Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (753)

Search Parameters:
Keywords = grain size reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 57255 KB  
Article
Solidification Microstructure and Secondary-Phase Precipitation Behavior of 310S Austenitic Stainless Steel
by Jun Xiao, Di Wang, Shaoguang Yang, Kuo Cao, Siyu Qiu, Jianhua Wei and Aimin Zhao
Metals 2025, 15(10), 1091; https://doi.org/10.3390/met15101091 - 29 Sep 2025
Viewed by 169
Abstract
In this study, the solidification behavior of 310S stainless steel was systematically investigated by combining high-temperature confocal laser scanning microscopy (HT-CLSM), microstructural characterization, and thermodynamic calculations. The focus was on the formation and transformation of ferrite, secondary-phase precipitation, and elemental segregation behavior, with [...] Read more.
In this study, the solidification behavior of 310S stainless steel was systematically investigated by combining high-temperature confocal laser scanning microscopy (HT-CLSM), microstructural characterization, and thermodynamic calculations. The focus was on the formation and transformation of ferrite, secondary-phase precipitation, and elemental segregation behavior, with comparisons made with 304 stainless steel. The effects of an Al addition and cooling rate were also explored. The results show that the solidification sequence of 310S stainless steel is L → L + γ → L + γ + δ → δ + γ, in which austenite nucleates early and grows rapidly, followed by the precipitation of a small amount of δ-ferrite in the later stages of solidification. In contrast, 304 stainless steel solidifies according to L → L + δ → L + δ + γ → δ + γ, with a rapid δ → γ transformation occurring after solidification. Compared with 304, 310S stainless steel exhibits a reduced ferrite fraction and a significantly increased σ phase content. The σ phase primarily precipitates directly from δ-ferrite (δ → σ), while M23C6 preferentially forms at grain boundaries and δ/γ interfaces, where δ-ferrite not only provides fast diffusion pathways for Cr but also nucleation sites. The solidification segregation sequence in 310S stainless steel is Cr > Ni > Fe, with Cr and Ni showing positive segregation and Fe showing negative segregation. The addition of Al does not alter the solidification mode of 310S stainless steel but refines austenite grains, reduces interdendritic solute enrichment, decreases segregation, lowers both the size and fraction of ferrite, and suppresses the precipitation of σ and M23C6 phases. This effect is mainly attributed to the reduction of δ/γ interfaces, which weakens the preferred nucleation sites for M23C6. Increasing the cooling rate enhances non-equilibrium solute segregation, promotes ferrite formation, inhibits the δ → γ transformation, and ultimately retains more ferrite; the intensified segregation further accelerates the δ → σ transformation. Full article
Show Figures

Graphical abstract

20 pages, 5035 KB  
Article
Effect of Small Deformations on Optimisation of Final Crystallographic Texture and Microstructure in Non-Oriented FeSi Steels
by Ivan Petrišinec, Marcela Motýľová, František Kováč, Ladislav Falat, Viktor Puchý, Mária Podobová and František Kromka
Crystals 2025, 15(10), 839; https://doi.org/10.3390/cryst15100839 - 26 Sep 2025
Viewed by 146
Abstract
Improving the isotropic magnetic properties of FeSi electrical steels has traditionally focused on enhancing their crystallographic texture and microstructural morphology. Strengthening the cube texture within a ferritic matrix of optimal grain size is known to reduce core losses and increase magnetic induction. However, [...] Read more.
Improving the isotropic magnetic properties of FeSi electrical steels has traditionally focused on enhancing their crystallographic texture and microstructural morphology. Strengthening the cube texture within a ferritic matrix of optimal grain size is known to reduce core losses and increase magnetic induction. However, conventional cold rolling followed by annealing remains insufficient to optimise the magnetic performance of thin FeSi strips fully. This study explores an alternative approach based on grain boundary migration driven by temperature gradients combined with deformation gradients, either across the sheet thickness or between neighbouring grains, in thin, weakly deformed non-oriented (NO) electrical steel sheets. The concept relies on deformation-induced grain growth supported by rapid heat transport to promote the preferential formation of coarse grains with favourable orientations. Experimental material consisted of vacuum-degassed FeSi steel with low silicon content. Controlled deformation was introduced by temper rolling at room temperature with 2–40% thickness reductions, followed by rapid recrystallisation annealing at 950 °C. Microstructure, texture, and residual strain distributions were analysed using inverse pole figure (IPF) maps, kernel average misorientation (KAM) maps, and orientation distribution function (ODF) sections derived from electron backscattered diffraction (EBSD) data. This combined thermomechanical treatment produced coarse-grained microstructures with an enhanced cube texture component, reducing coercivity from 162 A/m to 65 A/m. These results demonstrate that temper rolling combined with dynamic annealing can surpass the limitations of conventional processing routes for NO FeSi steels. Full article
(This article belongs to the Special Issue Microstructure and Deformation of Advanced Alloys (2nd Edition))
Show Figures

