Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = granulation regimes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 12068 KiB  
Review
Preparation of High-Belite Calcium Sulfoaluminate Cement and Calcium Sulfoaluminate Cement from Industrial Solid Waste: A Review
by Huaiqin Liu, Chengjian Liu, Jing Wu, Yanjiao Gao, Jianwen Shao, Chenxia Wang, Tian Su, Fubo Cao, Weishen Zhang, Qifan Yang and Yutong Li
Sustainability 2025, 17(10), 4269; https://doi.org/10.3390/su17104269 - 8 May 2025
Viewed by 1174
Abstract
To address the high carbon emissions and resource dependency associated with conventional ordinary Portland cement (OPC) production, this study systematically investigated the preparation processes, hydration mechanisms, and chemical properties of high-belite calcium sulfoaluminate (HBCSA) and calcium sulfoaluminate (CSA) cements based from industrial solid [...] Read more.
To address the high carbon emissions and resource dependency associated with conventional ordinary Portland cement (OPC) production, this study systematically investigated the preparation processes, hydration mechanisms, and chemical properties of high-belite calcium sulfoaluminate (HBCSA) and calcium sulfoaluminate (CSA) cements based from industrial solid wastes. The results demonstrate that substituting natural raw materials (e.g., limestone and gypsum) with industrial solid wastes—including fly ash, phosphogypsum, steel slag, and red mud—not only reduces raw material costs but also mitigates land occupation and pollution caused by waste accumulation. Under optimized calcination regimes, clinkers containing key mineral phases (C4A3S and C2S) were successfully synthesized. Hydration products, such as ettringite (AFt), aluminum hydroxide (AH3), and C-S-H gel, were identified, where AFt crystals form a three-dimensional framework through disordered growth, whereas AH3 and C-S-H fill the matrix to create a dense interfacial transition zone (ITZ), thereby increasing the mechanical strength. The incorporation of steel slag and granulated blast furnace slag was found to increase the setting time, with low reactivity contributing to reduced strength development in the hardened paste. In contrast, Solid-waste gypsum did not significantly differ from natural gypsum in stabilizing ettringite (AFt). Furthermore, this study clarified key roles of components in HBCSA/CSA systems; Fe2O3 serves as a flux but substitutes some Al2O3, reducing C4A3S content. CaSO4 retards hydration while stabilizing strength via sustained AFt formation. CaCO3 provides nucleation sites and CaO but risks AFt expansion, degrading strength. These insights enable optimized clinker designs balancing reactivity, stability, and strength. Full article
Show Figures

Figure 1

26 pages, 2605 KiB  
Article
A Formulation–Process–Product Integrated Design Method for Accelerating Pharmaceutical Tablet Development via the High-Shear Wet Granulation and Tableting Route
by Zichen Liang, Xuefang Tang, Liping Chen, Yifei Liu, Shuying Zhao, Xiao Ma, Gan Luo and Bing Xu
Pharmaceutics 2025, 17(3), 322; https://doi.org/10.3390/pharmaceutics17030322 - 2 Mar 2025
Viewed by 1595
Abstract
Background/Objectives: Tablet is the most popular oral solid dosage form, and high-shear wet granulation and tableting (HSWGT) is a versatile technique for manufacturing tablets. The conventional pharmaceutical development for HSWGT is carried out in a step-by-step mode, which is inefficient and may [...] Read more.
Background/Objectives: Tablet is the most popular oral solid dosage form, and high-shear wet granulation and tableting (HSWGT) is a versatile technique for manufacturing tablets. The conventional pharmaceutical development for HSWGT is carried out in a step-by-step mode, which is inefficient and may result in local optimal solutions. Inspired by the co-design philosophy, a formulation–process–product integrated design (FPPID) framework is innovatively brought forward to enable the target-oriented and simultaneous exploration of the formulation design space and the process design space. Methods: A combination of strategies, such as a material library, model-driven design (MDD), and simulation-supported solution generation, are used to manage the complexity of the multi-step development processes of HSWGT. The process model was developed at the intermediate level by incorporating dimensionless parameters from the wet granulation regime map approach into the process of the partial least square (PLS) model. The tablets tensile strength (TS) and solid fraction (SF) could be predicted from the starting materials’ properties and process parameters. The material library was used to diversify the model input and improve the model’s generalization ability. Furtherly, the mixture properties calculation model and the process model were interconnected. Results: A four-step FPPID methodology including the target definition, the formulation simulation, the process simulation, and the solution generation was implemented. The performance of FPPID was demonstrated through the efficient development of high-drug-loading tablets. Conclusions: As a holistic design method, the proposed FPPID offers great opportunity for designers to handle the complex interplay in the sequential development stages, facilitate instant decisions, and accelerate product development. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

