Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = grassfire

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 11675 KiB  
Article
Field-Scale Physical Modelling of Grassfire Propagation on Sloped Terrain under Low-Speed Driving Wind
by Jasmine Innocent, Duncan Sutherland and Khalid Moinuddin
Fire 2023, 6(10), 406; https://doi.org/10.3390/fire6100406 - 20 Oct 2023
Cited by 4 | Viewed by 2701
Abstract
Driving wind and slope of terrain can increase the rate of surface fire propagation. Previous physical modelling under higher driving wind (3–12.5 m/s) on slopes (Innocent et al., IJWF, 2023, 32(4), pp. 496–512 and 513–530) demonstrated that the averaged rate of fire [...] Read more.
Driving wind and slope of terrain can increase the rate of surface fire propagation. Previous physical modelling under higher driving wind (3–12.5 m/s) on slopes (Innocent et al., IJWF, 2023, 32(4), pp. 496–512 and 513–530) demonstrated that the averaged rate of fire spread (RoS) varied from that of empirical models. This study investigates the potential for better agreement at lower wind velocities (0.1 and 1 m/s), since empirical models are typically developed from experimental studies conducted under benign wind conditions. The same physical model WFDS is used. The results are analysed to understand the behaviour of various parameters (RoS, fire isochrone progression, fire intensity, flame dynamics, and heat fluxes) across different slopes. The RoS–slope angle relationship closely fits an exponential model, aligning with the findings from most experimental studies. The relative RoSs are aligned more closely with the Australian and Rothermel models’ slope corrections for 0.1 and 1 m/s, respectively. The relationship between flame length and fire intensity matches predictions from an empirical power–law correlation. Flame and plume dynamics reveal that the plume rises at a short distance from the ignition line and fire propagation is primarily buoyancy-driven. The Byram number analysis shows buoyancy-dominated fire propagation at these lower wind velocities. Convective heat fluxes are found to be more significant at greater upslopes. The study confirmed that “lighter & drier” fuel parameters accelerated the fire front movement, increasing the RoS by approximately 57–60% compared to the original parameters. Overall, this study underscores the nuanced interplay of wind speed, slope, and other factors in influencing grassfire behaviour, providing valuable insights for predictive modelling and firefighting strategies. Full article
(This article belongs to the Special Issue Understanding and Managing Extreme Wildland Fires)
Show Figures

Figure 1

18 pages, 2591 KiB  
Article
Wildfire Rates of Spread in Grasslands under Critical Burning Conditions
by Miguel G. Cruz, Martin E. Alexander and Musa Kilinc
Fire 2022, 5(2), 55; https://doi.org/10.3390/fire5020055 - 14 Apr 2022
Cited by 19 | Viewed by 8468
Abstract
An analysis of a dataset (n = 58) of high-intensity wildfire observations in cured grasslands from southern Australia revealed a simple relationship suitable for quickly obtaining a first approximation of a fire’s spread rate under low dead fuel moisture contents and strong [...] Read more.
An analysis of a dataset (n = 58) of high-intensity wildfire observations in cured grasslands from southern Australia revealed a simple relationship suitable for quickly obtaining a first approximation of a fire’s spread rate under low dead fuel moisture contents and strong wind speeds. It was found that the forward rate of fire spread is approximately 20% of the average 10-m open wind speed. The data on rate of fire spread and 10 m open wind speed ranged from 1.6 to 17 and 20 to 62 km h−1, respectively. The validity of the resulting rule of thumb was examined across a spectrum of burning conditions and its performance was contrasted against that of established empirical-based fire spread models for three different grassland fuel conditions currently used operationally in Australia. The 20% rule of thumb for grassfires produced error statistics comparable to that of the fire spread rate model for grazed or cut grass fuel conditions as recommended for general use during the summer fire season in southern Australia. Full article
Show Figures

