Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (423)

Search Parameters:
Keywords = gradual cooling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7447 KiB  
Article
Research on the Size and Distribution of TiN Inclusions in High-Titanium Steel Cast Slabs
by Min Zhang, Xiangyu Li, Zhijie Guo and Yanhui Sun
Materials 2025, 18(15), 3527; https://doi.org/10.3390/ma18153527 - 28 Jul 2025
Viewed by 248
Abstract
High-titanium steel contains an elevated titanium content, which promotes the formation of abundant non-metallic inclusions in molten steel at high temperatures, including titanium oxides, sulfides, and nitrides. These inclusions adversely affect continuous casting operations and generate substantial internal/surface defects in cast slabs, ultimately [...] Read more.
High-titanium steel contains an elevated titanium content, which promotes the formation of abundant non-metallic inclusions in molten steel at high temperatures, including titanium oxides, sulfides, and nitrides. These inclusions adversely affect continuous casting operations and generate substantial internal/surface defects in cast slabs, ultimately compromising product performance and service reliability. Therefore, stringent control over the size, distribution, and population density of inclusions is imperative during the smelting of high-titanium steel to minimize their detrimental effects. In this paper, samples of high titanium steel (0.4% Ti, 0.004% N) casting billets were analyzed by industrial test sampling and full section comparative analysis of the samples at the center and quarter position. Using the Particle X inclusions, as well as automatic scanning and analyzing equipment, the number, size, location distribution, type and morphology of inclusions in different positions were systematically and comprehensively investigated. The results revealed that the primary inclusions in the steel consisted of TiN, TiS, TiC and their composite forms. TiN inclusions exhibited a size range of 1–5 µm on the slab surface, while larger particles of 2–10 μm were predominantly observed in the interior regions. Large-sized TiN inclusions (5–10 μm) are particularly detrimental, and this problematic type of inclusion predominantly concentrates in the interior regions of the steel slab. A gradual decrease in TiN inclusion number density was identified from the surface toward the core of the slab. Thermodynamic and kinetic calculations incorporating solute segregation effects demonstrated that TiN precipitates primarily in the liquid phase. The computational results showed excellent agreement with experimental data regarding the relationship between TiN size and solidification rate under different cooling conditions, confirming that increased cooling rates lead to reduced TiN particle sizes. Both enhanced cooling rates and reduced titanium content were found to effectively delay TiN precipitation, thereby suppressing the formation of large-sized TiN inclusions in high-titanium steels. Full article
(This article belongs to the Special Issue Advanced Stainless Steel—from Making, Shaping, Treating to Products)
Show Figures

Figure 1

20 pages, 2995 KiB  
Article
Analysis of Bacterial Community During Cow Manure and Wheat Straw Composting and the Isolation of Lignin-Degrading Bacteria from the Compost
by Hanxiang Yang, Jianguo Hu, Bingxin Zhang, Yan Li, Chenxian Yang, Fusheng Chen, Tingwei Zhu and Ying Xin
Microorganisms 2025, 13(8), 1716; https://doi.org/10.3390/microorganisms13081716 - 22 Jul 2025
Viewed by 375
Abstract
Biodegradation is a green and efficient method for lignin depolymerization and conversion. In order to screen potential bacterial strains for efficient lignin degradation, composts of cow dung and wheat straw were prepared, and the dynamic changes in the predicted bacterial community structure and [...] Read more.
Biodegradation is a green and efficient method for lignin depolymerization and conversion. In order to screen potential bacterial strains for efficient lignin degradation, composts of cow dung and wheat straw were prepared, and the dynamic changes in the predicted bacterial community structure and function in different periods of the composts were investigated. Then, bacteria with an efficient lignin degradation ability were finally screened out from the compost samples. Based on the monitoring results of the physicochemical indexes of the composting process, it was found that the temperature and pH of the compost firstly increased and then decreased with the extension of time, and the water content and C/N gradually decreased. High-throughput sequencing of compost samples from the initial (DA), high-temperature (DB), and cooling (DC) periods revealed that the number of OTUs increased sharply then stabilized around 2000, and the alpha diversity of the bacterial community decreased firstly and then increased. The predominant phyla identified included Proteobacteria, Firmicutes, Chloroflexi, and Bacteroidetes, determined by the relative abundance of beta-diversity-associated species. Functional gene analysis conducted using Tax4Fun revealed that the genes were primarily categorized into Metabolism, Genetic Information Processing, Environmental Information Processing, and Cellular Processes. Based on the decolorization of aniline blue and the degradation efficiency of alkali lignin, eight bacterial strains were isolated from compost samples at the three stages. Cupriavidus sp. F1 showed the highest degradation of alkali lignin with 66.01%. Cupriavidus sp. D8 showed the highest lignin degradation potential with all three enzyme activities significantly higher than the other strains. The results provide a strategy for the lignin degradation and utilization of biomass resources. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