29 pages, 7096 KiB  
Article
Effect of Different Early Weaning Diets on Survival, Growth, and Digestive Ontogeny of Channa striatus (Bloch, 1793) Larvae
by Pandi Kalaiselvan, Amit Ranjan, Mir Ishfaq Nazir, Eswaran Suresh, Albin Jemila Thangarani and Kavitha Malarvizhi
Animals 2024, 14(19), 2838; https://doi.org/10.3390/ani14192838 - 1 Oct 2024
Cited by 1 | Viewed by 1665
Abstract
The present study was carried out to evaluate the survival, growth, and digestive ontogeny of C. striatus larvae fed with different experimental diets from 4 days post-hatch (dph) to 32 dph at three-day intervals. A total of 24,000 larvae, with 1600 larvae per [...] Read more.
The present study was carried out to evaluate the survival, growth, and digestive ontogeny of C. striatus larvae fed with different experimental diets from 4 days post-hatch (dph) to 32 dph at three-day intervals. A total of 24,000 larvae, with 1600 larvae per tank in triplicate and an initial mean weight of 0.64 ± 0.01 mg at 4 days post hatch (dph) were subjected to five different early weaning diets, namely Artemia nauplii (T1), co-feed diet comprising Artemia nauplii and formulated micro diet (T2), formulated micro diet (T3), formulated micro diet with protease supplementation (T4), and a commercial diet (T5). All the early weaning diets significantly affected the survival, growth, and ontogeny of the digestive system. Initially at 8 dph, C. striatus fed with T1 showed better survival and growth performance compared to other treatments. By 12 dph, the larvae fed with T1 and T2 showed similar results in terms of survival and growth performance, outperforming other treatments. However, the larvae fed with T2 and T4 outperformed T1 in survival and growth performance at 16 dph. By 24–32 dph, the larvae fed with all treatments met the basic nutritional needs for survival, with T4 fed larvae showing better growth compared to other treatments. At the end of the trial, cumulative mortality was lowest in larvae fed with T1 and highest in the larvae fed with T3 and T5. Similarly, the larvae fed with T4 showed significantly higher weight gain, specific growth rate (SGR), and average daily growth (ADG), while T1 fed larvae exhibited better feed conversion ratio (FCR) and protein efficiency ratio (PER). The enzyme activity fluctuated throughout the experimental duration. Lavae fed with T1 and T2 showed higher enzyme activities initially. However, T4 fed larvae showed higher trypsin and chymotrypsin specific activity at 16 dph along with well-developed intestinal folds with dense microvilli, higher pepsin-specific activity at 20 dph onwards with fully developed gastric glands and thicker gastric mucosal epithelium, and higher amylase and lipase activity at 16 dph with large and prominent zymogen granules in the exocrine pancreas. Peaking at 4 dph, the activity of protein metabolic enzymes (AST and ALT) sharply declined at 8 dph and increased until 32 dph. Larvae fed with T1 showed higher AST and ALT activity along with increased lipid deposits, followed by those fed with T2 and the larvae fed with T4 showing higher activity without fat accumulation but significantly lower than those fed T1 and T2. From the present research findings, it is recommended to initiate weaning for Channa striatus larvae with Artemia nauplii (from 4 dph to 8 dph) followed by a co-feeding regime (Artemia nauplii and formulated diet) between 9 and 16 dph and transition to protease-supplemented micro diet (T4) from 17 dph onwards. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