Figure 1

26 pages, 82609 KiB  
Article
Landslide Trail Extraction Using Fire Extinguishing Model
by Zhao Zhan, Wenzhong Shi, Min Zhang, Zhewei Liu, Linya Peng, Yue Yu and Yangjie Sun
Remote Sens. 2022, 14(2), 308; https://doi.org/10.3390/rs14020308 - 10 Jan 2022
Cited by 3 | Viewed by 2917
Abstract
Landslide trails are important elements of landslide inventory maps, providing valuable information for landslide risk and hazard assessment. Compared with traditional manual mapping, skeletonization methods offer a more cost-efficient way to map landslide trails, by automatically generating centerlines from landslide polygons. However, a [...] Read more.
Landslide trails are important elements of landslide inventory maps, providing valuable information for landslide risk and hazard assessment. Compared with traditional manual mapping, skeletonization methods offer a more cost-efficient way to map landslide trails, by automatically generating centerlines from landslide polygons. However, a challenge to existing skeletonization methods is that expert knowledge and manual intervention are required to obtain a branchless skeleton, which limits the applicability of these methods. To address this problem, a new workflow for landslide trail extraction (LTE) is proposed in this study. To avoid generating redundant branches and to improve the degree of automation, two endpoints, i.e., the crown point and the toe point, of the trail were determined first, with reference to the digital elevation model. Thus, a fire extinguishing model (FEM) is proposed to generate skeletons without redundant branches. Finally, the effectiveness of the proposed method is verified, by extracting landslide trails from landslide polygons of various shapes and sizes, in two study areas. Experimental results show that, compared with the traditional grassfire model-based skeletonization method, the proposed FEM is capable of obtaining landslide trails without spurious branches. More importantly, compared with the baseline method in our previous work, the proposed LTE workflow can avoid problems including incompleteness, low centrality, and direction errors. This method requires no parameter tuning and yields excellent performance, and is thus highly valuable for practical landslide mapping. Full article
Show Figures

Graphical abstract

19 pages, 5832 KiB  
Article
The Role of Heat Flux in an Idealised Firebreak Built in Surface and Crown Fires
by Nazmul Khan and Khalid Moinuddin
Atmosphere 2021, 12(11), 1395; https://doi.org/10.3390/atmos12111395 - 25 Oct 2021
Cited by 6 | Viewed by 3139
Abstract
The disruptions to wildland fires, such as firebreaks, roads and rivers, can limit the spread of wildfire propagating through surface or crown fire. A large forest can be separated into different zones by carefully constructing firebreaks through modification of vegetation in firebreak regions. [...] Read more.
The disruptions to wildland fires, such as firebreaks, roads and rivers, can limit the spread of wildfire propagating through surface or crown fire. A large forest can be separated into different zones by carefully constructing firebreaks through modification of vegetation in firebreak regions. However, the wildland fire behaviour can be unpredictable due to the presence of either wind- or buoyancy-driven flow in the fire. In this study, we aim to test the efficacy of an idealised firebreak constructed by unburned vegetation. The physics-based large eddy simulation (LES) simulation is conducted using Wildland–urban interface Fire Dynamic Simulator (WFDS). We have carefully chosen different wind velocities with low to high values, 2.5~12.5 m/s, so the different fire behaviours can be studied. The behaviour of surface fire is studied by Australian grassland vegetation, while the crown fire is represented by placing cone-shaped trees with grass underneath. With varying velocity and vegetation, four values of firebreak widths (Lc), ranging from 5~20 m, is tested for successful break distance needed for the firebreak. For each failure or successful firebreak width, we have assessed the characteristics of fire intensity, mechanism of heat transfer, heat flux, and surface temperature. It was found that with the inclusion of forest trees, the heat release rate (HRR) increased substantially due to greater amount of fuel involved. The non-dimensional Byram’s convective number (NC) was calculated, which justifies simulated heat flux and fire characteristics. For each case, HRR, total heat fluxes, total preheat flux, total preheat radiation and convective heat flux, surface temperature and fire propagation mode are presented in the details. Some threshold heat flux was observed on the far side of the firebreak and further studies are needed to identify them conclusively. Full article
(This article belongs to the Special Issue Coupled Fire-Atmosphere Simulation)
Show Figures