Figure 1

16 pages, 3908 KB  
Article
Numerical Study on the Solidification Microstructure Evolution in Industrial Twin-Roll Casting of Low-Carbon Steel
by Yulong Shi, Kongfang Feng, Liang Liu, Gaorui He and Bo Wang
Materials 2025, 18(19), 4484; https://doi.org/10.3390/ma18194484 - 26 Sep 2025
Viewed by 272
Abstract
Twin-roll strip casting (TRSC) is a key development in near-net-shape casting technology, offering the potential for high-efficiency and low-cost production. During the TRSC process, the solidification characteristics of the strip are largely governed by the configuration of the melt delivery system as well [...] Read more.
Twin-roll strip casting (TRSC) is a key development in near-net-shape casting technology, offering the potential for high-efficiency and low-cost production. During the TRSC process, the solidification characteristics of the strip are largely governed by the configuration of the melt delivery system as well as by various process parameters. In this study, a three-dimensional model of low-carbon steel strip casting was developed using ProCAST software to investigate microstructure evolution under industrial-scale conditions. Simulation results revealed that the solidified strip exhibits a typical three-layer structure: a surface equiaxed grain zone in contact with the cooling rolls, a subsurface columnar grain zone, and a central equiaxed grain zone. Introducing side holes into the delivery system promoted the formation of a distinct columnar grain region near the side dams, resulting in a reduction in the average grain size in this region from 43.7 μm to 38.2 μm compared to the delivery system without side holes. Increasing the heat transfer coefficient at the interface between the molten pool and the cooling rolls significantly enlarged the columnar grain zone. This change had little effect on the average grain size and grain density, with the average grain size remaining close to 37 μm and the grain density variation being less than 0.7%. In contrast, when the casting speed was raised from 50 m min−1 to 70 m min−1, a reduction in the area of the columnar grain zone was observed, while the average grain size decreased slightly (by less than 0.5 μm), and the grain density increased accordingly. This study provides valuable insights for optimizing process parameters and designing more effective melt delivery systems in industrial twin-roll strip casting. Full article
(This article belongs to the Special Issue Advanced Sheet/Bulk Metal Forming)
Show Figures

Figure 1

16 pages, 2101 KB  
Article
Structure and Mechanical Properties of Tubular Steel Products Processed by Cold Rotary Swaging
by Dorin Luca, Ion-Adrian Sărbătoare, Corneliu Munteanu, Fabian-Cezar Lupu, Dorian D. Luca and Cătălin-Andrei Țugui
Crystals 2025, 15(10), 836; https://doi.org/10.3390/cryst15100836 - 26 Sep 2025
Viewed by 234
Abstract
Rotary swaging (RS) is applied for the manufacturing of bars, stepped shafts, tubes with complex internal profiles, bimetallic composites, and similar products. This process falls under the category of severe plastic deformation (SPD) methods, which produce ultrafine-grained materials that provide superior properties in [...] Read more.
Rotary swaging (RS) is applied for the manufacturing of bars, stepped shafts, tubes with complex internal profiles, bimetallic composites, and similar products. This process falls under the category of severe plastic deformation (SPD) methods, which produce ultrafine-grained materials that provide superior properties in service. Our study investigated the effect of cold RS on the structure, grain size, and microhardness of AISI 304 stainless steel and CK45 carbon steel. Tubular specimens were processed by RS with the purpose of obtaining conical parts with a closed end, achieving a maximum reduction of nearly 44%. Samples were taken by longitudinal sectioning along the diameter from three zones with different degrees of deformation and subjected to structural analysis using scanning electron microscopy (SEM). The investigations were complemented by microhardness measurements in the axial direction for samples of both steels. The resulting structures revealed material texturing and a continuous decrease in grain size with increasing swaging ratio. The average grain size was reduced by approximately 46% in AISI 304 steel and by around 50% in CK45 steel. The microhardness of the materials increased by about 179% for AISI 304 steel and by approximately 95% for CK45 steel. The obtained results are discussed, highlighting the effect of cold RS processing on the two steels studied. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Properties of Alloys and Composites)
Show Figures