21 pages, 4343 KiB  
Article
Impact of Deformability and Rigidity of Starch Granules on Linear and Non-Linear Rheological Behavior of Waxy Rice Starch Gels and Applicability for Food End Uses
by Ngamjit Lowithun, Leonard M. C. Sagis and Namfone Lumdubwong
Foods 2024, 13(12), 1864; https://doi.org/10.3390/foods13121864 - 13 Jun 2024
Cited by 3 | Viewed by 1752
Abstract
The objective of this study was to investigate granule size and distribution and deformability of granules and their effect on the rheological properties of waxy starch gels. Native (granular) waxy rice gels (10%) were prepared, and their response in oscillatory shear was investigated [...] Read more.
The objective of this study was to investigate granule size and distribution and deformability of granules and their effect on the rheological properties of waxy starch gels. Native (granular) waxy rice gels (10%) were prepared, and their response in oscillatory shear was investigated in the linear and non-linear viscoelastic regime. The results show the gels were mainly composed of aggregated and deformed swollen granules. Significance of granule size and its distribution, deformability of granules, and the molecular characteristics of amylopectin (AP) on storage modulus of those gels was demonstrated. A low degree of deformability of granules, typical for small granules with a broad size distribution and small molecular size of AP with short external chains, resulted in rigid and brittle gels. Highly deformed granules and high AP leachates, however, yielded soft gels. It was found that the transition of elastic to plastic behavior in the non-linear regime (LAOS) was gradual when AP had long external chains, but an abrupt transition was observed with the gel with short exterior chains of AP. Differences in rheological properties of cohesive waxy starch gels appear to be mainly impacted by the varying degrees of granule deformability and rigidity, which is further attributed to a combination of factors, including granule size, particle size distribution, molecular size, the external chain length of amylopectin (AP), and lipid content. The significance of this study is that it will assist the food industry in selecting suitable waxy rice starches to gain desired textural properties of end products. Full article
(This article belongs to the Special Issue Food and Rheology)
Show Figures

Graphical abstract

17 pages, 4852 KiB  
Article
Shrinkage, Permeation and Freeze–Thaw Characteristics of Ambient Cured High Calcium-Based Alkali-Activated Engineered Composites
by Khandaker M. A. Hossain and Dhruv Sood
Materials 2023, 16(22), 7101; https://doi.org/10.3390/ma16227101 - 9 Nov 2023
Cited by 2 | Viewed by 1373
Abstract
Sustainable zero cement-based one-part ambient cured alkali-activated engineered composites (AAECs) are developed. The durability and microstructural characteristics of developed AAECs using 2% v/v polyvinyl alcohol (PVA) fibers, silica sand, binary or ternary combinations of precursors (fly ash class C ‘FA-C’, fly [...] Read more.
Sustainable zero cement-based one-part ambient cured alkali-activated engineered composites (AAECs) are developed. The durability and microstructural characteristics of developed AAECs using 2% v/v polyvinyl alcohol (PVA) fibers, silica sand, binary or ternary combinations of precursors (fly ash class C ‘FA-C’, fly ash class F ‘FA-F’ and ground granulated blast furnace slag ‘GGBFS’) and two types of powder form alkaline reagents (Type 1 and Type 2) are evaluated compared to conventional engineered cementitious composites (ECCs) and alkali-activated mortars (AAMs) without fiber. AAECs developed satisfactory compressive strength ranging from 34 MPa to 46 MPa. Expansion/shrinkage and mass change (loss/gain) behaviors are affected by binary/ternary combination of source materials, reagent types and curing regimes (water or ambient) for both AAMs and AAECs. The binary (FA-C + GGBFS) and reagent 2 (calcium hydroxide + sodium sulfate) composites demonstrated lower shrinkage due to formation of crystalline C-A-S-H/C-S-H binding phases than their ternary (FA-C + FA-F + GGBFS) and reagent 1 (calcium hydroxide + sodium metasilicate) counterparts which formed amorphous N-C-A-S-H/N-A-S-H phases. The matrix densification due to the formation of reaction products and fiber-induced micro-confinement leads to lower shrinkage and mass change of AAECs compared to their AAM counterparts. Composites exhibited lower or comparable secondary sorptivity indices compared to control ECC, indicating their superior permeation performance. All AAECs had a relative dynamic modulus of elasticity (RDME) greater than 90% at 300 cycles (comparable to control ECC), exhibiting satisfactory freeze–thaw resistance with reagent 2 mixes showing better performance compared to those with reagent 1. The production feasibility of strain hardening AAECs with powder form reagents having satisfactory mechanical and durability properties is confirmed. Full article
(This article belongs to the Special Issue Preparation and Properties of New Cementitious Materials)
Show Figures