Figure 1

26 pages, 2202 KiB  
Article
Understory Vegetation Change Following Woodland Reduction Varies by Plant Community Type and Seeding Status: A Region-Wide Assessment of Ecological Benefits and Risks
by Thomas A. Monaco and Kevin L. Gunnell
Plants 2020, 9(9), 1113; https://doi.org/10.3390/plants9091113 - 28 Aug 2020
Cited by 10 | Viewed by 4980
Abstract
Woodland encroachment is a global issue linked to diminished ecosystem services, prompting the need for restoration efforts. However, restoration outcomes can be highly variable, making it difficult to interpret the ecological benefits and risks associated with woodland-reduction treatments within semiarid ecosystems. We addressed [...] Read more.
Woodland encroachment is a global issue linked to diminished ecosystem services, prompting the need for restoration efforts. However, restoration outcomes can be highly variable, making it difficult to interpret the ecological benefits and risks associated with woodland-reduction treatments within semiarid ecosystems. We addressed this uncertainty by assessing the magnitude and direction of vegetation change over a 15-year period at 129 sagebrush (Artemisia spp.) sites following pinyon (Pinus spp.) and juniper (Juniperus spp.) (P–J) reduction. Pretreatment vegetation indicated strong negative relationships between P–J cover and the abundance of understory plants (i.e., perennial grass and sagebrush cover) in most situations and all three components differed significantly among planned treatment types. Thus, to avoid confounding pretreatment vegetation and treatment type, we quantified overall treatment effects and tested whether distinct response patterns would be present among three dominant plant community types that vary in edaphic properties and occur within distinct temperature/precipitation regimes using meta-analysis (effect size = lnRR = ln[posttreatment cover/pretreatment cover]). We also quantified how restoration seedings contributed to overall changes in key understory vegetation components. Meta-analyses indicated that while P–J reduction caused significant positive overall effects on all shrub and herbaceous components (including invasive cheatgrass [Bromus tectorum] and exotic annual forbs), responses were contingent on treatment- and plant community-type combinations. Restoration seedings also had strong positive effects on understory vegetation by augmenting changes in perennial grass and perennial forb components, which similarly varied by plant community type. Collectively, our results identified specific situations where broad-scale efforts to reverse woodland encroachment substantially met short-term management goals of restoring valuable ecosystem services and where P–J reduction disposed certain plant community types to ecological risks, such as increasing the probability of native species displacement and stimulating an annual grass-fire cycle. Resource managers should carefully weigh these benefits and risks and incorporate additional, appropriate treatments and/or conservation measures for the unique preconditions of a given plant community in order to minimize exotic species responses and/or enhance desirable outcomes. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

25 pages, 12074 KiB  
Article
Vegetation and Fluvial Geomorphology Dynamics after an Urban Fire
by Lauren E. H. Mathews and Alicia M. Kinoshita
Geosciences 2020, 10(8), 317; https://doi.org/10.3390/geosciences10080317 - 16 Aug 2020
Cited by 4 | Viewed by 3775
Abstract
The goal of this research was to characterize the impact of invasive riparian vegetation on burn severity patterns and fluvial topographic change in an urban Mediterranean riverine system (Med-sys) after fire in San Diego, California. We assessed standard post-fire metrics under urban conditions [...] Read more.
The goal of this research was to characterize the impact of invasive riparian vegetation on burn severity patterns and fluvial topographic change in an urban Mediterranean riverine system (Med-sys) after fire in San Diego, California. We assessed standard post-fire metrics under urban conditions with non-native vegetation and utilized field observations to quantify vegetation and fluvial geomorphic processes. Field observations noted both high vegetation loss in the riparian area and rapidly resprouting invasive grass species such as Arundo donax (Giant Reed) after fire. Satellite-based metrics that represent vegetation biomass underestimated the initial green canopy loss, as did volumetric data derived from three-dimensional terrestrial laser scanning data. Field measurements were limited to a small sample size but demonstrated that the absolute maximum topographic changes were highest in stands of Arundo donax (0.18 to 0.67 m). This work is the first quantification of geomorphic alterations promoted by non-native vegetation after fire and highlights potential grass–fire feedbacks that can contribute to geomorphic disruption. Our results support the need for ground-truthing or higher resolution when using standard satellite-based indices to assess post-fire conditions in urban open spaces, especially when productive invasive vegetation are present, and they also emphasize restoring urban waterways to native vegetation conditions. Full article
(This article belongs to the Special Issue Humans in the Earth System)
Show Figures