22 pages, 6083 KiB  
Article
Geochemical Characteristics and Thermal Evolution History of Jurassic Tamulangou Formation Source Rocks in the Hongqi Depression, Hailar Basin
by Junping Cui, Wei Jin, Zhanli Ren, Hua Tao, Haoyu Song and Wei Guo
Appl. Sci. 2025, 15(14), 8052; https://doi.org/10.3390/app15148052 - 19 Jul 2025
Viewed by 237
Abstract
The Jurassic Tamulangou Formation in the Hongqi Depression has favorable hydrocarbon generation conditions and great resource potential. This study systematically analyzes the geochemical characteristics and thermal evolution history of the source rocks using data from multiple key wells. The dark mudstone of the [...] Read more.
The Jurassic Tamulangou Formation in the Hongqi Depression has favorable hydrocarbon generation conditions and great resource potential. This study systematically analyzes the geochemical characteristics and thermal evolution history of the source rocks using data from multiple key wells. The dark mudstone of the Tamulangou Formation has a thickness ranging from 50 to 200 m, with an average total organic carbon (TOC) content of 0.14–2.91%, an average chloroform bitumen “A” content of 0.168%, and an average hydrocarbon generation potential of 0.13–3.71 mg/g. The organic matter is primarily Type II and Type III kerogen, with an average vitrinite reflectance of 0.71–1.36%, indicating that the source rocks have generally reached the mature hydrocarbon generation stage and are classified as medium-quality source rocks. Thermal history simulation results show that the source rocks have undergone two major thermal evolution stages: a rapid heating phase from the Late Jurassic to Early Cretaceous and a slow cooling phase from the Late Cretaceous to the present. There are differences in the thermal evolution history of different parts of the Hongqi Depression. In the southern part, the Tamulangou Formation entered the hydrocarbon generation threshold at 138 Ma, reached the hydrocarbon generation peak at approximately 119 Ma, and is currently in a highly mature hydrocarbon generation stage. In contrast, the central part entered the hydrocarbon generation threshold at 128 Ma, reached a moderately mature stage around 74 Ma, and has remained at this stage to the present. Thermal history simulations indicate that the Hongqi Depression reached its maximum paleotemperature at 100 Ma in the Late Early Cretaceous. The temperature evolution pattern is characterized by an initial increase followed by a gradual decrease. During the Late Jurassic to Early Cretaceous, the Hongqi Depression experienced significant fault-controlled subsidence and sedimentation, with a maximum sedimentation rate of 340 m/Ma, accompanied by intense volcanic activity that created a high-temperature geothermal gradient of 40–65 °C/km, with paleotemperatures exceeding 140 °C and a heating rate of 1.38–2.02 °C/Ma. This thermal background is consistent with the relatively high thermal regime observed in northern Chinese basins during the Late Early Cretaceous. Subsequently, the basin underwent uplift and cooling, reducing subsidence and gradually lowering formation temperatures. Full article
Show Figures