Figure 1

20 pages, 4246 KiB  
Article
Fluidized Bed Co-Melt Granulation: New Insights in the Influence of Process Variables and Validation of Regime Map Theory
by Jacquelina C. Lobos de Ponga, Juliana Piña and Ivana M. Cotabarren
Powders 2023, 2(3), 639-658; https://doi.org/10.3390/powders2030040 - 15 Sep 2023
Viewed by 2249
Abstract
The understanding of granule growth mechanisms and the effects of formulation and operating conditions over product quality and process performance in fluidized bed co-melt granulation is nowadays of great interest. In this sense, this work systematically studies the combined effects of binder content [...] Read more.
The understanding of granule growth mechanisms and the effects of formulation and operating conditions over product quality and process performance in fluidized bed co-melt granulation is nowadays of great interest. In this sense, this work systematically studies the combined effects of binder content (WPEG) and fluidization air flowrate (FA) and temperature (TA) on granules’ quality and process-related variables (product mass (MP), elutriated fines (Mf), mass stuck on walls (MW)) by using a Box–Behnken-type design of experiments (DoE), as it is a statistical tool suggested by the Quality by Design (QbD) initiative. It was found that the granules’ size and powder flowability are significantly affected by WPEG (higher WPEG, higher granule size and better flowability). Interestingly, TA is the process variable that significantly affects MP, enhancing process performance at high temperature values. Regarding FA, it significantly affects d10, promoting the formation of small particles due to breakage at high flowrates and the presence of non-elutriated powder at low flowrates. As a consequence, intermediate FA is the optimum for obtaining higher MP. Regarding regime map studies, most runs experienced a rapid growth regime, which is in accordance with the granules’ high pore saturation. This result agrees with the observed high increment in particle size and the morphology of the final granules, allowing researchers to validate and extend existing previous maps. Full article
(This article belongs to the Special Issue Feature Papers in Powders 2023)
Show Figures

Figure 1

19 pages, 3856 KiB  
Article
Granulated Animal Feed and Fuel Based on Sea Buckthorn Agro-Waste Biomass for Sustainable Berry Production
by Anna Andersone, Sarmite Janceva, Liga Lauberte, Natalija Zaharova, Mihail Chervenkov, Vilhelmine Jurkjane, Lilija Jashina, Gints Rieksts and Galina Telysheva
Sustainability 2023, 15(14), 11152; https://doi.org/10.3390/su151411152 - 17 Jul 2023
Cited by 6 | Viewed by 2678
Abstract
The industrial harvesting of sea buckthorn (SBT) berries with twigs and subsequent pruning creates a large volume of lignocellulosic agro-waste. This study aimed to valorize this agro-waste as a raw material for animal feed and fuel granules, for developing a sustainable cascading SBT [...] Read more.
The industrial harvesting of sea buckthorn (SBT) berries with twigs and subsequent pruning creates a large volume of lignocellulosic agro-waste. This study aimed to valorize this agro-waste as a raw material for animal feed and fuel granules, for developing a sustainable cascading SBT production scheme. Five SBT cultivars’ biomasses were characterized by analytical pyrolysis, mass spectrometry, and GC analysis. Condensed tannins, which are undesirable components for animal feed, were separated by extraction. The residue was analyzed for total protein, vitamins (A, C, and E), ash, crude fat, wood fiber, and macroelements (P, K, Ca, and Na), and showed great potential. The heavy metal (Cd, Hg, and Pb) content did not exceed the permitted EU maximum. Granulation regimes were elaborated using a flat-die pelletizer, KAHL 14-175. The digestibility and the amount of produced gas emissions were determined using in vitro systems that recreate the digestion of small ruminants. The investigation proved that SBT leaves and stems are a unique underutilized source of animal feed, used alone or in combination with others. Twigs, due to their thorns, were granulated and valorized according to standards for application as fuel. The scheme offered in this study enables SBT agro-waste utilization and sustainable SBT berry production. Full article
(This article belongs to the Special Issue Waste Utilization in Agriculture and Sustainable Development)
Show Figures