Figure 1

20 pages, 9862 KiB  
Article
Physics-Based Simulations of Flow and Fire Development Downstream of a Canopy
by Gilbert Accary, Duncan Sutherland, Nicolas Frangieh, Khalid Moinuddin, Ibrahim Shamseddine, Sofiane Meradji and Dominique Morvan
Atmosphere 2020, 11(7), 683; https://doi.org/10.3390/atmos11070683 - 28 Jun 2020
Cited by 4 | Viewed by 4052
Abstract
The behavior of a grassland fire propagating downstream of a forest canopy has been simulated numerically using the fully physics-based wildfire model FIRESTAR3D. This configuration reproduces quite accurately the situation encountered when a wildfire spreads from a forest to an open grassland, as [...] Read more.
The behavior of a grassland fire propagating downstream of a forest canopy has been simulated numerically using the fully physics-based wildfire model FIRESTAR3D. This configuration reproduces quite accurately the situation encountered when a wildfire spreads from a forest to an open grassland, as can be the case in a fuel break or a clearing, or during a prescribed burning operation. One of the objectives of this study was to evaluate the impact of the presence of a canopy upstream of a grassfire, especially the modifications of the local wind conditions before and inside a clearing or a fuel break. The knowledge of this kind of information constitutes a major element in improving the safety conditions of forest managers and firefighters in charge of firefighting or prescribed burning operations in such configurations. Another objective was to study the behavior of the fire under realistic turbulent flow conditions, i.e., flow resulting from the interaction between an atmospheric boundary layer (ABL) with a surrounding canopy. Therefore, the study was divided into two phases. The first phase consisted of generating an ABL/canopy turbulent flow above a pine forest (10 m high, 200 m long) using periodic boundary conditions along the streamwise direction. Large Eddy Simulations (LES) were carried out for a sufficiently long time to achieve a quasi-fully developed turbulence. The second phase consisted of simulating the propagation of a surface fire through a grassland, bordered upstream by a forest section (having the same characteristics used for the first step), while imposing the turbulent flow obtained from the first step as a dynamic inlet condition to the domain. The simulations were carried out for a wind speed that ranged between 1 and 12 m/s; these values have allowed the simulations to cover the two regimes of propagation of surfaces fires, namely plume-dominated and wind-driven fires. Full article
(This article belongs to the Special Issue Coupled Fire-Atmosphere Simulation)
Show Figures

