Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = gradient dropout

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2527 KiB  
Article
ISELDP: An Enhanced Dropout Prediction Model Using a Stacked Ensemble Approach for In-Session Learning Platforms
by Saad Alghamdi, Ben Soh and Alice Li
Electronics 2025, 14(13), 2568; https://doi.org/10.3390/electronics14132568 - 25 Jun 2025
Viewed by 273
Abstract
High dropout rates remain a significant challenge in Massive Open Online Courses (MOOCs), making early identification of at-risk students crucial. This study introduces a novel approach called In-Session Stacked Ensemble Learning for Dropout Prediction (ISELDP), which predicts student dropout during course sessions by [...] Read more.
High dropout rates remain a significant challenge in Massive Open Online Courses (MOOCs), making early identification of at-risk students crucial. This study introduces a novel approach called In-Session Stacked Ensemble Learning for Dropout Prediction (ISELDP), which predicts student dropout during course sessions by combining multiple base learners—Adaptive Boosting (AdaBoost), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Gradient Boosting—into a stacked ensemble with a Multi-Layer Perceptron (MLP) serving as the meta-learner. To optimise model performance, hyperparameters were tuned using Grid Search. The proposed method was evaluated under two scenarios using in-session student interaction data, one with imbalanced data and another with balanced data. Results demonstrate that ISELDP achieves an average accuracy of 88%, outperforming individual baseline models with improvements of up to 2% in accuracy and 2.4% in F1-score. Full article
Show Figures

Figure 1

19 pages, 4785 KiB  
Article
A Deep Equilibrium Model for Remaining Useful Life Estimation of Aircraft Engines
by Spyridon Plakias and Yiannis S. Boutalis
Electronics 2025, 14(12), 2355; https://doi.org/10.3390/electronics14122355 - 9 Jun 2025
Viewed by 385
Abstract
Estimating Remaining Useful Life (RUL) is crucial in modern Prognostic and Health Management (PHM) systems providing valuable information for planning the maintenance strategy of critical components in complex systems such as aircraft engines. Deep Learning (DL) models have shown great performance in the [...] Read more.
Estimating Remaining Useful Life (RUL) is crucial in modern Prognostic and Health Management (PHM) systems providing valuable information for planning the maintenance strategy of critical components in complex systems such as aircraft engines. Deep Learning (DL) models have shown great performance in the accurate prediction of RUL, building hierarchical representations by the stacking of multiple explicit neural layers. In the current research paper, we follow a different approach presenting a Deep Equilibrium Model (DEM) that effectively captures the spatial and temporal information of the sequential sensor. The DEM, which incorporates convolutional layers and a novel dual-input interconnection mechanism to capture sensor information effectively, estimates the degradation representation implicitly as the equilibrium solution of an equation, rather than explicitly computing it through multiple layer passes. The convergence representation of the DEM is estimated by a fixed-point equation solver while the computation of the gradients in the backward pass is made using the Implicit Function Theorem (IFT). The Monte Carlo Dropout (MCD) technique under calibration is the final key component of the framework that enhances regularization and performance providing a confidence interval for each prediction, contributing to a more robust and reliable outcome. Simulation experiments on the widely used NASA Turbofan Jet Engine Data Set show consistent improvements, with the proposed framework offering a competitive alternative for RUL prediction under diverse conditions. Full article
(This article belongs to the Special Issue Advances in Condition Monitoring and Fault Diagnosis)
Show Figures