Graphical abstract

12 pages, 4669 KiB  
Article
Pyrometallurgical Technology for Extracting Iron and Zinc from Electric Arc Furnace Dust
by Nina V. Nemchinova, Alexey E. Patrushov and Andrey A. Tyutrin
Appl. Sci. 2023, 13(10), 6204; https://doi.org/10.3390/app13106204 - 18 May 2023
Cited by 9 | Viewed by 2870
Abstract
This study is aimed at developing a technology for processing electric arc furnace dust (EAFD) into granulated cast iron and a zinc-containing product. The study object was the dust from the EAF of PJSC Magnitogorsk Iron and Steel Works (Magnitogorsk, Chelyabinsk region). It [...] Read more.
This study is aimed at developing a technology for processing electric arc furnace dust (EAFD) into granulated cast iron and a zinc-containing product. The study object was the dust from the EAF of PJSC Magnitogorsk Iron and Steel Works (Magnitogorsk, Chelyabinsk region). It has been established that the dust contains valuable components in the form of ZnFe2O4 and ZnO. The processing of EAFD involves the reduction of Fe and Zn in a charge from their oxygen-containing forms with C and CO. The content of the charge components was calculated in % as follows: EAFD—17.44; scale—51.33; hard coal—20.61; quartz sand—4.71; lime—5.91. The experiments in the high-temperature LHT 08/17 furnace (Germany) allowed for defining the optimal temperature regime for reduction melting. As a result of laboratory tests, granulated pig iron samples were obtained, containing in wt%: Fe—95.27; C—4.4; S—0.07, and others. Captured zinc-containing product after calcination (to remove halogens) contained 90.21 wt% ZnO. The resulting granulated pig iron is recommended as one of the charge components in electrometallurgical steel production. The zinc-containing product is recommended as a raw material for Zn production and others. Full article
Show Figures

Figure 1

16 pages, 3069 KiB  
Article
Dimensioning Air Reactor and Fuel Reactor of a Pressurized CLC Plant to Be Coupled to a Gas Turbine: Part 2, the Fuel Reactor
by Wang Lu, Pietro Bartocci, Alberto Abad, Aldo Bischi, Haiping Yang, Arturo Cabello, Margarita de Las Obras Loscertales, Mauro Zampilli and Francesco Fantozzi
Energies 2023, 16(9), 3850; https://doi.org/10.3390/en16093850 - 30 Apr 2023
Cited by 3 | Viewed by 2162 | Correction
Abstract
Bioenergy with Carbon Capture and Storage (BECCS) technologies are fundamental to reach negative CO2 emissions by removing it from the atmosphere and storing it underground. A promising solution to implement BECCS is pressurized Chemical Looping Combustion (CLC), which involves coupling a pressurized [...] Read more.
Bioenergy with Carbon Capture and Storage (BECCS) technologies are fundamental to reach negative CO2 emissions by removing it from the atmosphere and storing it underground. A promising solution to implement BECCS is pressurized Chemical Looping Combustion (CLC), which involves coupling a pressurized CLC reactor system to a turboexpander. The typical configuration chosen is to have an air reactor and a fuel reactor based on coupled circulating fluidized beds. The fluidization regime in both reactors is preferred to be fast fluidization to enhance gas particle contact and solids circulation among reactors. To design the two reactors, Aspen Plus software was used, given that the new version has a module for fluidized bed modeling. At first, the oxygen carrier was designed ex novo, but given that it is a composite compound mainly made by nickel oxide freeze-granulated on alumina (Ni40Al-FG), the molecular structure has been inserted in Aspen Plus. Then, based on the power of the gas turbine, the power output per kg of evolving fluid (in this case, depleted air) is calculated using Aspen Plus. Once the nitrogen content in the depleted air is known, the total air at the inlet of the air reactor is calculated. The fuel reactor is modeled by inserting the reduction reactions for nickel-based oxygen carriers. The paper presents a useful methodology for developing pressurized Chemical Looping Combustors to be coupled to gas turbines for power generation. The provided data will be cross-validated with 0D-models and experimental results. Full article
Show Figures