Figure 1

18 pages, 742 KiB  
Review
Revisiting Wildland Fire Fuel Quantification Methods: The Challenge of Understanding a Dynamic, Biotic Entity
by Thomas J. Duff, Robert E. Keane, Trent D. Penman and Kevin G. Tolhurst
Forests 2017, 8(9), 351; https://doi.org/10.3390/f8090351 - 18 Sep 2017
Cited by 53 | Viewed by 7026
Abstract
Wildland fires are a function of properties of the fuels that sustain them. These fuels are themselves a function of vegetation, and share the complexity and dynamics of natural systems. Worldwide, the requirement for solutions to the threat of fire to human values [...] Read more.
Wildland fires are a function of properties of the fuels that sustain them. These fuels are themselves a function of vegetation, and share the complexity and dynamics of natural systems. Worldwide, the requirement for solutions to the threat of fire to human values has resulted in the development of systems for predicting fire behaviour. To date, regional differences in vegetation and independent fire model development has resulted a variety of approaches being used to describe, measure and map fuels. As a result, widely different systems have been adopted, resulting in incompatibilities that pose challenges to applying research findings and fire models outside their development domains. As combustion is a fundamental process, the same relationships between fuel and fire behaviour occur universally. Consequently, there is potential for developing novel fuel assessment methods that are more broadly applicable and allow fire research to be leveraged worldwide. Such a movement would require broad cooperation between researchers and would most likely necessitate a focus on universal properties of fuel. However, to truly understand fuel dynamics, the complex biotic nature of fuel would also need to remain a consideration—particularly when looking to understand the effects of altered fire regimes or changing climate. Full article
(This article belongs to the Special Issue Wildland Fire, Forest Dynamics, and Their Interactions)
16 pages, 2215 KiB  
Article
Entropy Generation Analysis of Wildfire Propagation
by Elisa Guelpa and Vittorio Verda
Entropy 2017, 19(8), 433; https://doi.org/10.3390/e19080433 - 22 Aug 2017
Cited by 5 | Viewed by 5459
Abstract
Entropy generation is commonly applied to describe the evolution of irreversible processes, such as heat transfer and turbulence. These are both dominating phenomena in fire propagation. In this paper, entropy generation analysis is applied to a grassland fire event, with the aim of [...] Read more.
Entropy generation is commonly applied to describe the evolution of irreversible processes, such as heat transfer and turbulence. These are both dominating phenomena in fire propagation. In this paper, entropy generation analysis is applied to a grassland fire event, with the aim of finding possible links between entropy generation and propagation directions. The ultimate goal of such analysis consists in helping one to overcome possible limitations of the models usually applied to the prediction of wildfire propagation. These models are based on the application of the superimposition of the effects due to wind and slope, which has proven to fail in various cases. The analysis presented here shows that entropy generation allows a detailed analysis of the landscape propagation of a fire and can be thus applied to its quantitative description. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Graphical abstract

22 pages, 1494 KiB  
Article
Feasibility of Invasive Grass Detection in a Desertscrub Community Using Hyperspectral Field Measurements and Landsat TM Imagery
by Aaryn D. Olsson, Willem J.D. Van Leeuwen and Stuart E. Marsh
Remote Sens. 2011, 3(10), 2283-2304; https://doi.org/10.3390/rs3102283 - 21 Oct 2011
Cited by 33 | Viewed by 8058
Abstract
Invasive species’ phenologies often contrast with those of native species, representing opportunities for detection of invasive species with multi-temporal remote sensing. Detection is especially critical for ecosystem-transforming species that facilitate changes in disturbance regimes. The African C4 grass, Pennisetum ciliare, is [...] Read more.
Invasive species’ phenologies often contrast with those of native species, representing opportunities for detection of invasive species with multi-temporal remote sensing. Detection is especially critical for ecosystem-transforming species that facilitate changes in disturbance regimes. The African C4 grass, Pennisetum ciliare, is transforming ecosystems on three continents and a number of neotropical islands by introducing a grass-fire cycle. However, previous attempts at discriminating P. ciliare in North America using multi-spectral imagery have been unsuccessful. In this paper, we integrate field measurements of hyperspectral plant species signatures and canopy cover with multi-temporal spectral analysis to identify opportunities for detection using moderate-resolution multi-spectral imagery. By applying these results to Landsat TM imagery, we show that multi-spectral discrimination of P. ciliare in heterogeneous mixed desert scrub is feasible, but only at high abundance levels that may have limited value to land managers seeking to control invasion. Much higher discriminability is possible with hyperspectral shortwave infrared imagery because of differences in non-photosynthetic vegetation in uninvaded and invaded landscapes during dormant seasons but these spectra are unavailable in multispectral sensors. Therefore, we recommend hyperspectral imagery for distinguishing invasive grass-dominated landscapes from uninvaded desert scrub. Full article
Show Figures

Figure 1

Back to TopTop