Figure 1

21 pages, 1126 KiB  
Article
Spectral Adaptive Dropout: Frequency-Based Regularization for Improved Generalization
by Zhigao Huang, Musheng Chen and Shiyan Zheng
Information 2025, 16(6), 475; https://doi.org/10.3390/info16060475 - 6 Jun 2025
Viewed by 571
Abstract
Deep neural networks are often susceptible to overfitting, necessitating effective regularization techniques. This paper introduces Spectral Adaptive Dropout, a novel frequency-based regularization technique that dynamically adjusts dropout rates based on the spectral characteristics of network gradients. The proposed approach addresses the limitations of [...] Read more.
Deep neural networks are often susceptible to overfitting, necessitating effective regularization techniques. This paper introduces Spectral Adaptive Dropout, a novel frequency-based regularization technique that dynamically adjusts dropout rates based on the spectral characteristics of network gradients. The proposed approach addresses the limitations of traditional dropout methods by adaptively targeting high-frequency components that typically contribute to overfitting while preserving essential low-frequency information. Through extensive experimentation on character-level language modeling tasks, the study demonstrates that the method achieves a 1.10% improvement in validation loss while maintaining competitive inference speeds. Thise research explores several implementations including FFT-based analysis, wavelet decomposition, and per-attention-head adaptation, culminating in an optimized approach that balances computational efficiency with regularization effectiveness. Our results highlight the significant potential of incorporating frequency-domain information into regularization strategies for deep neural networks. Full article
(This article belongs to the Special Issue Intelligent Information Technology)
Show Figures

Figure 1

16 pages, 2221 KiB  
Article
Efficient Training of Deep Spiking Neural Networks Using a Modified Learning Rate Scheduler
by Sung-Hyun Cha and Dong-Sun Kim
Mathematics 2025, 13(8), 1361; https://doi.org/10.3390/math13081361 - 21 Apr 2025
Viewed by 553
Abstract
Deep neural networks (DNNs) have achieved high accuracy in various applications, but with the rapid growth of AI and the increasing scale and complexity of datasets, their computational cost and power consumption have become even more significant challenges. Spiking neural networks (SNNs), inspired [...] Read more.
Deep neural networks (DNNs) have achieved high accuracy in various applications, but with the rapid growth of AI and the increasing scale and complexity of datasets, their computational cost and power consumption have become even more significant challenges. Spiking neural networks (SNNs), inspired by biological neurons, offer an energy-efficient alternative by using spike-based information processing. However, training SNNs is difficult due to the non-differentiability of their activation function and the challenges in constructing deep architectures. This study addresses these issues by integrating DNN-like backpropagation into SNNs using a supervised learning approach. A surrogate gradient descent based on the arctangent function is applied to approximate the non-differentiable activation function, enabling stable gradient-based learning. The study also explores the interplay between the spatial domain (layer-wise propagation) and the temporal domain (time step), ensuring proper gradient propagation using the chain rule. Additionally, mini-batch training, Adam optimization, and layer normalization are incorporated to improve training efficiency and mitigate gradient vanishing. A softmax-based probability representation and cross-entropy loss function are used to optimize classification performance. Along with these techniques, a deep SNN was designed to converge to the optimal point faster than other models in the early stages of training by utilizing a modified learning rate scheduler. The proposed learning method allows deep SNNs to achieve competitive accuracy while maintaining their inherent low-power characteristics. These findings contribute to making SNNs more practical for machine learning applications by combining the advantages of deep learning and biologically inspired computing. In summary, this study contributes to the field by analyzing and adapting deep learning techniques—such as dropout, layer normalization, mini-batch training, and Adam optimization—to the spiking domain, and by proposing a novel learning rate scheduler that enables faster convergence during early training phases with fewer epochs. Full article
Show Figures

Figure 1

31 pages, 11795 KiB  
Article
DT-YOLO: An Improved Object Detection Algorithm for Key Components of Aircraft and Staff in Airport Scenes Based on YOLOv5
by Zhige He, Yuanqing He and Yang Lv
Sensors 2025, 25(6), 1705; https://doi.org/10.3390/s25061705 - 10 Mar 2025
Viewed by 1125
Abstract
With the rapid development and increasing demands of civil aviation, the accurate detection of key aircraft components and staff on airport aprons is of great significance for ensuring the safety of flights and improving the operational efficiency of airports. However, the existing detection [...] Read more.
With the rapid development and increasing demands of civil aviation, the accurate detection of key aircraft components and staff on airport aprons is of great significance for ensuring the safety of flights and improving the operational efficiency of airports. However, the existing detection models for airport aprons are relatively scarce, and their accuracy is insufficient. Based on YOLOv5, we propose an improved object detection algorithm, called DT-YOLO, to address these issues. We first built a dataset called AAD-dataset for airport apron scenes by randomly sampling and capturing surveillance videos taken from the real world to support our research. We then introduced a novel module named D-CTR in the backbone, which integrates the global feature extraction capability of Transformers with the limited receptive field of convolutional neural networks (CNNs) to enhance the feature representation ability and overall performance. A dropout layer was introduced to reduce redundant and noisy features, prevent overfitting, and improve the model’s generalization ability. In addition, we utilized deformable convolutions in CNNs to extract features from multi-scale and deformed objects, further enhancing the model’s adaptability and detection accuracy. In terms of loss function design, we modified GIoULoss to address its discontinuities and instability in certain scenes, which effectively mitigated gradient explosion and improved the stability of the model. Finally, experiments were conducted on the self-built AAD-dataset. The results demonstrated that DT-YOLO significantly improved the mean average precision (mAP). Specifically, the mAP increased by 2.6 on the AAD-dataset; moreover, other metrics also showed a certain degree of improvement, including detection speed, AP50, AP75, and so on, which comprehensively proves that DT-YOLO can be applied for real-time object detection in airport aprons, ensuring the safe operation of aircraft and efficient management of airports. Full article
(This article belongs to the Special Issue Computer Vision Recognition and Communication Sensing System)
Show Figures