Figure 1

21 pages, 7644 KiB  
Article
Pasting and Rheological Properties of Starch Paste/Gels in a Sugar-Acid System
by Ployfon Boonkor, Leonard M. C. Sagis and Namfone Lumdubwong
Foods 2022, 11(24), 4060; https://doi.org/10.3390/foods11244060 - 15 Dec 2022
Cited by 17 | Viewed by 6301
Abstract
This study was to investigate the impact of granule size, amylose content, and starch molecular characteristics on pasting and rheological properties of starch paste/gels in neutral (water) and sugar–acid systems. Normal rice starch (RS), waxy rice starch (WRS), normal tapioca starch (TS), and [...] Read more.
This study was to investigate the impact of granule size, amylose content, and starch molecular characteristics on pasting and rheological properties of starch paste/gels in neutral (water) and sugar–acid systems. Normal rice starch (RS), waxy rice starch (WRS), normal tapioca starch (TS), and waxy tapioca starch (WTS) representing small-granule starches and intermediate-granule starches respectively, were used in the study. Impacts of granule size, AM content, and their synergistic effects resulted in different starch susceptibility to acid hydrolysis and interactions between starch and sucrose-water, yielding different paste viscosities in both systems. The high molecular weight (Mw¯) and linearity of amylopectin and amylose molecules increased the consistency of starch pastes. RS produced a stronger and more brittle gel than other starch gels in both neutral and sugar–acid systems. The results indicated the impact of the effect of granule size and amylose content on starch gel behaviors. Properties of waxy starch gels were mainly governed by amylopectin molecular characteristics, especially in the sugar–acid system. Adding sugar and acid had minor impacts on starch gel behaviors in the linear viscoelastic (LVE) region but were most evident in the nonlinear response regime of starch gels as shown in the Lissajous curves at large oscillatory strain. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

25 pages, 2034 KiB  
Article
Development of a Granule Growth Regime Map for Twin Screw Wet Granulation Process via Data Imputation Techniques
by Lalith Kotamarthy, Chaitanya Sampat and Rohit Ramachandran
Pharmaceutics 2022, 14(10), 2211; https://doi.org/10.3390/pharmaceutics14102211 - 17 Oct 2022
Cited by 7 | Viewed by 2267
Abstract
Twin screw granulation (TSG) is a continuous wet granulation technique that is used widely across different solid manufacturing industries. The TSG has been recognized to have numerous advantages due to its modular design and continuous manufacturing capabilities, including processing a wide range of [...] Read more.
Twin screw granulation (TSG) is a continuous wet granulation technique that is used widely across different solid manufacturing industries. The TSG has been recognized to have numerous advantages due to its modular design and continuous manufacturing capabilities, including processing a wide range of formulations. However, it is still not widely employed at the commercial scale because of the lack of holistic understanding of the process. This study addresses that problem via. the mechanistic development of a regime map that considers the complex interactions between process, material, and design parameters, which together affect the final granule quality. The advantage of this regime map is that it describes a more widely applicable quantitative technique that can predict the granule growth behavior in a TSG. To develop a robust regime map, a database of various input parameters along with the resultant final granule quality attributes was created using previously published literature experiments. Missing data for several quality attributes was imputed using various data completion techniques while maintaining physical significance. Mechanistically relevant non-dimensional X and Y axis that quantify the physical phenomena occurring during the granulation were developed to improve the applicability and predictability of the regime map. The developed regime map was studied based on process outcomes and granule quality attributes to identify and create regime boundaries for different granule growth regimes. In doing so breakage-dominant growth was incorporated into the regime map, which is very important for TSG. The developed regime map was able to accurately explain the granule growth regimes for more than 90% of the studied experimental points. These experimental were generated at vastly different material, design, and process parameters across various studies in the literature, this further increases the confidence in the developed regime map. Full article
Show Figures

