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Featured Application: Application to student counseling and reducing the dropout rate in
universities.

Abstract: Since a high dropout rate for university students is a significant risk to local communities
and countries, a dropout prediction model using machine learning is an active research domain to
prevent students from dropping out. However, it is challenging to fulfill the needs of consulting
institutes and the office of academic affairs. To the consulting institute, the accuracy in the prediction
is of the utmost importance; to the offices of academic affairs and other offices, the reason for dropping
out is essential. This paper proposes a Student Dropout Prediction (SDP) system, a hybrid model
to predict the students who are about to drop out of the university. The model tries to increase the
dropout precision and the dropout recall rate in predicting the dropouts. We then analyzed the
reason for dropping out by compressing the feature set with PCA and applying K-means clustering
to the compressed feature set. The SDP system showed a precision value of 0.963, which is 0.093
higher than the highest-precision model of the existing works. The dropout recall and F1 scores,
0.766 and 0.808, respectively, were also better than those of gradient boosting by 0.117 and 0.011,
making them the highest among the existing works; Then, we classified the reasons for dropping
out into four categories: “Employed”, “Did Not Register”, “Personal Issue”, and “Admitted to
Other University.” The dropout precision of “Admitted to Other University” was the highest, at
0.672. In post-verification, the SDP system increased counseling efficiency by accurately predicting
dropouts with high dropout precision in the “High-Risk” group while including more dropouts in
total dropouts. In addition, by predicting the reasons for dropouts and presenting guidelines to each
department, the students could receive personalized counseling.

Keywords: dropout precision; dropout recall; machine learning; imbalanced data processing; hybrid
method; big data; academic data; principle component analysis; K-means clustering

MSC: 68T01; 68U01

1. Introduction

According to South Korea’s 2022 Basic Education Statistics [1], the school-age pop-
ulation is declining. Compared to 2021, the 2022 school-age population of South Korean
universities decreased by 2.6% and that of colleges decreased by 6.4%. The number of
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students matriculating to universities has significantly decreased since the advent of the
COVID-19 pandemic. The decline in the school-age population is a severe problem in
South Korea.

When the school-age population declines, universities must be prepared to both recruit
new students and prevent current ones from dropping out. One of the main concerns for
universities is the student dropout rate, which not only costs individuals but also impacts
universities, local communities, and the nation. For instance, in 2020 the dropout rate
increased by 1.1%, with rates of 1.9% in metropolitan areas and 3% in provinces. Students
in provincial universities may be more susceptible to dropping out due to factors such as
employment prospects or career goals [2]. Those who drop out often transfer to higher-
ranked universities in metropolitan areas. This trend is expected to exacerbate the already
significant issue of population influx to urban areas, leading to a structural waste of
educational and financial resources. Furthermore, the problem has additional side effects,
including missed educational opportunities for those who could have enrolled, disruptions
to the academic atmosphere, and a waste of management resources.

Universities can prevent students from wasting time and losing interest by predicting
which students are likely to drop out and providing personalized support. In order to
do so, universities require a system that can be responsive to students who experience a
change of heart. Several studies [3–8] have examined the prediction of student dropout
rates in universities. Two key factors crucial in predicting dropout rates are precision and
recall. High dropout precision means that the model can accurately predict which students
are likely to drop out, which is essential for directing counseling resources. Conversely,
high dropout recall is important because it enables universities to identify all students who
are at risk of dropping out. When only one of the indexes is high, there can be problems.
For instance, a model may correctly predict twenty students who are about to drop out
(100% precision) but fail to predict another forty (50% recall), resulting in missed counseling
opportunities. Alternatively, a model may correctly predict all students who will drop out
(100% recall) but have low precision, wasting university resources on students who will
not actually drop out.

In this paper, we solve the problem of predicting the students who are about to drop
out of the university using data-driven algorithms. The advantages of data-driven algo-
rithms are their abilities to automatically learn from data, adapt to changing circumstances,
and improve their performance over time. They uncover patterns and insights that may
not be immediately apparent to human analysts and process large amounts of data quickly
and accurately.

Improving precision and recall indexes depends on the quantity and quality of data
accumulated by the university. Since universities typically maintain various student records,
data quality is generally not a significant concern. However, ensuring an adequate amount
of data that describe students who drop out is essential for predictive models’ accuracy.
Dealing with asymmetrical data is challenging because the average student dropout rate is
low, at only 1.9% in metropolitan areas and 3% in provinces. Consequently, over 97% of the
data do not describe students who drop out. To overcome this challenge, the preprocessing
of the feature set is necessary to address imbalanced data and prevent them from negatively
affecting machine learning processes.

