation significantly improves the recovery efficiency through the dynamic balance of light hydrocarbon volatilization and fuel deposition, coupled with the synergistic optimization of the reservoir temperature, pressure, and oxygen concentration. Proper control of the injection rate stabilizes the oil–gas interface, expands the swept volume, and delays gas channeling. High-dip reservoirs, benefiting from enhanced gravity segregation, demonstrate superior displacement efficiency. Finally, the paper highlights future directions, including the optimization of injection parameters, deepening studies on reservoir chemical reaction mechanisms, and integrating intelligent gas injection technologies to enhance the effectiveness and economic viability of OAGD in complex reservoirs. Full article
(This article belongs to the Special Issue Petroleum and Natural Gas Engineering)
Show Figures

Figure 1

24 pages, 10237 KiB  
Article
Unraveling Dry Jigging: Insights into Pulsation, Energy Consumption, and Stratification Dynamics
by Fortunato Lucas Quembo Raposo, Carlos Otávio Petter and Weslei Monteiro Ambrós
Minerals 2024, 14(7), 678; https://doi.org/10.3390/min14070678 - 28 Jun 2024
Cited by 1 | Viewed by 1759
Abstract
The increasing concerns regarding water usage in mineral processing have led to a growing interest in dry jigging in recent years. However, there is still a need for a more comprehensive examination of the operational aspects of the technique. In this sense, this [...] Read more.
The increasing concerns regarding water usage in mineral processing have led to a growing interest in dry jigging in recent years. However, there is still a need for a more comprehensive examination of the operational aspects of the technique. In this sense, this study focused on three main elements: (a) examining the air pulse pattern during dry jig operation; (b) assessing the evolution of the stratification profile over time using partition analysis; and (c) evaluating the specific energy consumption of batch dry jigging during operation. Also, an innovative operational strategy known as “transient pulsing” was proposed and analyzed, involving varying the intensity and frequency of the air pulse throughout the stratification process. All tests were conducted using density tracers spread across 11 density ranges (0.4–2.4 g/cm3) and a base bed (gravel) to analyze their separation in a batch, pilot-scale dry jig. Pressure drop and active power data were collected to measure the pulse characteristics and energy consumption. The airflow curves, obtained through pressure drop data, indicated that the pulsation process is more unstable as the airflow increases, possibly due to the pressure fluctuations experienced by air during valve closure. For the pulsation conditions used in the tests, the specific energy consumption was 10.66 Wh/kg of jigged material, with most of it related to the blower drive system. Analysis of the stratification evolution over time showed an oscillatory behavior, alternating between states of better (Ep < 0.1) and worse (Ep > 0.1) separation, especially for the near-gravity material (NGM). Results of the transient pulsation tests suggested that progressively increasing the vertical displacement of the bed during stratification resulted in slightly better segregation levels and more stable jigging evolution over time in comparison to stationary pulse conditions. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

18 pages, 7994 KiB  
Article
A Strategy for Enhanced Carbon Storage: A Hybrid CO2 and Aqueous Formate Solution Injection to Control Buoyancy and Reduce Risk
by Marcos Vitor Barbosa Machado, Mojdeh Delshad, Omar Ali Carrasco Jaim, Ryosuke Okuno and Kamy Sepehrnoori
Energies 2024, 17(11), 2680; https://doi.org/10.3390/en17112680 - 31 May 2024
Cited by 1 | Viewed by 1685
Abstract
Conventional Carbon Capture and Storage (CCS) operations use the direct injection of CO2 in a gaseous phase from the surface as a carbon carrier. Due to CO2 properties under reservoir conditions with lower density and viscosity than in situ brine, CO [...] Read more.
Conventional Carbon Capture and Storage (CCS) operations use the direct injection of CO2 in a gaseous phase from the surface as a carbon carrier. Due to CO2 properties under reservoir conditions with lower density and viscosity than in situ brine, CO2 flux is mainly gravity-dominated. CO2 moves toward the top and accumulates below the top seal, thus reinforcing the risk of possible leakage to the surface through unexpected hydraulic paths (e.g., reactivated faults, fractures, and abandoned wells) or in sites without an effective sealing caprock. Considering the risks, the potential benefits of the interplay between CO2 and an aqueous solution of formate ions (HCOO¯) were evaluated when combined to control CO2 gravity segregation in porous media. Three combined strategies were evaluated and compared with those where either pure CO2 or a formate solution was injected. The first strategy consisted of a pre-flush of formate solution followed by continuous CO2 injection, and it was not effective in controlling the vertical propagation of the CO2 plume. However, the injection of a formate solution slug in a continuous or alternated way, simultaneously with the CO2 continuous injection, was effective in slowing down the vertical migration of the CO2 plume and keeping it permanently stationary deeper than the surface depth. Full article
(This article belongs to the Special Issue Subsurface Energy and Environmental Protection)
Show Figures