Figure 1

15 pages, 3956 KB  
Article
Novel Alloy Designed Electrical Steel for Improved Performance in High-Frequency Electric Machines
by Carl Slater, Xiyun Ma, Gwendal Lagorce, Juliette Soulard and Claire Davis
Metals 2025, 15(10), 1066; https://doi.org/10.3390/met15101066 - 23 Sep 2025
Viewed by 292
Abstract
The increase in electrification and desire for greater electrical motor efficiency under a range of operating conditions for different products (e.g., household appliances, automotive and aerospace) is driving innovative motor designs and demands for higher performing electrical steels. Improvements in the magnetic, electrical [...] Read more.
The increase in electrification and desire for greater electrical motor efficiency under a range of operating conditions for different products (e.g., household appliances, automotive and aerospace) is driving innovative motor designs and demands for higher performing electrical steels. Improvements in the magnetic, electrical and/or mechanical properties of electrical steels are required for high-volume electric motors and recent advances include steels with increased silicon (Si) content (from <3.5 wt% Si up to 6.5 wt%). Whilst the 6.5 wt% Si steels provide increased motor performance at high frequencies, the formation of a brittle BCC B2/D03 phase means that they cannot be cold-rolled, and therefore the production route involves siliconization after the required thickness strip is produced. The advances in computationally driven alloy design, coupled with physical metallurgical understanding, allow for more adventurous alloy design for electrical steels, outside the traditional predominantly Fe-Si compositional space. Two alloys representing a new alloy family called HiPPES (High-Performing and Processable Electrical Steel), based on low cost commonly used steel alloying elements, have been developed, cast, rolled, heat-treated, and both magnetically and mechanically tested. These alloys (with nominal compositions of Fe-3.2Mn-3.61Si-0.63Ni-0.75Cr-0.15Al-0.4Mo and Fe-2Mn-4.5Si-0.4Ni-0.75Cr-0.09Al) offer improvements compared to current ≈3 wt% Si grades: in magnetic performance (>25% magnetic loss reduction at >1 kHz), and in tensile strength (>33% increase in tensile strength with similar elongation value). Most importantly, they are maintaining processability to allow for full-scale commercial production using traditional continuous casting, hot and cold rolling, and annealing. The new alloys also showed improved resilience to grain size, with the HiPPES materials showing a <5% variance in loss at frequencies greater than 400 Hz for grain sizes between 55 and 180 µm. Comparatively, a commercial M250-35A material showed a 40% increase in loss for the same range. The paper reports on the alloy design approach used, the microstructures, and the mechanical, electrical and magnetic properties of the developed novel electrical steels compared to conventional ≈3 wt% Si and 6.5 wt% Si material. Full article
(This article belongs to the Special Issue Electrical Steels)
Show Figures