The imbalanced data preprocessing methods can be categorized into an algorithmic
approach, a data approach, and a cost-sensitive approach [9]. The algorithmic approach
adjusts or tunes the model’s hyperparameters to increase the model’s performance. How-
ever, finding the appropriate values for the hyperparameters takes a long time, and it may
only work with specific machine learning models. The data approach in the preprocessing
process samples the available data, which may reduce the probability of overfitting the
given data and the model. However, it may have low accuracy because only a tiny portion
of the data are used. To address imbalanced data using the data approach, three methods
are commonly used: oversampling [3,9], undersampling [3], and a combined approach [8].
Oversampling inflates minor class data, undersampling reduces major class data, and the
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combined approach balances the benefits of both. The cost-sensitive approach is a method
of re-learning data by giving different weights to misclassified data by exploiting other
algorithms. Although the weights can be automatically learned, they can only work with
some models. Note that algorithmic and cost-sensitive approaches depend on the specific
algorithm in the supervised learning.

In this paper, we introduce the Student Dropout Prediction (SDP) system, which aims
to enhance the precision and recall index of predicting student dropouts, providing valuable
insights to academic administration and counselors. The SDP system identifies significant
features through permutation importance and SHAP analysis and addresses data imbalance
by utilizing a data approach. It predicts potential student dropouts by employing a hybrid
model that combines the XGBoost model with the SMOTE oversampling method and
the CatBoost model with the RandomOverSamplerSMOTEENN model. To further assist
academic administration, the data are analyzed using a clustering method to identify
distinct groups of students who require different types of support, such as mentoring,
dormitory assistance, or scholarships.

Between 2015 and 2021, we obtained 67,060 student records from Gyeongsang Na-
tional University and identified 27 essential feature sets from the available 40 features.
Additionally, by predicting the reasons for dropouts and providing department-specific
guidelines, we were able to offer personalized counseling to students. The contribution of
this paper is as follows:

• We offer guidelines for designing a model based on the most recent dropout data from
South Korea’s Flagship National University.

• We propose the SDP system, a hybrid model that enhances dropout precision and
recall while more accurately identifying the “high-risk” group and detecting a greater
number of dropouts.

• To provide customized counseling to students at risk of dropping out, we employ a
clustering algorithm to identify the reasons behind this tendency. These reasons are
subsequently shared with counselors and departments for effective intervention.

Section 2 presents the related work on predicting university dropout. The charac-
teristics and basic statistics of the data used in this paper are described in Section 3. The
proposed prediction model, the SDP (Student Dropout Prediction) system, is described in
Section 4. Section 5 presents the experiment results. Section 6 discusses the applicability of
the presented results and suggestions to the academic administrators. Finally, Section 7
concludes the paper.

2. Related Work

Yaacob et al. [5] conducted a study on 64 computer science students in the 1st and
2nd semesters in the year 2016, measuring their academic grades in 26 courses including
mathematics and IT courses. The authors experimented with several machine learning
models, such as logistic regression, KNN, random forest, artificial neural networks, and
decision trees, to predict the students’ performance. Although the data were imbalanced,
no special imbalanced data processing was applied. Logistic regression exhibited the
highest accuracy and AUC values. However, the authors did not measure the dropout
precision and dropout recall metrics; instead, they evaluated their model’s performance
using the AUC.

Shynarbek et al. [6] collected 366 student records in the department of computer
science at Suleyman Demirel University, comprising grades in mathematics and computer-
related courses from 2016 to 2017. The authors created a feature set using only mathematics
and computer subjects and applied several machine learning models, such as the naive
Bayes model, support vector machines, logistic regression, and artificial neural networks,
to predict students’ academic performance. Unlike Yaacob et al. [5], they used four metrics,
accuracy, recall, precision, and F1 score, to measure the prediction rate. Shynarbek et al. [6]
replaced the missing values with random values in the data preparation process. The data
imbalance was not mentioned in the paper. The naive Bayes and artificial neural network
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methods exhibited the highest accuracy (0.96) and precision (0.94), recall (0.94), and F1
(0.94) scores, respectively.

Silva et al. [7] used 331 undergraduate students’ academic grades and personal infor-
mation, including 23 feature sets, from the department of computer engineering at Uni-
versidade de Trás-os-Montes e Alto Douro (UTAD) from 2011 to 2019. Of the 331 students,
124 are dropouts and 207 are students who successfully graduated from the university.
The authors applied several machine learning models, such as CatBoost, random forest,
XGBoost, and artificial neural networks, to predict the students’ academic performance.
To handle imbalanced data, they applied RandomOverSampling during preprocessing.
In the preprocessing process, they scaled the data with MinMaxScaler and performed
RandomOverSampling as imbalanced data processing. The authors used three metrics,
precision, recall, and F1 score, to evaluate the models’ performance. The training/test ratio
was 8:2, and they performed 10-fold cross-validation. Artificial neural networks, XGBoost,
and random forest exhibited the highest precision (0.85), recall (0.83), and F1 score (0.81),
respectively.