Figure 1

19 pages, 2720 KiB  
Article
Application of Ice Slurry as a Phase Change Material in Mine Air Cooling System—A Case Study
by Łukasz Mika, Karol Sztekler and Ewelina Radomska
Energies 2025, 18(14), 3782; https://doi.org/10.3390/en18143782 - 17 Jul 2025
Viewed by 309
Abstract
Fossil fuels, including coal, are a basis of energy systems in many countries worldwide. However, coal mining is associated with several difficulties, which include high temperatures within the coal mining area. It causes a need for cooling for safety reasons and also for [...] Read more.
Fossil fuels, including coal, are a basis of energy systems in many countries worldwide. However, coal mining is associated with several difficulties, which include high temperatures within the coal mining area. It causes a need for cooling for safety reasons and also for the comfort of miners’ work. Typical cooling systems in mines are based on central systems, in which chilled water is generated in the compressor or absorption coolers on the ground and transported via pipelines to the air coolers in the areas of mining. The progressive mining operation causes a gradual increase in the distance between chilled water generators and air coolers, causing a decrease in the efficiency of the entire system and insufficient cooling capacity. As a result, it is necessary to increase the diameter of the chilled water pipelines and increase the cooling capacity of the chillers, which is associated with additional investment and technical problems. One solution to this problem may be the use of so-called ice slurry instead of chilled water in the existing mine cooling system. This article presents the cooling system, located in the mine LW Bogdanka S.A., based on ice slurry. The structure of the system and its key parameters are presented. The results show that switching from cooling water to ice slurry allowed the cooling capacity of the entire system to increase by 50% while maintaining the existing piping. This demonstrates the very high potential for the use of ice slurry, not only in mines, but wherever further increases in piping diameters to maintain the required cooling capacity are not possible or cost-effective. Full article
Show Figures

Figure 1

17 pages, 4572 KiB  
Article
Numerical Analysis of Impingement Jet Combined Cooling with Film Cooling Holes and Thermal Barrier Coatings Using the Decoupling Method
by Siqi Liao, Li Shi, Xiao Tan, Changce Wang, Yue Luo, Rongli Deng, Haoyu Zhang, Chenwei Zheng and Jinfeng Peng
Coatings 2025, 15(7), 832; https://doi.org/10.3390/coatings15070832 - 16 Jul 2025
Viewed by 294
Abstract
This study investigates the impact of thermal barrier coatings (TBCs) on the individual contributions of cooling components in impingement-jet combined cooling under low Reynolds number conditions. Using decoupled methods, numerical simulations were conducted for cylindrical, fan-shaped, and conical hole geometries. The results show [...] Read more.
This study investigates the impact of thermal barrier coatings (TBCs) on the individual contributions of cooling components in impingement-jet combined cooling under low Reynolds number conditions. Using decoupled methods, numerical simulations were conducted for cylindrical, fan-shaped, and conical hole geometries. The results show that without TBCs, the conical hole provides the best cooling performance, while the fan-shaped hole performs the worst. After applying TBCs, the cooling effectiveness of the cylindrical and conical holes remains largely unchanged, but the fan-shaped hole shows significant improvement, with performance comparable to the conical hole. The cylindrical hole keeps a uniform shape, leading to increased velocity and preventing stable film formation. In contrast, the expanding flow passages of the fan-shaped and conical holes promote a gradual decrease in flow velocity, supporting stable film formation and effective thermal protection. Impingement cooling accounts for more than 75% of the overall cooling effectiveness for across hole types. For cylindrical and conical holes, the TBCs primarily enhance in-hole cooling, while for the fan-shaped hole, it increases in-hole cooling effectiveness and shifts film cooling effectiveness from negative to positive, significantly improving its overall contribution. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