Figure 1

21 pages, 7500 KiB  
Article
Numerical Investigation on Alkaline-Surfactant-Polymer Alternating CO2 Flooding
by Weirong Li, Xin Wei, Zhengbo Wang, Weidong Liu, Bing Ding, Zhenzhen Dong, Xu Pan, Keze Lin and Hongliang Yi
Processes 2024, 12(5), 916; https://doi.org/10.3390/pr12050916 - 29 Apr 2024
Cited by 1 | Viewed by 1971
Abstract
For over four decades, carbon dioxide (CO2) has been instrumental in enhancing oil extraction through advanced recovery techniques. One such method, water alternating gas (WAG) injection, while effective, grapples with limitations like gas channeling and gravity segregation. To tackle the aforementioned [...] Read more.
For over four decades, carbon dioxide (CO2) has been instrumental in enhancing oil extraction through advanced recovery techniques. One such method, water alternating gas (WAG) injection, while effective, grapples with limitations like gas channeling and gravity segregation. To tackle the aforementioned issues, this paper proposes an upgrade coupling method named alkaline-surfactant-polymer alternating gas (ASPAG). ASP flooding and CO2 are injected alternately into the reservoir to enhance the recovery of the WAG process. The uniqueness of this method lies in the fact that polymers could help profile modification, CO2 would miscible mix with oil, and alkaline surfactant would reduce oil–water interfacial tension (IFT). To analyze the feasibility of ASPAG, a couples model considering both gas flooding and ASP flooding processes is established by using the CMG-STARS (Version 2021) to study the performance of ASPAG and compare the recovery among ASPAG, WAG, and ASP flooding. Our research delved into the ASPAG’s adaptability across reservoirs varying in average permeability, interlayer heterogeneity, formation rhythmicity, and fluid properties. Key findings include that ASPAG surpasses the conventional WAG in sweep and displacement efficiency, elevating oil recovery by 12–17%, and in comparison to ASP, ASPAG bolsters displacement efficiency, leading to a 9–11% increase in oil recovery. The primary flooding mechanism of ASPAG stems from the ASP slug’s ability to diminish the interfacial tension, enhancing the oil and water mobility ratio, which is particularly efficient in medium-high permeability layers. Through sensitivity analysis, ASPAG is best suited for mid-high-permeability reservoirs characterized by low crude oil viscosity and a composite reverse sedimentary rhythm. This study offers invaluable insights into the underlying mechanisms and critical parameters that influence the alkaline-surfactant-polymer alternating gas method’s success for enhanced oil recovery. Furthermore, it unveils an innovative strategy to boost oil recovery in medium-to-high-permeability reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 6948 KiB  
Article
Enhancement of Strength–Ductility Synergy of Al-Li Cast Alloy via New Forming Processes and Sc Addition
by Shulin Lü, Zhaoxiang Yan, Yu Pan, Jianyu Li, Shusen Wu and Wei Guo
Materials 2024, 17(7), 1558; https://doi.org/10.3390/ma17071558 - 28 Mar 2024
Cited by 2 | Viewed by 1432
Abstract
In this study, concurrent enhancements in both strength and ductility of the Al-2Li-2Cu-0.5Mg-0.2Zr cast alloy (hereafter referred to as Al-Li) were achieved through an optimized forming process comprising ultrasonic treatment followed by squeeze casting, coupled with the incorporation of Sc. Initially, the variations [...] Read more.
In this study, concurrent enhancements in both strength and ductility of the Al-2Li-2Cu-0.5Mg-0.2Zr cast alloy (hereafter referred to as Al-Li) were achieved through an optimized forming process comprising ultrasonic treatment followed by squeeze casting, coupled with the incorporation of Sc. Initially, the variations in the microstructure and mechanical properties of the Sc-free Al-Li cast alloy (i.e., alloy A) during various forming processes were investigated. The results revealed that the grain size in the UT+SC (ultrasonic treatment + squeeze casting) alloy was reduced by 76.3% and 57.7%, respectively, compared to those of the GC (gravity casting) or SC alloys. Additionally, significant improvements were observed in its compositional segregation and porosity reduction. After UT+SC, the ultimate tensile strength (UTS), yield strength (YS), and elongation reached 235 MPa, 135 MPa, and 15%, respectively, which were 113.6%, 28.6%, and 1150% higher than those of the GC alloy. Subsequently, the Al-Li cast alloy containing 0.2 wt.% Sc (referred to as alloy B) exhibited even finer grains under the UT+SC process, resulting in simultaneous enhancements in its UTS, YS, and elongation. Interestingly, the product of ultimate tensile strength and elongation (i.e., UTS × EL) for both alloys reached 36 GPa•% and 42 GPa•%, respectively, which is much higher than that of other Al-Li cast alloys reported in the available literature. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, Volume II)
Show Figures