Figure 1

23 pages, 4309 KiB  
Article
Comparison of Deep Learning and Traditional Machine Learning Models for Predicting Mild Cognitive Impairment Using Plasma Proteomic Biomarkers
by Kesheng Wang, Donald A. Adjeroh, Wei Fang, Suzy M. Walter, Danqing Xiao, Ubolrat Piamjariyakul and Chun Xu
Int. J. Mol. Sci. 2025, 26(6), 2428; https://doi.org/10.3390/ijms26062428 - 8 Mar 2025
Viewed by 1879
Abstract
Mild cognitive impairment (MCI) is a clinical condition characterized by a decline in cognitive ability and progression of cognitive impairment. It is often considered a transitional stage between normal aging and Alzheimer’s disease (AD). This study aimed to compare deep learning (DL) and [...] Read more.
Mild cognitive impairment (MCI) is a clinical condition characterized by a decline in cognitive ability and progression of cognitive impairment. It is often considered a transitional stage between normal aging and Alzheimer’s disease (AD). This study aimed to compare deep learning (DL) and traditional machine learning (ML) methods in predicting MCI using plasma proteomic biomarkers. A total of 239 adults were selected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort along with a pool of 146 plasma proteomic biomarkers. We evaluated seven traditional ML models (support vector machines (SVMs), logistic regression (LR), naïve Bayes (NB), random forest (RF), k-nearest neighbor (KNN), gradient boosting machine (GBM), and extreme gradient boosting (XGBoost)) and six variations of a deep neural network (DNN) model—the DL model in the H2O package. Least Absolute Shrinkage and Selection Operator (LASSO) selected 35 proteomic biomarkers from the pool. Based on grid search, the DNN model with an activation function of “Rectifier With Dropout” with 2 layers and 32 of 35 selected proteomic biomarkers revealed the best model with the highest accuracy of 0.995 and an F1 Score of 0.996, while among seven traditional ML methods, XGBoost was the best with an accuracy of 0.986 and an F1 Score of 0.985. Several biomarkers were correlated with the APOE-ε4 genotype, polygenic hazard score (PHS), and three clinical cerebrospinal fluid biomarkers (Aβ42, tTau, and pTau). Bioinformatics analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed several molecular functions and pathways associated with the selected biomarkers, including cytokine-cytokine receptor interaction, cholesterol metabolism, and regulation of lipid localization. The results showed that the DL model may represent a promising tool in the prediction of MCI. These plasma proteomic biomarkers may help with early diagnosis, prognostic risk stratification, and early treatment interventions for individuals at risk for MCI. Full article
(This article belongs to the Special Issue New Advances in Proteomics in Disease)
Show Figures