19 pages, 8722 KiB  
Article
Effect of Laser Power on Microstructure and Tribological Performance of Ni60/WC Bionic Unit Fabricated via Laser Cladding
by You Lv, Bo Cui, Zhaolong Sun and Yan Tong
Metals 2025, 15(7), 771; https://doi.org/10.3390/met15070771 - 8 Jul 2025
Viewed by 311
Abstract
The unique structures and properties of natural organisms provide abundant inspiration for surface modification research in materials science. In this paper, the tribological advantages of radial ribs found on shell surfaces were combined with laser cladding to address challenges in material surface strengthening. [...] Read more.
The unique structures and properties of natural organisms provide abundant inspiration for surface modification research in materials science. In this paper, the tribological advantages of radial ribs found on shell surfaces were combined with laser cladding to address challenges in material surface strengthening. Laser cladding technology was used to fabricate bionic units on the surface of 20CrMnTi steel. The alloy powder consisted of a Ni-based alloy with added WC particles. The influence of laser power (1.0 kW–3.0 kW) on the dimensions, microstructure, hardness, surface roughness, and tribological properties of the bionic units was investigated to enhance the tribological performance of the Ni60/WC bionic unit. The microstructure, phase composition, hardness, and tribological behavior of the bionic units were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), a microhardness tester, and a wear tester. Experimental results show that the dimensions of the bionic units increased with laser power. However, beyond a certain threshold, the growth rate of the width and height gradually slowed due to heat conduction and edge cooling effects. The microstructure primarily consisted of equiaxed and dendritic crystals, with grain refinement observed at higher laser powers. The addition of WC resulted in average hardness values of 791 HV0.2, 819 HV0.2, 835 HV0.2, and 848 HV0.2 across the samples. This enhancement in hardness was attributed to dispersion strengthening and grain refinement. Increasing the laser power also reduced the surface roughness of the bionic units, though excessively high laser power led to a roughness increase. The presence of WC altered the wear mechanism of the bionic units. Compared to the wear observed in the N60 sample, the wear amount of the WC-containing samples decreased by 73.7%, 142.1%, 157.5%, and 263.1%, respectively. Hard WC particles played a decisive role in enhancing tribological performance of the bionic unit. Full article
Show Figures

Figure 1

14 pages, 5672 KiB  
Article
Numerical Study of the Combustion-Flow-Thermo-Pyrolysis Process in an Innovative Externally Heated Oil Shale Retort
by Lixin Zhao, Yingxue Mei and Luwei Pan
Symmetry 2025, 17(7), 1055; https://doi.org/10.3390/sym17071055 - 3 Jul 2025
Viewed by 362
Abstract
A novel externally heated retort for Jimsar oil shale resources is proposed, and the symmetrical mathematical model of the transport process in the retort is established through intensively studying the mechanisms of shale gas flows, heat transfer, and pyrolysis reactions in the retort. [...] Read more.
A novel externally heated retort for Jimsar oil shale resources is proposed, and the symmetrical mathematical model of the transport process in the retort is established through intensively studying the mechanisms of shale gas flows, heat transfer, and pyrolysis reactions in the retort. The descriptions of axial and radial movements and temperature of oil shale and gases, and the distribution of pyrolysis reaction and yielding of gaseous products and semi-coke in various regions of the retort are simulated. The results show that oil shale can pyrolyze gradually from the region near the wall to the core region of the retorting chamber and pyrolyze completely at the bottom of the retorting zone through receiving the heat flux transferring from the combustion channels. The final pyrolysis temperature of oil shale is 821.05 K, and the outlet temperature of semi-coke cooled by cold recycled gas is 676.35 K, which are in agreement with the design requirements. In total, 75 toil shales can be retorted in one retorting chamber per day, and the productivity of the retort can be increased by increasing the number of retorting chambers. The fuel self-sufficiency rate of this externally heated oil shale retort can reach 82.83%. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