Figure 1

24 pages, 5737 KiB  
Article
Front Movement and Sweeping Rules of CO2 Flooding under Different Oil Displacement Patterns
by Xiang Qi, Tiyao Zhou, Weifeng Lyu, Dongbo He, Yingying Sun, Meng Du, Mingyuan Wang and Zheng Li
Energies 2024, 17(1), 15; https://doi.org/10.3390/en17010015 - 19 Dec 2023
Cited by 5 | Viewed by 1972
Abstract
CO2 flooding is a pivotal technique for significantly enhancing oil recovery in low-permeability reservoirs. The movement and sweeping rules at the front of CO2 flooding play a critical role in oil recovery; yet, a comprehensive quantitative analysis remains an area in [...] Read more.
CO2 flooding is a pivotal technique for significantly enhancing oil recovery in low-permeability reservoirs. The movement and sweeping rules at the front of CO2 flooding play a critical role in oil recovery; yet, a comprehensive quantitative analysis remains an area in need of refinement. In this study, we developed 1-D and 2-D numerical simulation models to explore the sweeping behavior of miscible, immiscible, and partly miscible CO2 flooding patterns. The front position and movement rules of the three CO2 flooding patterns were determined. A novel approach to the contour area calculation method was introduced to quantitatively characterize the sweep coefficients, and the sweeping rules are discussed regarding the geological parameters, oil viscosity, and injection–production parameters. Furthermore, the Random Forest (RF) algorithm was employed to identify the controlling factor of the sweep coefficient, as determined through the use of out-of-bag (OOB) data permutation analysis. The results showed that the miscible front was located at the point of maximum CO2 content in the oil phase. The immiscible front occurred at the point of maximum interfacial tension near the production well. Remarkably, the immiscible front moved at a faster rate compared with the miscible front. Geological parameters, including porosity, permeability, and reservoir thickness, significantly impacted the gravity segregation effect, thereby influencing the CO2 sweep coefficient. Immiscible flooding exhibited the highest degree of gravity segregation, with a maximum gravity segregation degree (GSD) reaching 78.1. The permeability ratio was a crucial factor, with a lower limit of approximately 5.0 for reservoirs suitable for CO2 flooding. Injection–production parameters also played a pivotal role in terms of the sweep coefficient. Decreased well spacing and increased gas injection rates were found to enhance sweep coefficients by suppressing gravity segregation. Additionally, higher gas injection rates could improve the miscibility degree of partly miscible flooding from 0.69 to 1.0. Oil viscosity proved to be a significant factor influencing the sweep coefficients, with high seepage resistance due to increasing oil viscosity dominating the miscible and partly miscible flooding patterns. Conversely, gravity segregation primarily governed the sweep coefficient in immiscible flooding. In terms of controlling factors, the permeability ratio emerged as a paramount influence, with a factor importance value (FI) reaching 1.04. The findings of this study can help for a better understanding of sweeping rules of CO2 flooding and providing valuable insights for optimizing oil recovery strategies in the field applications of CO2 flooding. Full article
Show Figures