Figure 1

22 pages, 5113 KiB  
Article
GDnet-IP: Grouped Dropout-Based Convolutional Neural Network for Insect Pest Recognition
by Dongcheng Li, Yongqi Xu, Zheming Yuan and Zhijun Dai
Agriculture 2024, 14(11), 1915; https://doi.org/10.3390/agriculture14111915 - 29 Oct 2024
Viewed by 1172
Abstract
Lightweight convolutional neural network (CNN) models have proven effective in recognizing common pest species, yet challenges remain in enhancing their nonlinear learning capacity and reducing overfitting. This study introduces a grouped dropout strategy and modifies the CNN architecture to improve the accuracy of [...] Read more.
Lightweight convolutional neural network (CNN) models have proven effective in recognizing common pest species, yet challenges remain in enhancing their nonlinear learning capacity and reducing overfitting. This study introduces a grouped dropout strategy and modifies the CNN architecture to improve the accuracy of multi-class insect recognition. Specifically, we optimized the base model by selecting appropriate optimizers, fine-tuning the dropout probability, and adjusting the learning rate decay strategy. Additionally, we replaced ReLU with PReLU and added BatchNorm layers after each Inception layer, enhancing the model’s nonlinear expression and training stability. Leveraging the Inception module’s branching structure and the adaptive grouping properties of the WeDIV clustering algorithm, we developed two grouped dropout models, the iGDnet-IP and GDnet-IP. Experimental results on a dataset containing 20 insect species (15 pests and five beneficial insects) demonstrated an increase in cross-validation accuracy from 84.68% to 92.12%, with notable improvements in the recognition rates for difficult-to-classify species, such as Parnara guttatus Bremer and Grey (PGBG) and Papilio xuthus Linnaeus (PXLL), increasing from 38% and 47% to 62% and 93%, respectively. Furthermore, these models showed significant accuracy advantages over standard dropout methods on test sets, with faster training times compared to four conventional CNN models, highlighting their suitability for mobile applications. Theoretical analyses of model gradients and Fisher information provide further insight into the grouped dropout strategy’s role in improving CNN interpretability for insect recognition tasks. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

7 pages, 1473 KiB  
Proceeding Paper
Enhancing Insider Malware Detection Accuracy with Machine Learning Algorithms
by Md. Humayun Kabir, Arif Hasnat, Ahmed Jaser Mahdi, Mohammad Nadib Hasan, Jaber Ahmed Chowdhury and Istiak Mohammad Fahim
Eng. Proc. 2023, 58(1), 104; https://doi.org/10.3390/ecsa-10-16234 - 15 Nov 2023
Viewed by 1609
Abstract
One of the biggest cybersecurity challenges in recent years has been the risk that insiders pose. Internet consumers are susceptible to exploitation due to the exponential growth of network usage. Malware attacks are a major concern in the digital world. The potential occurrence [...] Read more.
One of the biggest cybersecurity challenges in recent years has been the risk that insiders pose. Internet consumers are susceptible to exploitation due to the exponential growth of network usage. Malware attacks are a major concern in the digital world. The potential occurrence of this threat necessitates specialized detection techniques and equipment, including the capacity to facilitate the precise and rapid detection of an insider threat. In this research, we propose a machine learning algorithm using a neural network to enhance malware detection accuracy in response to insider threats. A feature extraction, anomaly detection, and classification workflow are also proposed. We use the CERT4.2 dataset and preprocess the data by encoding text strings and differentiating threat and non-threat records. Our developed machine learning model incorporates numerous dense layers, ReLU activation functions, and dropout layers for regularization. The model attempts to detect and classify internal threats in the dataset with precision. We employed random forest, naive Bayes, KNN, SVM, decision tree, logical regression, and the gradient boosting algorithm to compare our proposed model with other classification techniques. Based on the results of the experiments, the proposed method functions properly and can detect malware more effectively and with 100% accuracy. Full article
Show Figures