27 pages, 6842 KiB  
Article
Non-Conventional and Sustainable Retrofitting of Fire-Exposed Reinforced Concrete Columns Using Basalt Fiber–Engineered Geopolymer Composites
by Ruba Palanivelu, Bhuvaneshwari Panchanatham, Adamantis G. Zapris and Violetta K. Kytinou
Buildings 2025, 15(12), 1962; https://doi.org/10.3390/buildings15121962 - 6 Jun 2025
Cited by 2 | Viewed by 620
Abstract
The increasing demand for sustainable and resilient construction solutions calls for the integration of innovative, non-conventional materials in structural retrofitting. This study investigates the use of basalt fiber-based engineered geopolymer composites (BFEGC) as a retrofitting material for fire-damaged reinforced concrete (RC) short columns. [...] Read more.
The increasing demand for sustainable and resilient construction solutions calls for the integration of innovative, non-conventional materials in structural retrofitting. This study investigates the use of basalt fiber-based engineered geopolymer composites (BFEGC) as a retrofitting material for fire-damaged reinforced concrete (RC) short columns. A total of 14 columns (150 mm × 150 mm × 650 mm) were cast. Two columns were used as control specimens. The remaining 12 columns were exposed to various fire conditions: 300 °C for 30 min, 600 °C for 20 min, and 900 °C for 15 min, followed by gradual (GC) or rapid cooling (RC). Among the columns, six were left unwrapped (GC-NW, RC-NW), while six others were retrofitted with BFEGC (GC-W, RC-W) and subjected to axial loading until failure. The results showed that BFEGC wrapping improved the mechanical performance of fire-damaged columns, especially at 600 °C. The 600RC-W columns exhibited 1.85 times higher ultimate load, 1.56 times greater displacement ductility, and 2.99 times higher energy ductility compared to unwrapped columns. The strength index and confinement coefficient of the 600RC-W columns increased by 2.31 times and 40.2%, respectively. Microstructural analysis confirmed the formation of salient hydration products under elevated temperatures. BFEGC shows significant reduction in carbon emissions and embodied energy, compared to conventional cement-based binders for fiber-reinforced polymer systems. Full article
Show Figures

Figure 1

50 pages, 4165 KiB  
Review
Sustainable Insulation Technologies for Low-Carbon Buildings: From Past to Present
by Pinar Mert Cuce
Sustainability 2025, 17(11), 5176; https://doi.org/10.3390/su17115176 - 4 Jun 2025
Viewed by 1124
Abstract
Building facade insulation technologies have evolved from primitive thermal barriers to high-performance, multifunctional systems that enhance energy efficiency and indoor comfort. Historical insulation methods, such as thick masonry walls and timber-based construction, have gradually been replaced by advanced materials and innovative facade designs. [...] Read more.
Building facade insulation technologies have evolved from primitive thermal barriers to high-performance, multifunctional systems that enhance energy efficiency and indoor comfort. Historical insulation methods, such as thick masonry walls and timber-based construction, have gradually been replaced by advanced materials and innovative facade designs. Studies indicate that a significant proportion of a building’s heat loss occurs through its external walls and windows, highlighting the need for effective insulation strategies. The development of double-skin facades (D-SFSs), adaptive facades (AFs), and green facades has enabled substantial reductions in heating and cooling energy demands. Materials such as vacuum insulation panels (VIPs), aerogels, and phase change materials (PCMs) have demonstrated superior thermal resistance, contributing to improved thermal regulation and reduced carbon emissions. Green facades offer additional benefits by lowering surface temperatures and mitigating urban heat island effects, while D-SF configurations can reduce cooling loads by over 20% in warm climates. Despite these advancements, challenges remain regarding the initial investment costs, durability, and material sustainability. The future of facade insulation technologies is expected to focus on bio-based and recyclable insulation materials, enhanced thermal performance, and climate-responsive facade designs. This study provides a comprehensive review of historical and modern facade insulation technologies, examining their impact on energy efficiency, sustainability, and future trends in architectural design. Full article
Show Figures