Figure 1

16 pages, 11383 KiB  
Article
In Silico CFD Investigation of the Granulation Hydrodynamics in Rotating Drum: Process Sensitivity to the Operating Parameters and Drag Models
by Safae Elmisaoui, Saad Benjelloun, Radouan Boukharfane, Lhachmi Khamar, Sanae Elmisaoui and Mohamed Khamar
Processes 2022, 10(10), 1939; https://doi.org/10.3390/pr10101939 - 26 Sep 2022
Cited by 2 | Viewed by 2920
Abstract
Computational fluid dynamics (CFD) have been extensively used to simulate the hydrodynamics of multiphase flows (MPFs) in rotating machinery. In the presence of a granular dense phase, the Kinetic Theory of Granular Flow (KTGF) is usually coupled to Eulerian multi-fluid models to obtain [...] Read more.
Computational fluid dynamics (CFD) have been extensively used to simulate the hydrodynamics of multiphase flows (MPFs) in rotating machinery. In the presence of a granular dense phase, the Kinetic Theory of Granular Flow (KTGF) is usually coupled to Eulerian multi-fluid models to obtain tractable computational fluid models. In the present work, the hydrodynamic behavior of a three dimensional, industrial scale, and rotating drum granulator with gas–solid flows is assessed using the Eulerian–Eulerian approach coupled with the k-ε standard turbulence model. A Eulerian–Eulerian Two-Fluid Model (TFM) is used with the KTGF model for the granular phase. The sensitivities to different operating parameters, including the rotational speed (8, 16, and 24 rpm), inclination degree (3.57, 5.57, and 7.57), and degree of filling (20%, 30%, and 40%) are studied. Moreover, the impact of the drag model on the simulation accuracy is investigated. The flow behavior, regime transitions, and particle distribution are numerically evaluated, while varying the operating conditions and the drag models. The rotational speed and filling degree appear to have greater influences on the granulation effectiveness than on the inclination degree. Three drag models are retained in our analysis. Both the Gidaspow and Wen and Yu models successfully predict the two-phase flow in comparison to the Syamlal and O’Brien model, which seems to underestimate the hydrodynamics of the flow in both its axial and radial distributions (a fill level less than 35%). The methodology followed in the current work lays the first stone for the optimization of the phosphates fertilizer wet-granulation process within an industrial installation. Full article
Show Figures

Figure 1

16 pages, 2233 KiB  
Article
Degradation Law and Service Life Prediction Model of Tunnel Lining Concrete Suffered Combined Effects of Sulfate Attack and Drying–Wetting Cycles
by Feng Lu, Haiyan Wang, Lichuan Wang, Kai Zhao and Junru Zhang
Materials 2022, 15(13), 4435; https://doi.org/10.3390/ma15134435 - 23 Jun 2022
Cited by 18 | Viewed by 2431
Abstract
The present study explored the degradation law and service life prediction of tunnel lining concrete with different mineral admixtures under coupled actions of sulfate attack (SA) and drying–wetting (DW) cycles. The deterioration resistance coefficient (DRC) of compressive strength and influence coefficients of sulfate [...] Read more.
The present study explored the degradation law and service life prediction of tunnel lining concrete with different mineral admixtures under coupled actions of sulfate attack (SA) and drying–wetting (DW) cycles. The deterioration resistance coefficient (DRC) of compressive strength and influence coefficients of sulfate concentration, mineral admixture content, water/binder (w/b) ratio, and curing regime on DRC were studied. After that, a new service life prediction model based on damage mechanics was developed and analyzed. Results show that, by increasing the DW cycles, the DRC first increases and then decreases. DRCs of Ordinary Portland cement (OPC), fly ash (FA), and ground granulated blast-furnace slag (GGBS) concrete linearly decrease with the increase of sulfate concentration, while the silica fume (SF) concrete displays a two-stage process; by increasing the admixture content, the DRCs of FA and GGBS concrete exhibit two distinct stages, while the SF concrete depicts a three-stage process; increasing the w/b ratio linearly decreases the DRC; the DRC of curing regime was sequenced as standard curing (SC) > fog curing (FC) > water curing (WC) > same condition curing (SCC). Based on the experimental results, the service life prediction model is applied and validated. The validation results show that the proposed model can accurately predict the lifetime of concrete with different mix proportions. Furthermore, it is found that the mineral admixture can effectively improve the lifetime of concrete, and the composite mineral admixture is more effective than a single mineral admixture in improving the lifetime of concrete. Full article
(This article belongs to the Special Issue Seismic Design and Structures Analysis of Construction Materials)
Show Figures