Figure 1

14 pages, 5473 KiB  
Article
Numerical and Experimental Study on Carbon Segregation in Shaped Billet of Medium Carbon Steel with Combined Electromagnetic Stirring
by Pengchao Li, Guifang Zhang, Peng Yan, Nan Tian and Zhenhua Feng
Materials 2023, 16(23), 7464; https://doi.org/10.3390/ma16237464 - 30 Nov 2023
Cited by 5 | Viewed by 1584
Abstract
Carbon segregation is the major and classical internal defect in the continuous casting process of carbon steel. Based on the combined electromagnetic stirring equipment for new billet in a steel plant, China, the influence of combined electromagnetic stirring (M-EMS + F-EMS) on the [...] Read more.
Carbon segregation is the major and classical internal defect in the continuous casting process of carbon steel. Based on the combined electromagnetic stirring equipment for new billet in a steel plant, China, the influence of combined electromagnetic stirring (M-EMS + F-EMS) on the carbon segregation of 300 mm × 340 mm special-shaped billet was studied via numerical simulation and on-site industrialization tests. The Lorentz force and carbon solute distribution were simulated under different EMS parameters. The formation mechanism of the carbon segregation of medium carbon steel with different combined electromagnetic stirring processes was analyzed. The results show that: (1) with the combined action of “solute flushing” effect and gravity, the carbon concentration in the loose side of the medium carbon steel casting billet is gradually lower than the fixed side, while the carbon concentration on the fixed side gradually accumulates more; and (2) under the action of combined electromagnetic stirring, the segregation index of casting billet could be controlled to remain between 0.96–1.05 and shows an increasing change in solidification from the skin to the center. When the current and frequency of M-EMS are 250 A and 2.0 Hz and the F-EMS are 180 A and 8.0 Hz, the carbon segregation defects in the special-shaped (300 mm × 340 mm) casting billet can be significantly improved. Full article
Show Figures

Figure 1

27 pages, 8450 KiB  
Article
Impacts of Urban Morphology on Seasonal Land Surface Temperatures: Comparing Grid- and Block-Based Approaches
by Gyuwon Jeon, Yujin Park and Jean-Michel Guldmann
ISPRS Int. J. Geo-Inf. 2023, 12(12), 482; https://doi.org/10.3390/ijgi12120482 - 28 Nov 2023
Cited by 9 | Viewed by 3376
Abstract
Climate change is expected to result in increased occurrences of extreme weather events such as heat waves and cold spells. Urban planning responses are crucial for improving the capacity of cities and communities to deal with significant temperature variations across seasons. This study [...] Read more.
Climate change is expected to result in increased occurrences of extreme weather events such as heat waves and cold spells. Urban planning responses are crucial for improving the capacity of cities and communities to deal with significant temperature variations across seasons. This study aims to investigate the relationship between urban temperature fluctuations and urban morphology throughout the four seasons. Through quadrant and statistical analyses, built-environment factors are identified that moderate or exacerbate seasonal land surface temperatures (LSTs). The focus is on Seoul, South Korea, as a case study, and seasonal LST values are calculated at both the grid (100 m × 100 m) and street block levels, incorporating factors such as vegetation density, land use patterns, albedo, two- and three-dimensional building forms, and gravity indices for large forests and water bodies. The quadrant analysis reveals a spatial segregation between areas demonstrating high LST adaptability (cooler summers and warmer winters) and those displaying LST vulnerability (hotter summers and colder winters), with significant differences in vegetation and building forms. Spatial regression analyses demonstrate that higher vegetation density and proximity to water bodies play key roles in moderating LSTs, leading to cooler summers and warmer winters. Building characteristics have a constant impact on LSTs across all seasons: horizontal expansion increases the LST, while vertical expansion reduces the LST. These findings are consistent for both grid- and block-level analyses. This study emphasizes the flexible role of the natural environment in moderating temperatures. Full article
Show Figures