Figure 1

23 pages, 10643 KB  
Article
Microstructure Development of a Functionalized Multilayer Coating System of 316L Austenitic Steel on Grey Cast Iron Under Braking Force in a Corrosive Environment
by Mohammad Masafi, Achim Conzelmann, Heinz Palkowski and Hadi Mozaffari-Jovein
Coatings 2025, 15(9), 1106; https://doi.org/10.3390/coatings15091106 - 20 Sep 2025
Viewed by 369
Abstract
Grey cast iron brake discs with lamellar graphite (GJL) offer excellent strength and thermal conductivity but are prone to wear and dust emissions. To mitigate these issues, a multilayer coating was applied via Laser Metal Deposition (LMD), comprising a 316L stainless steel base [...] Read more.
Grey cast iron brake discs with lamellar graphite (GJL) offer excellent strength and thermal conductivity but are prone to wear and dust emissions. To mitigate these issues, a multilayer coating was applied via Laser Metal Deposition (LMD), comprising a 316L stainless steel base layer and a WC-reinforced top layer. This study examines the microstructural evolution of the coatings under simulated thermomechanical and corrosive conditions using a brake shock corrosion test. Microstructural characterization was performed via Scanning Electron Microscopy (SEM) and Electron Backscatter Diffraction (EBSD), focusing on grain size, orientation, and texture before and after testing. EBSD analysis revealed significant grain coarsening, with sizes increasing from below 20 µm to 30–60 µm, and a shift toward <101> texture. Hardness measurements showed a reduction in the WC-reinforced layer from 478 HV to 432 HV and in the 316L base layer from 232 HV to 223 HV, confirming the influence of thermomechanical stress. SEM analysis revealed a transition from horizontal cracks—caused by residual stress during LMD—to vertical microcracks propagating from the substrate, activated by braking-induced loads. These findings provide insights into the microstructural response of LMD coatings under realistic service conditions and underscore the importance of grain boundary control in designing durable brake disc systems. Full article
Show Figures

Figure 1

17 pages, 8633 KB  
Article
Microstructural Evolution and Tensile Deformation Behavior of FeCoNiCrTi0.2 High-Entropy Alloys Regulated by Cold Rolling and Annealing
by Peng Zhang, Dehao Liu, Linfu Zhang, Kang Liu, Jie Zhang, Yuxiao Si, Gang Chen and Qiang Zhu
Metals 2025, 15(9), 1037; https://doi.org/10.3390/met15091037 - 19 Sep 2025
Viewed by 269
Abstract
Novel structural materials, high-entropy alloys (HEAs), have attracted considerable interest owing to their tunable microstructural designs and adjustable mechanical properties. In the present work, the microstructural evolution and tensile deformation behavior of FeCoNiCrTi0.2 HEA are comprehensively examined through cold rolling (with 80% [...] Read more.
Novel structural materials, high-entropy alloys (HEAs), have attracted considerable interest owing to their tunable microstructural designs and adjustable mechanical properties. In the present work, the microstructural evolution and tensile deformation behavior of FeCoNiCrTi0.2 HEA are comprehensively examined through cold rolling (with 80% thickness reduction) followed by annealing, combined with multiscale characterization techniques (EBSD/TEM) and mechanical tests. The results reveal that the as-rolled microstructure was characterized by the presence of strong Brass, Goss/Brass, and S textures, along with the formation of high-density dislocation walls (DDWs) and dislocation cells (DCs). As the annealing temperature increased, recrystallized grains preferentially nucleated at grain boundaries with higher stress concentrations and dislocation densities. The grain size decreased from 120.33 μm in the as-rolled state to 10.26 μm after annealing at 1000 °C. Low-angle grain boundaries (LAGBs) progressively transformed into high-angle grain boundaries (HAGBs), while the fraction of Σ3 twin boundaries initially decreased and subsequently increased, reaching a maximum of 43.7% after annealing at 1000 °C. At annealing temperatures exceeding 800 °C, deformed grains became equiaxed, with partial retention of primary texture components observed. After annealing at 1000 °C, the yield strength and tensile strength decreased compared to the as-rolled state, while the elongation significantly increased from 17.2% to 69.8% Simultaneously, the yield ratio decreased by 53%, and the strain-hardening capacity was enhanced. Ultimately, a constitutive model integrating the influences of dislocation mean free path and twin boundary obstruction was developed, providing microscopic explanations for the inverse relationship between strength and recrystallization fraction. Full article
(This article belongs to the Special Issue Sheet Metal Forming Processes)
Show Figures