Figure 1

19 pages, 3286 KiB  
Article
Effect of Curing Regime on the Mechanical Strength, Hydration, and Microstructure of Ecological Ultrahigh-Performance Concrete (EUHPC)
by Zhiwu Zuo, Jiachen Zhang, Beixing Li, Chuqi Shen, Gongfeng Xin and Xiao Chen
Materials 2022, 15(5), 1668; https://doi.org/10.3390/ma15051668 - 23 Feb 2022
Cited by 9 | Viewed by 2440
Abstract
This paper investigates the effect of curing regimes (standard and steam curing) on the mechanical strength, hydration, and microstructure of ecological ultrahigh-performance concrete (EUHPC). The flowability, compressive strength, flexural strength, hydration, porosity, pore size distribution, and microstructure of UHPC with different contents of [...] Read more.
This paper investigates the effect of curing regimes (standard and steam curing) on the mechanical strength, hydration, and microstructure of ecological ultrahigh-performance concrete (EUHPC). The flowability, compressive strength, flexural strength, hydration, porosity, pore size distribution, and microstructure of UHPC with different contents of supplementary materials (silica fume, fly ash, and ground granulated blast furnace slag) were assessed. The test results showed that the compressive strength of EUHPC under steam curing was increased considerably compared to that under standard curing, while the flexural strength was mildly decreased. The steam curing could decrease the porosity of EUHPC, which ranged between 7% and 9% for standard curing, and between 3.5% and 5% for steam curing. The aperture of EUHPC was below 20 nm, mainly located in the range of 10 nm to 20 nm under standard curing, while it was less than 10 nm for steam curing. C–S–H gel was produced under steam curing, while unhydrated fly ash, mineral powder, and Ca(OH)2 crystal were observed in the amorphous C–S–H gel. The microstructure of EUHPC under steam curing was denser than that under standard curing, and the interfacial transition zones under both curing regimes were compact. Full article
Show Figures

Figure 1

17 pages, 1978 KiB  
Article
Changes in BNR Microbial Community in Response to Different Selection Pressure
by Roya Pishgar, John Albino Dominic, Joo Hwa Tay and Angus Chu
Nitrogen 2021, 2(4), 474-490; https://doi.org/10.3390/nitrogen2040032 - 14 Dec 2021
Cited by 3 | Viewed by 2956
Abstract
This study investigated structural changes in microbial community of biological nutrient removal (BNR) in response to changes in substrate composition (ammonium and phosphate), redox condition, and morphological characteristics (flocs to granules), with a focus on nitrification and phosphate removal. Analyzing treatment performance and [...] Read more.
This study investigated structural changes in microbial community of biological nutrient removal (BNR) in response to changes in substrate composition (ammonium and phosphate), redox condition, and morphological characteristics (flocs to granules), with a focus on nitrification and phosphate removal. Analyzing treatment performance and 16S rRNA phylogenetic gene sequencing data suggested that heterotrophic nitrification (HN) and autotrophic nitrification (AN) potentially happened in aerobic organic-rich (HN_AS) and aerobic organic-deficient (AN_AS) activated sludge batch reactors, respectively. However, phosphate release and uptake were not observed under alternating anaerobic/aerobic regime. Phosphate release could not be induced even when anaerobic phase was extended, although Accumulibacter existed in the inoculum (5.1% of total bacteria). Some potential HN (e.g., Thauera, Acinetobacter, Flavobacterium), AN (e.g., Nitrosomonas (3.2%) and Nitrospira), and unconventional phosphate-accumulating organisms (PAOs) were identified. Putative HN bacteria (i.e., Thauera (29–36%) and Flavobacterium (18–25%)) were enriched in aerobic granular sludge (AGS) regardless of the granular reactor operation mode. Enrichment of HN organisms in the AGS was suspected to be mainly due to granulation, possibly due to the floc-forming ability of HN species. Thus, HN is likely to play a role in nitrogen removal in AGS reactors. This study is supposed to serve as a starting point for the investigation of the microbial communities of AS- and AGS-based BNR processes. It is recommended that the identified roles for the isolated bacteria are further investigated in future works. Full article
Show Figures

Graphical abstract

Back to TopTop