Figure 1

19 pages, 4765 KiB  
Article
Design and Optimization of Heat Treatment Process Parameters for High-Molybdenum-Vanadium High-Speed Steel for Rolls
by Jibing Chen, Yanfeng Liu, Yujie Wang, Rong Xu, Qianyu Shi, Junsheng Chen and Yiping Wu
Materials 2023, 16(22), 7103; https://doi.org/10.3390/ma16227103 - 9 Nov 2023
Cited by 7 | Viewed by 2153
Abstract
High-molybdenum-vanadium high-speed steel is a new type of high-hardenability tool steel with excellent wear resistance, castability, and high-temperature red hardness. This paper proposes a composition design of high-molybdenum-vanadium high-speed steel for rolls, and its specific chemical composition is as follows (wt.%): C2%, Mo7.0%, [...] Read more.
High-molybdenum-vanadium high-speed steel is a new type of high-hardenability tool steel with excellent wear resistance, castability, and high-temperature red hardness. This paper proposes a composition design of high-molybdenum-vanadium high-speed steel for rolls, and its specific chemical composition is as follows (wt.%): C2%, Mo7.0%, V7.0%, Si0.3%, Mn0.3%, Ni0.4%, Cr3.0%, and the rest of the iron. This design is characterized by the increase in molybdenum and vanadium in high-speed steel to replace traditional high-speed steel rolls with the tungsten element in order to reduce the heavy elements’ tungsten-specific gravity segregation caused by centrifugal casting so that the roll performance is uniform and the stability of use is improved. JMatPro (version 7.0) simulation software is used for the composition design of high-molybdenum-vanadium high-speed steel. The phase composition diagram is analyzed under different temperatures. The content of different phases of the organization in different temperatures is also studied. The martensitic transformation temperature and different tempering temperatures with the different types of compounds and grain sizes are calculated. The process parameters of heat treatment of high-molybdenum-vanadium high-speed steel are optimized. The selection of carbon content and the temperature of M50 are calculated and optimized, and the results show that the range of pouring temperatures, quenching temperatures, annealing temperatures, and tempering temperatures are 1360~1410 °C, 1190~1200 °C, 818~838 °C, and 550~600 °C, respectively. Scanning electron microscope (SEM) analysis of the samples obtained by using the above heat treatment parameters is consistent with the simulation results, which indicates that the simulation has important reference significance for guiding the actual production. Full article
(This article belongs to the Special Issue Precision Manufacturing of Advanced Alloys and Composites)
Show Figures

Figure 1

20 pages, 3278 KiB  
Article
Mitigation of Gravity Segregation by Foam to Enhance Sweep Efficiency
by Meijie Wang, Rigu Su, Yaowei Huang, Dengya Chen, Yiyang Li, Hong Xiang, Wenxuan Guo and Long Chen
Appl. Sci. 2023, 13(15), 8622; https://doi.org/10.3390/app13158622 - 26 Jul 2023
Cited by 2 | Viewed by 1560
Abstract
Foam-assisted gas injection exhibits promising potential for enhancing sweep efficiency through the amelioration of gravity segregation, particularly within reservoirs characterized by heterogeneity. In this work, the implicit-texture (IT) model featuring two flow regimes is employed to examine the impact of heterogeneity on gravity [...] Read more.
Foam-assisted gas injection exhibits promising potential for enhancing sweep efficiency through the amelioration of gravity segregation, particularly within reservoirs characterized by heterogeneity. In this work, the implicit-texture (IT) model featuring two flow regimes is employed to examine the impact of heterogeneity on gravity segregation. The validation of the numerical results for water–gas coinjection and pre-generated foam injection is accomplished through a comparative analysis with analytical solutions. A hypothetical two-layer model with varying permeabilities and thickness ratios is used to examine the impact of foam on gravity segregation. The numerical findings demonstrate satisfactory conformity with analytical solutions in homogeneous reservoirs. A high-permeability top layer in a layered model with a fixed injection rate results in sweep efficiency similar to that of a homogeneous reservoir with each individual permeability. A low-permeability top layer could increase the sweep efficiency, but with severe permeability contrast, the bottom high-permeability layer could impact the displacement process, even with a thin thickness. The sweep efficiency increases with the thickness of the high-permeability top layer and decreases with a thicker low-permeability top layer under fixed injection pressure. The predicted segregation length through a single-layer approximation cannot match the results of the layered models where the permeability contrast is too great or the thickness of two layers is comparable. Full article
(This article belongs to the Special Issue Development and Production of Oil Reservoirs)
Show Figures