Figure 1

20 pages, 3689 KiB  
Article
Numerical Investigation and Optimization of Transpiration Cooling Plate Structures with Combined Particle Diameter
by Dan Wang, Yaxin Liu, Xiang Zhang, Mingliang Kong and Hanchao Liu
Energies 2025, 18(11), 2950; https://doi.org/10.3390/en18112950 - 4 Jun 2025
Viewed by 404
Abstract
Transpiration cooling is an efficient thermal protection technology used for scramjet combustors and other components. However, a conventional transpiration cooling plate structure with uniform porous media distribution suffers from a large temperature difference between the upstream and downstream surfaces and high coolant injection [...] Read more.
Transpiration cooling is an efficient thermal protection technology used for scramjet combustors and other components. However, a conventional transpiration cooling plate structure with uniform porous media distribution suffers from a large temperature difference between the upstream and downstream surfaces and high coolant injection pressure (p). To enhance the overall cooling effect and reduce the maximum surface temperature and coolant injection pressure, the combined particle diameter plate structure (CPD−PS) is proposed. Numerical simulations show that compared with the single-particle diameter plate structure (SPD−PS), the CPD−PS with a larger upstream particle diameter (dp) than that of the downstream (dpA > dpB) can effectively reduce the upstream temperature and improve average cooling efficiency (ηave). Meanwhile, gradually increasing dp will increase the permeability of porous media, reduce coolant flow resistance, and thus lower coolant injection pressure. An optimization analysis of CPD−PS is conducted using response surface methodology (RSM), and the influence of design variables on the objective function (ηave and p) is analyzed. Further optimization with the multi-objective genetic algorithm (MOGA) determines the optimal structural parameters. The results suggest that porosity (ε) and dp are the most crucial parameters affecting ηave and p of CPD−PS. After optimization, the maximum temperature of the porous plate is significantly reduced by 8.40%, and the average temperature of the hot end surface is also reduced. The overall cooling performance is effectively improved, ηave is increased by 6.02%, and p is significantly reduced. Additionally, the upstream surface velocity of the optimized structure changes and the boundary layer thickens, which enhances the thermal insulation effect. Full article
Show Figures

Figure 1

15 pages, 2890 KiB  
Article
The Interface of Additive Manufactured Tungsten–Diamond Composites
by Xuehao Gao, Dongxu Cheng, Zhe Sun, Yihe Huang, Wentai Ouyang, Cunxiao Lan, Zhaoqing Li and Lin Li
Materials 2025, 18(11), 2574; https://doi.org/10.3390/ma18112574 - 30 May 2025
Viewed by 460
Abstract
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate [...] Read more.
Tungsten–diamond metal matrix composites (MMCs) fabricated via L-PBF show potential for applications in nuclear facility shielding, heat sinks, precision cutting/grinding tools, and aerospace hot-end components. In this paper, tungsten (W), diamond (D), and diamond with Ni coating (D-Ni) powders are used to fabricate W+D and W+(D-Ni) composites by L-PBF technology. The results show that at the interface of the W+D sample, the W powder melts while the D powder remains in a solid state during L-PBF processing, and W and C elements gradually diffuse into each other. Due to the high cooling rate of L-PBF processing, the C phase forms a diamond-like carbon (DLC) phase with an amorphous structure, and the W phase becomes a supersaturated solid solution of the C element. At the interface of the W+(D-Ni) sample, the diffusion capacity of Ni and W elements in the solid state is weaker than in the molten state. C and W elements diffuse into the Ni melt, forming a rich Ni area of the DLC phase, while Ni and W elements diffuse into the solid D powder, forming a lean Ni area of the DLC phase. In the rich Ni area of the DLC phase, Ni segregation leads to the precipitation of nanocrystals (several hundred nanometers), whereas in the lean Ni area of the DLC phase, the diffusion capacity of Ni and W elements in the solid D powder is limited, resulting in nanocrystalline sizes of only about tens of nanometers. During W dendrite growth, the addition of the Ni coating and the expelling of the C phenomenon leads to W grain refinement at the interface, which reduces the number and length of cracks in the W+(D-Ni) sample. This paper contributes to the theoretical development and engineering applications of tungsten–diamond MMCs fabricated by L-PBF. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