Figure 1

22 pages, 19737 KB  
Article
Temporal Sculpting of Laser Pulses for Functional Engineering of Al2O3/AgO Films: From Structural Control to Enhanced Gas Sensing Performance
by Doaa Yaseen Doohee, Abbas Azarian and Mohammad Reza Mozaffari
Sensors 2025, 25(18), 5836; https://doi.org/10.3390/s25185836 - 18 Sep 2025
Viewed by 419
Abstract
This study examines the effects of laser pulse duration on the structural, morphological, optical, and gas-sensing characteristics of Al2O3/AgO thin films deposited on glass substrates using pulsed laser deposition (PLD). Pulse durations of 10, 8, and 6 nanoseconds were [...] Read more.
This study examines the effects of laser pulse duration on the structural, morphological, optical, and gas-sensing characteristics of Al2O3/AgO thin films deposited on glass substrates using pulsed laser deposition (PLD). Pulse durations of 10, 8, and 6 nanoseconds were achieved through optical lens modifications to control both energy density and laser spot size. X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses showed a distinct reduction in both crystallite and grain sizes with decreasing pulse width, along with significant improvements in surface morphology refinement and film compactness. Hall effect measurements revealed a transition from n-type to p-type conductivity with decreasing pulse width, demonstrating increased hole concentration and reduced carrier mobility attributed to grain boundary scattering. Furthermore, current-voltage (I-V) characteristics demonstrated improved photoconductivity under illumination, with the most pronounced enhancement observed in samples prepared using longer pulse durations. Gas sensing measurements for NO2 and H2S revealed enhanced sensitivity, improved response/recovery characteristics at 250 °C, with optimal performance achieved in films deposited using shorter pulse durations. This improvement is attributed to their larger surface area and higher density of active adsorption sites. Our results demonstrate a clear relationship between laser pulse parameters and the functional properties of Al2O3/AgO films, providing valuable insights for optimizing deposition processes to develop advanced gas sensors. Full article
(This article belongs to the Special Issue Spectroscopy Gas Sensing and Applications)
Show Figures

Figure 1

18 pages, 9202 KB  
Article
Fine-Scale Mapping and Uncertainty Quantification of Intertidal Sediment Grain Size Using Geostatistical Simulation Integrated with Machine Learning and High-Resolution Remote Sensing Imagery
by No-Wook Park and Dong-Ho Jang
Remote Sens. 2025, 17(18), 3230; https://doi.org/10.3390/rs17183230 - 18 Sep 2025
Viewed by 334
Abstract
This study presents a geostatistical simulation approach for fine-scale grain size mapping in tidal flats, which complements sparse field survey data with high-resolution optical satellite imagery and quantifies prediction uncertainty at unsampled locations. Within a multi-Gaussian regression kriging (MGRK) framework, a random forest [...] Read more.
This study presents a geostatistical simulation approach for fine-scale grain size mapping in tidal flats, which complements sparse field survey data with high-resolution optical satellite imagery and quantifies prediction uncertainty at unsampled locations. Within a multi-Gaussian regression kriging (MGRK) framework, a random forest (RF) regression model is used to estimate the trend component of grain size variability in Gaussian space. Residual components are estimated using kriging, and the trend and residual components are combined to construct conditional cumulative distribution functions for uncertainty modeling. Sequential Gaussian simulation based on the CCDFs generates alternative realizations of grain size, allowing for quantification of prediction uncertainty. The potential of this integrated approach was tested on the Baramarae tidal flat in Korea using KOMPSAT-2 imagery. Three spectral features, the green band, red band, and normalized difference water index (NDWI), explained 42.74% of the grain size variability, with NDWI identified as the most influential feature, contributing 40.8% compared with 31.7% for the red band and 27.5% for the green band. MGRK effectively captured local grain size variations, reducing the mean absolute error from 0.554 to 0.280 compared with univariate kriging based solely on field survey data, corresponding to an improvement of approximately 49.5%. The benefit of the proposed approach was validated by a reduction in prediction uncertainty, with the mean standard deviation decreasing from 0.743 in simulations based solely on field data to 0.280 in MGRK-based simulations. These findings indicate that the proposed geostatistical approach, integrating satellite-derived features, is a reliable method for fine-scale mapping of intertidal sediment grain size by providing both predictions and associated uncertainty estimates. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Graphical abstract