Figure 1

13 pages, 1089 KiB  
Article
Granular Segregation in Gravity-Driven, Dense, Steady, Fluid–Particle Flows over Erodible Beds and Rigid, Bumpy Bases
by James T. Jenkins and Michele Larcher
Water 2023, 15(14), 2629; https://doi.org/10.3390/w15142629 - 20 Jul 2023
Cited by 1 | Viewed by 1381
Abstract
Kinetic theory is used to propose and solve boundary value problems for fully developed, steady, dense gravity-driven flows of mixtures composed of identical inelastic spheres and water over both inclined erodible beds and rigid, bumpy bases confined by vertical sidewalls. We solve the [...] Read more.
Kinetic theory is used to propose and solve boundary value problems for fully developed, steady, dense gravity-driven flows of mixtures composed of identical inelastic spheres and water over both inclined erodible beds and rigid, bumpy bases confined by vertical sidewalls. We solve the boundary value problems assuming values of the mass density and of the size of the spheres typical of natural materials and show the numerical solutions for the profiles of the mean velocities of the particles and fluid, the intensity of the particle velocity fluctuations, and the granular concentration. In addition, we indicate how the features of the grain velocity fluctuations profile would influence segregation in three situations when the particle phase consists of two sizes of spheres: (1) the spheres are of the same material, and only gradients of temperature influence their segregation; (2) the mass densities of the material of the spheres are such that only gravity influences segregation; and (3) the mass densities are such that the coefficients of the temperature gradients and gravity segregation mechanisms are equal. For spheres of the same material, over a rigid bumpy base, the concentration of larger spheres increases from zero at the bed to the maximum value at the top of the flow; while over an erodible bed, this concentration has its maximum value at both the bed and the top of the flow. Full article
(This article belongs to the Special Issue Granular Flows Modeling and Simulation)
Show Figures

Figure 1

23 pages, 9815 KiB  
Article
Directional Dependency of Relative Permeability in Vugular Porous Medium: Experiment and Numerical Simulation
by Shihan Song, Yuan Di and Wanjiang Guo
Energies 2023, 16(7), 3041; https://doi.org/10.3390/en16073041 - 27 Mar 2023
Viewed by 1525
Abstract
Carbonate reservoirs are a highly heterogeneous type of reservoir characterized by the presence of a large amount of vugs and pores. During two-phase displacement, the two-phase flow regime in the vugs might be gravity segregated. The distribution pattern of two-phase fluid in the [...] Read more.
Carbonate reservoirs are a highly heterogeneous type of reservoir characterized by the presence of a large amount of vugs and pores. During two-phase displacement, the two-phase flow regime in the vugs might be gravity segregated. The distribution pattern of two-phase fluid in the vugs would accelerate the water flow in downward and horizontal directions, meanwhile decelerating in an upward direction, resulting in a different oil recovery ratio. This gives rise to the question of whether the relative permeability should be modeled as a directional dependent in a vugular porous medium since it is usually treated as an isotropic quantity. In this study, via both experiment and numerical simulation, we demonstrate that the relative permeability of vugular porous medium is dependent on the angle between the flow direction and the horizontal plane and should be considered for oil recovery estimation for carbonate reservoirs. Using the transmissibility-weighted upscaling method and a single-vug model, the relative permeability curves for different flow directions are obtained by numerical simulation. A directional relative permeability model for a vugular porous medium is also proposed. Full article
Show Figures