Fernández et al. [8] collected data from 1418 undergraduate students, where 783 were
dropouts and 635 were non-dropouts. The feature set comprised 19 enrollment-related
fields, 14 qualification-related fields, and 4 scholarship-related fields, excluding student IDs
and redundant data. The authors used numerical data with MinMaxScaler and categorical
data with one-hot encoding. To handle the imbalance in the data, the authors applied the
SMOTETomek method, a combination of the SMOTE and Tomek links methods, during
preprocessing. The authors applied several machine learning models, such as gradient
noosting, random forest, support vector machine, and ensemble models, to predict the
students’ dropout rate in each semester. They evaluated the models’ performance using the
dropout recall and dropout precision metrics. In the enrollment model, the dropout recall
of gradient boosting was the highest at 72.340, and dropout precision using the support
vector machine method was the highest at 65.854. In the 1st semester model, the dropout
recall was 82.237 for the ensemble model and gradient boosting had the highest dropout
precision of 84.277. In the 2nd semester model, the ensemble model had the highest dropout
recall at 82.237, and the gradient boosting had the highest dropout precision at 79.245. In
the 3rd semester model, both the dropout recall and dropout precision were the highest
in the random forest model, at 88.462 and 86.792, respectively. In the 4th semester model,
the dropout recall and dropout precision were the highest in the support vector machine
model, at 91.549 and 89.041, respectively.

Barros et al. [3] gathered 7718 student records from the Federal Institute of Rio Grande
do Norte, utilizing 6 mathematics and 19 demographics- and socio-economic-related
courses as feature sets. To deal with imbalanced data, they employed downsampling,
SMOTE, ADYSYN, and balanced bagging techniques for each experiment. They tested
artificial neural network and decision tree models with training/test ratios of 75% and
25%, respectively. The highest precision was obtained using the oversampling (SMOTE,
ADAYSYN) technique of artificial neural networks at 0.991. For recall and F1, the unpro-
cessed decision tree method performed the best, at 0.977 and 0.976, respectively.

Baranyi et al. [4] not only acquired the university transcript and personal information
but also utilized high school grades to predict dropouts. They used balanced 8319 students
from 2013 to 2019 at the Budapest University of Technology and Economics, composing
30 feature sets—5 related to the university program, 21 to high school, and 4 to personal
data. They tested various models, such as artificial neural networks, Tabnet, XGBoost,
random forest, and BaggingFCNN. They optimized the hyperparameters of artificial neural
networks using the hyperas package. The authors also used SHAP analysis to identify
the most influential variables and found that “years elapsed” (the years since the matura
examination) was the most influential variable, followed by grade-related features such as
“University admission score”. The experiment showed that artificial neural networks had
the highest precision of 0.747 and recall of 0.667.
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Niyogisubizo et al. [10] predicted class dropout using data from Constantine the
Philosopher University in Nitra from 2016 to 2020. The authors utilized primary data, in-
cluding “tests”, “access”, and “project”, which had a high correlation. They stacked random
forest, XGBoost, and gradient boosting and used the output as input for artificial neural
networks. The stacking ensemble showed high performance with overall precision, recall,
and F1 score values of 0.93, 0.93, and 0.92, respectively, of midpoint and midpoint deviation.

The review of related work found that many previous studies had small data sets and
did not address imbalanced data. Additionally, most of the works considered academic
grades as the most important predictor of student dropout. However, the methods and
data sets used in these studies varied, making it challenging to compare the models.
Furthermore, the results of previous works often only showed high precision or recall
metrics but not both, and the reasons for dropout were not analyzed.

To address these gaps, the authors of this study used a large data set spanning five
years and included student activities in addition to academic grades. We also compared
the proposed approach with existing models using our data to ensure a fair comparison.
We used a hybrid model to achieve high precision and recall rates for predicting student
dropout. Finally, we analyzed the reasons for dropout to assist counselors and administra-
tors in supporting students and making informed decisions. Overall, this study contributes
to the field by using a comprehensive approach that considers various factors to predict
student dropout and analyzes the underlying reasons for dropout.

3. Data Characteristics
3.1. Primitive Statistics on Data

We acquired the student records of Gyeongsang National University from the year
2016 to 2022. After sanitizing the data, the total number of students we used for the
experiment was 67,060. Note that the university acquires consent to utilize the data
when the students are admitted to the university. To protect the students’ privacy, we
performed data anonymization to sanitize the sensitive information before analyzing the
data. The university is located in the southern region of South Korea and is one of nine
Flagship National Universities of South Korea. It has 14 colleges and 375 departments.
The number of students registered at the university sums up to about 13,549. Every year,
about 3266 students are matriculated and about 3303 students graduate from the university.
Table 1 shows the summary of the total number of students, the number of students
enrolled, and the number of students who dropped out of the university during that year.
The average dropout rate during the five years was 5.1%. Table 2 further distinguishes
students by academic year, the female and male ratio of students, and the dropout ratio. It
shows that the university has, on average, 23% more male students than female students
each academic year. It shows that male students tend to break away from the university
more than female students. The data show that, on average, 131% more male students
drop out of the university for various reasons. It also shows that freshmen drop out of the
university the most (7.2%) and seniors drop out the least (2.1%).