11 pages, 2811 KB  
Article
Real-Time Rice Milling Morphology Detection Using Hybrid Framework of YOLOv8 Instance Segmentation and Oriented Bounding Boxes
by Benjamin Ilo, Daniel Rippon, Yogang Singh, Alex Shenfield and Hongwei Zhang
Electronics 2025, 14(18), 3691; https://doi.org/10.3390/electronics14183691 - 18 Sep 2025
Viewed by 390
Abstract
Computer vision and image processing techniques have had great success in the food and drink industry. These technologies are used to analyse images, convert images to greyscale, and extract high-dimensional numerical data from the images; however, when it comes to real-time grain and [...] Read more.
Computer vision and image processing techniques have had great success in the food and drink industry. These technologies are used to analyse images, convert images to greyscale, and extract high-dimensional numerical data from the images; however, when it comes to real-time grain and rice milling processes, this technology has several limitations compared to other applications. Currently, milled rice image samples are collected and separated to avoid one contacting the another during analysis. This approach is not suitable for real-time industrial implementation. However, real-time analysis can be accomplished by utilising artificial intelligence (AI) and machine learning (ML) approaches instead of traditional quality assessment methods, such as manual inspection, which are labour-intensive, time-consuming, and prone to human error. To address these challenges, this paper presents a novel approach for real-time rice morphology analysis during milling by integrating You Only Look Once version 8 (YOLOv8) instance segmentation and Oriented Bounding Box (OBB) detection models. While instance segmentation excels in detecting and classifying both touching and overlapping grains, it underperforms in precise size estimation. Conversely, the object-oriented bounding box detection model provides more accurate size measurements but struggles with touching and overlapping grains. Experiments demonstrate that the hybrid system resolves key limitations of standalone models: instance segmentation alone achieves high detection accuracy (92% mAP@0.5) but struggles with size errors (0.35 mm MAE), while OBB alone reduces the size error to 0.12 mm MAE but falters with complex grain arrangements (88% mAP@0.5). By combining these approaches, our unified pipeline achieves superior performance, improving detection precision (99.5% mAP@0.5), segmentation quality (86% mask IoU), and size estimation (0.10 mm MAE). This represents a 71% reduction in size error compared to segmentation-only models and a 6% boost in detection accuracy over OBB-only methods. This study highlights the potential of advanced deep learning techniques in enhancing the automation and optimisation of quality control in rice milling processes. Full article
Show Figures

Figure 1

14 pages, 2423 KB  
Article
Precision-Tuned Magnetron Sputtering for High-Performance Metallized Copper Films
by Ying Yang, Xiaoyu Hao, Liuyan Zhang, Jicheng Ding, Lanfang Geng and Jun Zheng
Coatings 2025, 15(9), 1089; https://doi.org/10.3390/coatings15091089 - 17 Sep 2025
Viewed by 374
Abstract
In the present study, copper (Cu) films were deposited on polyethylene terephthalate (PET) substrates using direct-current (DC) magnetron sputtering technology. A systematic investigation was conducted on the effects of process parameters, such as target power, gas flow rate, and substrate temperature, on the [...] Read more.
In the present study, copper (Cu) films were deposited on polyethylene terephthalate (PET) substrates using direct-current (DC) magnetron sputtering technology. A systematic investigation was conducted on the effects of process parameters, such as target power, gas flow rate, and substrate temperature, on the microstructure and properties of copper films. The results showed that an increase in the target power resulted in enhanced film grain size, accompanied by a reduction in resistivity and an improvement in adhesion strength. Furthermore, resistivity increased monotonically with elevated gas flow rates, whereas the adhesion strength was found to achieve its maximum at a flow rate of 350 mL/min. In addition, substrate temperature variations had negligible influence on the film grain size and resistivity; nevertheless, the adhesion progressively decreased with increasing substrate temperature. A set of optimal parameters (3 kW, 350 mL/min, −15 °C) was determined based on the comprehensive evaluation of deposition efficiency, conductivity and adhesion performance. The Cu film prepared under these conditions exhibited low resistivity (8.37 × 10−8 Ω·m) and improved adhesion strength (166 gf/mm). Therefore, it is concluded that high performance of metallized Cu films could be achieved by fine-tuning deposition parameters. Full article
Show Figures