Figure 1

21 pages, 7473 KiB  
Article
The Influencing Factors of CO2 Utilization and Storage Efficiency in Gas Reservoir
by Yulong Luo, Jiazheng Qin, Jianqin Cai and Yong Tang
Appl. Sci. 2023, 13(6), 3419; https://doi.org/10.3390/app13063419 - 8 Mar 2023
Cited by 5 | Viewed by 2369
Abstract
Carbon Capture, Utilization and Storage (CCUS) technology is one of the most practical means to meet zero greenhouse gas emission goal of the Paris Agreement and to ensure profitability, which could achieve permanent sequestration of CO2. Due to the cost constraints [...] Read more.
Carbon Capture, Utilization and Storage (CCUS) technology is one of the most practical means to meet zero greenhouse gas emission goal of the Paris Agreement and to ensure profitability, which could achieve permanent sequestration of CO2. Due to the cost constraints of CCUS implementation, improving recovery and maximizing storage efficiency have become a critical part of ensuring economic efficiency. This research aims to analyze the effects of key factors on enhancing gas recovery and storage efficiency, combined with the validation of CO2 displacement and storage mechanisms. Therefore, long core experiments and different dimensional simulations were established based on R gas reservoir (one of the actual gas reservoirs in Northeast China), which were designed for sensitivity analyses of different influencing parameters and quantitative analyses of different storage mechanisms during CCUS process. When the conditions (temperature and pressure) were closer to the CO2 critical point, when the following parameters (the CO2 purity, the injection rate and the dip angle) became larger, when the reservoir rhythm was reversed and when the irreducible water was is in existence, the final displacement and storage effects became better because of weaker diffusion, stronger gravity segregation and slower CO2 breakthrough. The contributions of different storage mechanisms were quantified: 83.78% CO2 existed as supercritical fluid; 12.67% CO2 was dissolved in brine; and 3.85% CO2 reacted with minerals. Some supercritical and dissolved CO2 would slowly transform to solid precipitation over time. This work could provide theoretical supports for CCUS technology research and references for CCUS field application. At the same time, countries should further improve CCUS subsidy policies and make concerted efforts to promote the globalization and commercialization of CO2 transport. Full article
Show Figures

Figure 1

11 pages, 8229 KiB  
Article
The Microstructural Degradation of Ni-Based Superalloys with Segregation under the Super-Gravity Condition
by Guo Yang, Hui Zhou, Xueqiao Li, Wenshuai Wang, Haibo Long, Shengcheng Mao, Ze Zhang and Xiaodong Han
Metals 2023, 13(2), 416; https://doi.org/10.3390/met13020416 - 17 Feb 2023
Viewed by 2729
Abstract
The Ni-based superalloy is used as the turbine blade, which is subject to the coupling effect of temperature and super-gravity during service. As the Ni-based superalloys are difficult to become homogenous after using the solid solution heat treatment, a study on morphology and [...] Read more.
The Ni-based superalloy is used as the turbine blade, which is subject to the coupling effect of temperature and super-gravity during service. As the Ni-based superalloys are difficult to become homogenous after using the solid solution heat treatment, a study on morphology and composition distribution of Ni-base superalloys with segregation during microstructural degradation is necessary. This study investigates the microstructure of the ex-service turbine blade and cast samples subjected to the high-temperature centrifugal test. The difference in the size and shape factor of the γ′ phase decreased with the stress caused by the super-gravity condition, indicating a higher magnitude of homogenization degree. The higher stress will also promote the merge of the sub-grain boundaries, leading to a lower density and higher orientational deviation of the sub-grain boundaries. Full article
(This article belongs to the Special Issue Metal Plasticity and Deformation Mechanism of Metallic Materials)
Show Figures

Figure 1

Back to TopTop