Figure 1

16 pages, 2216 KiB  
Article
A Study on Dropout Prediction for University Students Using Machine Learning
by Choong Hee Cho, Yang Woo Yu and Hyeon Gyu Kim
Appl. Sci. 2023, 13(21), 12004; https://doi.org/10.3390/app132112004 - 3 Nov 2023
Cited by 13 | Viewed by 3741
Abstract
Student dropout is a serious issue in that it not only affects the individual students who drop out but also has negative impacts on the former university, family, and society together. To resolve this, various attempts have been made to predict student dropout [...] Read more.
Student dropout is a serious issue in that it not only affects the individual students who drop out but also has negative impacts on the former university, family, and society together. To resolve this, various attempts have been made to predict student dropout using machine learning. This paper presents a model to predict student dropout at Sahmyook University using machine learning. Academic records collected from 20,050 students of the university were analyzed and used for learning. Various machine learning algorithms were used to implement the model, including Logistic Regression, Decision Tree, Random Forest, Support Vector Machine, Deep Neural Network, and LightGBM (Light Gradient Boosting Machine), and their performances were compared through experiments. We also discuss the influence of oversampling used to resolve data imbalance issues in the dropout data. For this purpose, various oversampling algorithms such as SMOTE, ADASYN, and Borderline-SMOTE were tested. Our experimental results showed that the proposed model implemented using LightGBM provided the best performance with an F1-score of 0.840, which is higher than the results of previous studies discussing the dropout prediction with the issue of class imbalance. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

12 pages, 5627 KiB  
Article
Optimized Dropkey-Based Grad-CAM: Toward Accurate Image Feature Localization
by Yiwei Liu, Luping Tang, Chen Liao, Chun Zhang, Yingqing Guo, Yixuan Xia, Yangyang Zhang and Sisi Yao
Sensors 2023, 23(20), 8351; https://doi.org/10.3390/s23208351 - 10 Oct 2023
Cited by 6 | Viewed by 2536
Abstract
Regarding the interpretable techniques in the field of image recognition, Grad-CAM is widely used for feature localization in images to reflect the logical decision-making information behind the neural network due to its high applicability. However, extensive experimentation on a customized dataset revealed that [...] Read more.
Regarding the interpretable techniques in the field of image recognition, Grad-CAM is widely used for feature localization in images to reflect the logical decision-making information behind the neural network due to its high applicability. However, extensive experimentation on a customized dataset revealed that the deep convolutional neural network (CNN) model based on Gradient-weighted Class Activation Mapping (Grad-CAM) technology cannot effectively resist the interference of large-scale noise. In this article, an optimization of the deep CNN model was proposed by incorporating the Dropkey and Dropout (as a comparison) algorithm. Compared with Grad-CAM, the improved Grad-CAM based on Dropkey applies an attention mechanism to the feature map before calculating the gradient, which can introduce randomness and eliminate some areas by applying a mask to the attention score. Experimental results show that the optimized Grad-CAM deep CNN model based on the Dropkey algorithm can effectively resist large-scale noise interference and achieve accurate localization of image features. For instance, under the interference of a noise variance of 0.6, the Dropkey-enhanced ResNet50 model achieves a confidence level of 0.878 in predicting results, while the other two models exhibit confidence levels of 0.766 and 0.481, respectively. Moreover, it exhibits excellent performance in visualizing tasks related to image features such as distortion, low contrast, and small object characteristics. Furthermore, it has promising prospects in practical computer vision applications. For instance, in the field of autonomous driving, it can assist in verifying whether deep learning models accurately understand and process crucial objects, road signs, pedestrians, or other elements in the environment. Full article
Show Figures