Figure 1

15 pages, 4006 KB  
Article
Mechanism of Coupling Twist Angle and Projectile Radius on Ballistic Impact Performance of Bilayer Phosphorene Membranes
by Ning Liu, Ke Huang, Xuejian Yang, Dongdong Xu and Lihua Wang
Nanomaterials 2025, 15(18), 1414; https://doi.org/10.3390/nano15181414 - 14 Sep 2025
Viewed by 502
Abstract
This study investigated the coupling mechanism between interlayer twist angle and projectile size on the ballistic performance of bilayer phosphorene membranes, a topic essential for designing efficient nano-protective materials, yet still poorly understood. Using coarse-grained molecular dynamic simulations, we systematically explored how twist [...] Read more.
This study investigated the coupling mechanism between interlayer twist angle and projectile size on the ballistic performance of bilayer phosphorene membranes, a topic essential for designing efficient nano-protective materials, yet still poorly understood. Using coarse-grained molecular dynamic simulations, we systematically explored how twist angles (0–90°) and projectile radii (2–10 nm) jointly influence impact response for membranes with a radius equal to 48 nm. We found that the effect of twist angle becomes significant only beyond a critical projectile size (~8 nm). Below this threshold, deformation remains local and twist-independent. However, for larger projectiles, the twist angle drastically alters wave propagation and failure modes. Specifically, a 90° twist induces severe wave reflection and interference, leading to a dramatic force amplification (up to 82%) and a 28% reduction in ballistic limit velocity, making it the most susceptible configuration. These results underline the critical role of twist–boundary–wave interaction in governing impact resistance and provide practical insights for the design of phosphorene-based nano-armor systems tailored to specific impact conditions. Full article
Show Figures

Figure 1

17 pages, 2178 KB  
Article
Synthesis and Sintering of Nonstoichiometric (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Cx Nanoscale Powders for Highly-Dense Ceramics
by Wanxiu Hai, Hai Zhang, Liulin Li, Tong He, Shubo Zhang, Meiling Liu, Yuhong Chen, Youjun Lu and Hailong Wang
Materials 2025, 18(18), 4293; https://doi.org/10.3390/ma18184293 - 12 Sep 2025
Viewed by 422
Abstract
Guided by thermodynamic calculations, this study successfully synthesized nonstoichiometric high-entropy carbide (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Cx (x = 0.875–0.972) nanometer-sized powders using micrometer-sized metal oxides (MoO3, Nb2O5, Ta2O [...] Read more.
Guided by thermodynamic calculations, this study successfully synthesized nonstoichiometric high-entropy carbide (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Cx (x = 0.875–0.972) nanometer-sized powders using micrometer-sized metal oxides (MoO3, Nb2O5, Ta2O5, TiO2, and WO3) and carbon black as raw materials through carbothermic reduction at 1400–1550 °C. The powders synthesized above 1500 °C exhibited a single-phase rock-salt structure with an average grain size as low as 270 nm. TEM analysis confirmed the lattice parameters increased from 0.4378 nm to 0.4395 nm with decreasing carbon content and synthesis temperature. After ball milling, the optimal powder was densified into a (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)C0.9 ceramic block through spark plasma sintering (SPS, 1950 °C/10 min/20 MPa), achieving a relative density of 99.1% and an average grain size of 4.3 μm. This ceramic exhibited remarkable mechanical properties (17.3 GPa Vickers hardness, 25.9 GPa nano-hardness, 524 GPa Young’s modulus, and 4.43 MPa·m1/2 fracture toughness) and a relatively low room-temperature thermal conductivity of 8.3 W·m−1·K−1. This study provides a theoretical basis and technical approach for the preparation of high-hardness and low-thermal-conductivity nonstoichiometric high-entropy carbide ceramics via low-temperature carbothermic reduction and sintering. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 8900 KB  
Article
Effect of Ultrasonic Power on the Performance of Dissimilar Al Alloy Friction Stir Lap Welds
by Yu Chen, Rongcheng Liu, Jie Tan and Jizhong Li
Metals 2025, 15(9), 1017; https://doi.org/10.3390/met15091017 - 12 Sep 2025
Viewed by 270
Abstract
Ultrasonic-assisted friction stir lap welding (FSLW) was employed to join dissimilar aluminum alloys, namely Al-7075 and Al-5052. The effect of ultrasonic power on the weld performance was systematically investigated. Increasing the ultrasonic power enhanced the material flow, resulting in a significant reduction in [...] Read more.
Ultrasonic-assisted friction stir lap welding (FSLW) was employed to join dissimilar aluminum alloys, namely Al-7075 and Al-5052. The effect of ultrasonic power on the weld performance was systematically investigated. Increasing the ultrasonic power enhanced the material flow, resulting in a significant reduction in the cavity area in the nugget zone, from 0.37 mm2 to 0.01 mm2, as the ultrasonic power was increased from 0 W to 600 W. Simultaneously, increasing the ultrasonic power accelerated the dynamic recrystallization in the nugget zone, refining the grain size by 46%. This grain refinement consequently enhanced the hardness of the nugget zone, yielding an increase of approximately 10 HV. However, the excessive ultrasonic power level of 600 W also amplified the ultrasonic punch effect, inducing interfacial crack formation between Al-7075 and Al-5052 on the advancing side. These defects (cavity and interfacial crack) significantly influenced the joint failure behavior: the non-ultrasonic-assisted FSLW joints failed at the cavity, while the 600 W-ultrasonic-assisted FSLW joints failed along the interfacial crack. Comparatively, an ultrasonic power of 300 W suppressed both the cavity and interfacial crack, producing FSLW joints with the highest shear strength among all tested ultrasonic power levels (0 W, 300 W, and 600 W). Full article
(This article belongs to the Section Welding and Joining)
Show Figures