19 pages, 5661 KiB  
Article
Coupled Temperature–Flow Field and Microstructure Numerical Simulation of the Solidification Process for Cu-3Ti-0.2Fe Alloy
by Jiangwei Hu, Qingjuan Wang, Kuaishe Wang, Wen Wang, Fengming Qiang and Longxin Li
Materials 2025, 18(11), 2478; https://doi.org/10.3390/ma18112478 - 25 May 2025
Viewed by 475
Abstract
This work investigates the time-dependent changes in temperature, flow, and solidification microstructure under various cooling conditions. The mechanism of the effects of different pouring temperatures on the morphology and evolution of the solidification microstructure is explored. During gradual cooling, the temperature distribution remained [...] Read more.
This work investigates the time-dependent changes in temperature, flow, and solidification microstructure under various cooling conditions. The mechanism of the effects of different pouring temperatures on the morphology and evolution of the solidification microstructure is explored. During gradual cooling, the temperature distribution remained consistent and the solid–liquid interface extended to its furthest extent. In contrast, water cooling generated the most pronounced temperature gradient at the solidification front, which was conducive to the development of columnar grains. Specifically, the maximum solidification rates at the center of the casting under the water-cooled copper mold, copper mold, and ceramic mold conditions were 2.71 mm/s, 1.45 mm/s, and 0.95 mm/s, respectively, with water cooling achieving the fastest rate. In the early stages of solidification, the flow velocity at the casting center was relatively high, and during slow cooling, the molten material tended to flow toward the surface. When air cooling was applied, the molten material at the center migrated outward, while under water cooling, the fluid moved in an upward direction. At a heat transfer coefficient of 100 W/(m2·K), the alloy primarily formed equiaxed grains; however, at 5000 W/(m2·K), the proportion of columnar grains increased significantly, and the average grain area expanded from 3.664 × 10−6 m2 to 4.441 × 10−6 m2. Additionally, as the pouring temperature increased from 1100 °C to 1200 °C, the number of grains decreased, while the average radius grew from 1.665 × 10−3 m to 1.820 × 10−3 m, resulting in a reduced fraction of equiaxed grains. This study provides valuable theoretical insights for optimizing the solidification process of this particular alloy. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

19 pages, 6091 KiB  
Article
Foaming of Bio-Based PLA/PBS/PBAT Ternary Blends with Added Nanohydroxyapatite Using Supercritical CO2: Effect of Operating Strategies on Cell Structure
by Pei-Hua Chen, Chin-Wen Chen, Tzu-Hsien Chan, Hsin-Ying Lin, Ke-Ling Tuan, Chie-Shaan Su, Jung-Chin Tsai and Feng-Huei Lin
Molecules 2025, 30(9), 2056; https://doi.org/10.3390/molecules30092056 - 5 May 2025
Viewed by 673
Abstract
This study explored the innovative foaming behavior of a novel biodegradable polymer blend consisting of polylactic acid/poly(butylene succinate)/poly(butylene adipate-co-terephthalate) (PLA/PBS/PBAT) enhanced with nanohydroxyapatite (nHA), using supercritical carbon dioxide (SCCO2) as an environmentally friendly physical foaming agent. The aim was to investigate [...] Read more.
This study explored the innovative foaming behavior of a novel biodegradable polymer blend consisting of polylactic acid/poly(butylene succinate)/poly(butylene adipate-co-terephthalate) (PLA/PBS/PBAT) enhanced with nanohydroxyapatite (nHA), using supercritical carbon dioxide (SCCO2) as an environmentally friendly physical foaming agent. The aim was to investigate the effects of various foaming strategies on the resulting cell structure, aiming for potential applications in tissue engineering. Eight foaming strategies were examined, starting with a basic saturation process at high temperature and pressure, followed by rapid decompression to ambient conditions, referred to as the (1T-1P) strategy. Intermediate temperature and pressure variations were introduced before the final decompression to evaluate the impact of operating parameters further. These strategies included intermediate-temperature cooling (2T-1P), intermediate-temperature cooling with rapid intermediate decompression (2T-2P), and intermediate-temperature cooling with gradual intermediate decompression (2T-2P, stepwise ΔP). SEM imaging revealed that the (2T-2P, stepwise ΔP) strategy produced a bimodal cell structure featuring small cells ranging from 105 to 164 μm and large cells between 476 and 889 μm. This study demonstrated that cell size was influenced by the regulation of intermediate pressure reduction and the change in intermediate temperature. The results were interpreted based on classical nucleation theory, the gas solubility principle, and the effect of polymer melt strength. Foaming results of average cell size, cell density, expansion ratio, porosity, and opening cell content are reported. The hydrophilicity of various foamed polymer blends was evaluated by measuring the water contact angle. Typical compressive stress–strain curves obtained using DMA showed a consistent trend reflecting the effect of foam stiffness. Full article
Show Figures