Figure 1

19 pages, 707 KiB  
Article
DSCNet: Deep Skip Connections-Based Dense Network for ALL Diagnosis Using Peripheral Blood Smear Images
by Manjit Kaur, Ahmad Ali AlZubi, Arpit Jain, Dilbag Singh, Vaishali Yadav and Ahmed Alkhayyat
Diagnostics 2023, 13(17), 2752; https://doi.org/10.3390/diagnostics13172752 - 24 Aug 2023
Cited by 22 | Viewed by 1938
Abstract
Acute lymphoblastic leukemia (ALL) is a life-threatening hematological malignancy that requires early and accurate diagnosis for effective treatment. However, the manual diagnosis of ALL is time-consuming and can delay critical treatment decisions. To address this challenge, researchers have turned to advanced technologies such [...] Read more.
Acute lymphoblastic leukemia (ALL) is a life-threatening hematological malignancy that requires early and accurate diagnosis for effective treatment. However, the manual diagnosis of ALL is time-consuming and can delay critical treatment decisions. To address this challenge, researchers have turned to advanced technologies such as deep learning (DL) models. These models leverage the power of artificial intelligence to analyze complex patterns and features in medical images and data, enabling faster and more accurate diagnosis of ALL. However, the existing DL-based ALL diagnosis suffers from various challenges, such as computational complexity, sensitivity to hyperparameters, and difficulties with noisy or low-quality input images. To address these issues, in this paper, we propose a novel Deep Skip Connections-Based Dense Network (DSCNet) tailored for ALL diagnosis using peripheral blood smear images. The DSCNet architecture integrates skip connections, custom image filtering, Kullback–Leibler (KL) divergence loss, and dropout regularization to enhance its performance and generalization abilities. DSCNet leverages skip connections to address the vanishing gradient problem and capture long-range dependencies, while custom image filtering enhances relevant features in the input data. KL divergence loss serves as the optimization objective, enabling accurate predictions. Dropout regularization is employed to prevent overfitting during training, promoting robust feature representations. The experiments conducted on an augmented dataset for ALL highlight the effectiveness of DSCNet. The proposed DSCNet outperforms competing methods, showcasing significant enhancements in accuracy, sensitivity, specificity, F-score, and area under the curve (AUC), achieving increases of 1.25%, 1.32%, 1.12%, 1.24%, and 1.23%, respectively. The proposed approach demonstrates the potential of DSCNet as an effective tool for early and accurate ALL diagnosis, with potential applications in clinical settings to improve patient outcomes and advance leukemia detection research. Full article
(This article belongs to the Special Issue Deep Disease Detection and Diagnosis Models)
Show Figures

Figure 1

13 pages, 660 KiB  
Article
Robustness of Sparsely Distributed Representations to Adversarial Attacks in Deep Neural Networks
by Nida Sardar, Sundas Khan, Arend Hintze and Priyanka Mehra
Entropy 2023, 25(6), 933; https://doi.org/10.3390/e25060933 - 13 Jun 2023
Cited by 3 | Viewed by 2480
Abstract
Deep learning models have achieved an impressive performance in a variety of tasks, but they often suffer from overfitting and are vulnerable to adversarial attacks. Previous research has shown that dropout regularization is an effective technique that can improve model generalization and robustness. [...] Read more.
Deep learning models have achieved an impressive performance in a variety of tasks, but they often suffer from overfitting and are vulnerable to adversarial attacks. Previous research has shown that dropout regularization is an effective technique that can improve model generalization and robustness. In this study, we investigate the impact of dropout regularization on the ability of neural networks to withstand adversarial attacks, as well as the degree of “functional smearing” between individual neurons in the network. Functional smearing in this context describes the phenomenon that a neuron or hidden state is involved in multiple functions at the same time. Our findings confirm that dropout regularization can enhance a network’s resistance to adversarial attacks, and this effect is only observable within a specific range of dropout probabilities. Furthermore, our study reveals that dropout regularization significantly increases the distribution of functional smearing across a wide range of dropout rates. However, it is the fraction of networks with lower levels of functional smearing that exhibit greater resilience against adversarial attacks. This suggests that, even though dropout improves robustness to fooling, one should instead try to decrease functional smearing. Full article
(This article belongs to the Special Issue Signal and Information Processing in Networks)
Show Figures