Figure 1

15 pages, 2802 KB  
Article
Influence of Hot Isostatic Pressing on the Microstructure and Mechanical Properties of Hastelloy X Samples Manufactured via Laser Powder Bed Fusion
by Piotr Maj, Konstanty Jonak, Dorota Moszczynska, Rafał Molak, Ryszard Sitek and Jarosław Mizera
Appl. Sci. 2025, 15(17), 9844; https://doi.org/10.3390/app15179844 - 8 Sep 2025
Viewed by 664
Abstract
This study investigates the effects of Hot Isostatic Pressing (HIP) treatment on the microstructural evolution and mechanical properties of Laser Powder Bed Fusion (LPBF)-manufactured Hastelloy H. This research evaluates the trade-offs between defect elimination, anisotropy reduction, and strength retention in well-optimized LPBF components. [...] Read more.
This study investigates the effects of Hot Isostatic Pressing (HIP) treatment on the microstructural evolution and mechanical properties of Laser Powder Bed Fusion (LPBF)-manufactured Hastelloy H. This research evaluates the trade-offs between defect elimination, anisotropy reduction, and strength retention in well-optimized LPBF components. Specimens were manufactured using optimized LPBF parameters, achieving 99.85% density, and then subjected to HIP treatment at 1160 °C/100 MPa for 4 h. The analysis includes porosity analysis, grain size measurement, crystallographic texture evaluation, and tensile tests in two principal orientations. The results show that HIP treatment provides minimal benefits for defect elimination in already high-quality LPBF material, reducing porosity from 0.15% to <0.01%—a negligible improvement that does not translate to proportional mechanical enhancement. Tensile tests show that as-built specimens exhibited orientation-dependent strength, with XY-oriented samples reaching a yield strength (YS) of 682 MPa, ultimate tensile strength (UTS) of 864 MPa, and elongation of 17%, while XZ-oriented samples showed lower strength (YS = 621 MPa, UTS = 653 MPa) but superior ductility (elongation = 47%). After HIP treatment, anisotropy was largely removed, with both XY and XZ orientations showing comparable strength (YS ≈ 315–317 MPa, UTS ≈ 682–691 MPa) and elongation (38–41%). This indicates that HIP significantly improves ductility and isotropy at the cost of reduced strength. HIP treatment effectively eliminates the anisotropy of LPBF components, achieving uniform hardness across all orientations while reducing crystallographic texture intensity from 12.3× to 3.2× random orientation. This isotropy improvement occurs through grain-coarsening mechanisms that increase the average grain size from 7.5 μm to 13.5 μm, eliminating cellular–dendritic strengthening structures and reducing hardness by 32% (254 HV2 to 170 HV2) following Hall–Petch relationships. The conducted research confirms that HIP treatment allows for modification of the microstructure of Hastelloy X alloy, which may lead to the improvement of its mechanical properties in high-temperature applications and a significant increase in the isotropy of the material. Full article
(This article belongs to the Special Issue Mechanics of Advanced Composite Structures)
Show Figures

Figure 1

Back to TopTop