Graphical abstract

20 pages, 6378 KiB  
Article
Study on the Mechanism of High-Pressure Spraying of Water-Based Release Agent by External Mixing
by Qian Zhang, Ziyang Liu, Yuhan Xu, Lei Huang, Dagui Wang, Liai Chen and Song Chen
Processes 2025, 13(4), 1224; https://doi.org/10.3390/pr13041224 - 17 Apr 2025
Viewed by 382
Abstract
In the casting and stamping process of automobile, ship, aerospace, and other fields, improving the atomization quality of the spray release agent can effectively solve the problems of difficult film removal, low efficiency, and poor surface finish, and greatly improve the efficiency of [...] Read more.
In the casting and stamping process of automobile, ship, aerospace, and other fields, improving the atomization quality of the spray release agent can effectively solve the problems of difficult film removal, low efficiency, and poor surface finish, and greatly improve the efficiency of production and manufacturing. The geometric model of the external mixing nozzle was constructed, and the calculation domain and grid were divided. The atomization flow field velocity, liquid film thickness, particle distribution, and cooling amount were calculated using fluid simulation software. Finally, an experimental platform was set up for verification. With the increase in the distance between the iron plate and the nozzle, the velocity of the flow field decreases from the nozzle exit to the periphery, and the frequency distribution of D60–70 increases gradually. With the increase in the pressure ratio (K), the particle velocity increases gradually, the liquid film thickness increases first, and then gently decreases, and the D60–70 frequency distribution decreases. The influence of gas pressure on atomized particle velocity and liquid film thickness is greater than that of liquid phase pressure, and the ion velocity reaches the peak value when K = 2. When K = 1.5, the average thickness increment of absolute liquid film is small, the atomized particle diameter changes the least, the frequency distribution of D65 particles is approximately the same, and the atomization effect is the most stable. When the spraying time is 1 s, the K value is larger, and the smaller the temperature drop will be. In 2–4 s, the change in K value has little influence on the cooling amount. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

22 pages, 9526 KiB  
Article
Tensile Properties of Granite Under Cyclic Thermal Shock and Loading
by Yiming Zhang, Fan Zhang, ShengYuan Liu, Congcong Lv and Siming Xu
Appl. Sci. 2025, 15(8), 4385; https://doi.org/10.3390/app15084385 - 16 Apr 2025
Viewed by 470
Abstract
This study investigates the tensile properties of granite subjected to cyclic thermal treatment under cyclic loading-unloading conditions, which is of great significance for the modification of hot dry rock reservoirs. Brazilian splitting tests under cyclic loading-unloading were conducted on granite samples exposed to [...] Read more.
This study investigates the tensile properties of granite subjected to cyclic thermal treatment under cyclic loading-unloading conditions, which is of great significance for the modification of hot dry rock reservoirs. Brazilian splitting tests under cyclic loading-unloading were conducted on granite samples exposed to 400 °C cyclic water-cooling shock (applied for 1, 3, 5, and 7 cycles) at different preset load upper limits (65%, 70%, 75%, and 80% of the peak load). The experimental results reveal the evolution of the tensile properties of granite under the combined effects of 400 °C cyclic water-cooling shock and cyclic loading-unloading. The findings indicate that the tensile strength of granite decreases with an increasing number of cyclic water-cooling shocks and further declines as the preset load upper limit decreases. Under typical conditions, the peak displacement of granite exhibits three distinct stages with increasing loading-unloading cycles: rapid increase, slow increase, and eventual failure. During the slow increase stage, peak displacement decreases due to an increase in elastic stiffness. Initially, elastic stiffness increases with the number of cycles, followed by a stabilization phase, and subsequently declines. After granite failure, macroscopic failure cracks gradually deviate from the center as additional cyclic water-cooling shocks are applied. In contrast, cyclic loading-unloading has a minimal effect on macroscopic cracks. Furthermore, as the number of cycles increases, microcrack evolution transitions from intergranular to transgranular cracking. Under cyclic loading-unloading conditions, these cracks continue to propagate, ultimately forming a fracture network. The findings of this study provide a theoretical foundation for the fracturing and modification of hot dry rock reservoirs. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

Back to TopTop