Figure 1

20 pages, 2469 KiB  
Article
Student Dropout Prediction for University with High Precision and Recall
by Sangyun Kim, Euteum Choi, Yong-Kee Jun and Seongjin Lee
Appl. Sci. 2023, 13(10), 6275; https://doi.org/10.3390/app13106275 - 20 May 2023
Cited by 25 | Viewed by 5537
Abstract
Since a high dropout rate for university students is a significant risk to local communities and countries, a dropout prediction model using machine learning is an active research domain to prevent students from dropping out. However, it is challenging to fulfill the needs [...] Read more.
Since a high dropout rate for university students is a significant risk to local communities and countries, a dropout prediction model using machine learning is an active research domain to prevent students from dropping out. However, it is challenging to fulfill the needs of consulting institutes and the office of academic affairs. To the consulting institute, the accuracy in the prediction is of the utmost importance; to the offices of academic affairs and other offices, the reason for dropping out is essential. This paper proposes a Student Dropout Prediction (SDP) system, a hybrid model to predict the students who are about to drop out of the university. The model tries to increase the dropout precision and the dropout recall rate in predicting the dropouts. We then analyzed the reason for dropping out by compressing the feature set with PCA and applying K-means clustering to the compressed feature set. The SDP system showed a precision value of 0.963, which is 0.093 higher than the highest-precision model of the existing works. The dropout recall and F1 scores, 0.766 and 0.808, respectively, were also better than those of gradient boosting by 0.117 and 0.011, making them the highest among the existing works; Then, we classified the reasons for dropping out into four categories: “Employed”, “Did Not Register”, “Personal Issue”, and “Admitted to Other University.” The dropout precision of “Admitted to Other University” was the highest, at 0.672. In post-verification, the SDP system increased counseling efficiency by accurately predicting dropouts with high dropout precision in the “High-Risk” group while including more dropouts in total dropouts. In addition, by predicting the reasons for dropouts and presenting guidelines to each department, the students could receive personalized counseling. Full article
(This article belongs to the Special Issue Smart Education Systems Supported by ICT and AI)
Show Figures

Figure 1

19 pages, 4456 KiB  
Article
Distributed Fire Detection and Localization Model Using Federated Learning
by Yue Hu, Xinghao Fu and Wei Zeng
Mathematics 2023, 11(7), 1647; https://doi.org/10.3390/math11071647 - 29 Mar 2023
Cited by 5 | Viewed by 2288
Abstract
Fire detection and monitoring systems based on machine vision have been gradually developed in recent years. Traditional centralized deep learning model training methods transfer large amounts of video image data to the cloud, making image data privacy and confidentiality difficult. In order to [...] Read more.
Fire detection and monitoring systems based on machine vision have been gradually developed in recent years. Traditional centralized deep learning model training methods transfer large amounts of video image data to the cloud, making image data privacy and confidentiality difficult. In order to protect the data privacy in the fire detection system with heterogeneous data and to enhance its efficiency, this paper proposes an improved federated learning algorithm incorporating computer vision: FedVIS, which uses a federated dropout and gradient selection algorithm to reduce communication overhead, and uses a transformer to replace a traditional neural network to improve the robustness of federated learning in the context of heterogeneous data. FedVIS can reduce the communication overhead in addition to reducing the catastrophic forgetting of previous devices, improving convergence, and producing superior global models. In this paper’s experimental results, FedVIS outperforms the common federated learning methods FedSGD, FedAVG, FedAWS, and CMFL, and improves the detection effect by reducing communication costs. As the amount of clients increases, the accuracy of other algorithmic models decreases by 2–5%, and the number of communication rounds required increases significantly; meanwhile, our method maintains a superior detection performance while requiring roughly the same number of communication rounds. Full article
(This article belongs to the Special Issue Trustworthy Graph Neural Networks: Models and Applications)
Show Figures

Figure 1

24 pages, 17162 KiB  
Article
Modification of Learning Ratio and Drop-Out for Stochastic Gradient Descendant Algorithm
by Adrian Teso-Fz-Betoño, Ekaitz Zulueta, Mireya Cabezas-Olivenza, Unai Fernandez-Gamiz and Carlos Botana-M-Ibarreta
Mathematics 2023, 11(5), 1183; https://doi.org/10.3390/math11051183 - 28 Feb 2023
Viewed by 1780
Abstract
The stochastic gradient descendant algorithm is one of the most popular neural network training algorithms. Many authors have contributed to modifying or adapting its shape and parametrizations in order to improve its performance. In this paper, the authors propose two modifications on this [...] Read more.
The stochastic gradient descendant algorithm is one of the most popular neural network training algorithms. Many authors have contributed to modifying or adapting its shape and parametrizations in order to improve its performance. In this paper, the authors propose two modifications on this algorithm that can result in a better performance without increasing significantly the computational and time resources needed. The first one is a dynamic learning ratio depending on the network layer where it is applied, and the second one is a dynamic drop-out that decreases through the epochs of training. These techniques have been tested against different benchmark function to see their effect on the learning process. The obtained results show that the application of these techniques improves the performance of the learning of the neural network, especially when they are used together. Full article
Show Figures

Figure 1

Back to TopTop