Table 1. The Total Number of Students and the Number of Students Dropped Out During Year
2016–2020.

Year Total No. of
Students

No. of Enrolled
Students

No. of
Dropouts Ratio

2016 15,667 15,038 629 4.1%
2017 14,932 14,220 712 5%
2018 14,662 13,822 840 6%
2019 15,276 14,572 762 5.2%
2020 14,771 14,146 742 5.2%
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Table 2. The Total Number of Students in Each Academical Year and The Number of Students
Dropped Out in 1 March 2020.

Academical
Year

Total No. of
Students

Female/Male
Ratio of

Total

No. of
Dropouts

Female/Male
Ratio of

Dropouts

Dropout
Ratio

Freshman 3481 85.4%
(F:1604/M:1877) 252 68%

(F:102/M:150) 7.2%

Sophomore 3533 76.5%
(F:1532/M:2001) 240 29.7%

(F:55/M:185) 6.7%

Junior 3587 81.6%
(F:1612/M:1975) 162 40.8%

(F:47/M:115) 4.5%

Senior 4170 81.7%
(F:1876/M:2294) 88 29.4%

(F:20/M:68) 2.1%

Table 3 shows the ratio of dropouts living near the university and students from other
provinces. In general, the number of students from other provinces is more than that of
students living in the same province. The number of students dropping out of the university
from other provinces gradually decreases, but the number stays almost indifferent in all
years. From the data, we can deduce that the administrators have to take care of the first-
and second-year students more than the junior and senior students. It is also advisable to
take different approaches in counseling students in the different academic years.

Table 3. Rate of Dropout with Respect to Born Region in 1 March 2020.

Academical
Year Dropouts Same Province Other Province Ratio

Freshman 252 39 213 18%
Sophomore 240 35 205 17%

Junior 162 43 119 36%
Senior 88 36 52 69%

Table 4 describes the reasons the freshmen gave before dropping out of the university.
About 54% of the students answered that they were admitted to another university. It
means the student has been preparing for the entrance exam for about a year. The second
most frequent reason was that the student was going through hard times or could not
continue due to various family affairs. Although the students are categorized as dropouts,
their academic performance may vary significantly. For example, the students admitted to
another university may have positive course grades, and those who did not register may
have negative course grades.

Table 4. The Freshmen’s Reasons for Dropping Out of the University (1 March 2020).

Dropout Reason Count Ratio

Admitted to Other University 158 54%
Personal Issues (Health, Family Affairs) 57 20%

Voluntary Dropout 39 13%
Did Not Register 22 8%

Misc. 16 5%

The data show that the number of students dropping out of university is a minor class.
Identifying a small number of students who are about to drop out accurately is challenging.
Highly imbalanced data create a bias towards the majority class. In some extreme cases, the
minority class in imbalanced data may be completely ignored during the learning phase of
the model [11].
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3.2. Features

There were many features, but the existing works tell us that not all data help predict
dropouts. We analyzed the data with permutation importance and SHAP analysis to
reduce the features and increase the prediction performance. Some of the data had to
be encoded to ordinal before applying permutation importance and SHAP analysis, and
one-hot encoding was used to encode the categorical data. We ran XGBoost ten times to
measure the permutation importance, and Table 5 shows the top five features that showed
the highest importance; however, the numbers were not high.

Table 5. Permutation Importance of Input Data.

Rank Feature Name Permutation Importance

1 Grade Ranking 0.0177

2 Completed Credits 0.0070

3 Department 0.0043

4 Grade Average 0.0040

5 Univ. Main Site Login Count 0.0040

Figure 1 shows the results of the SHAP analysis. The blue and red colors indicate
the low and high relationships between the input and output of the model, respectively.
Just like the permutation importance, it also shows that the dropout rate is correlated with
completed course credits and grade ranking. One interesting point is that the login count
of the main university website shows a high correlation with the dropout rate.

We performed principal component analysis and autoencoder denoising on the data,
but it had little effect on the result. We ignored the unknown category and used the
SimpleInputer scikit-learn package to fill in the missing values with the median of the
feature. Note that we added facility usage history along with academic records. The
complete list of features used in the prediction is included in Table 6. There were five feature
classes, which are as follows: academic data, academic records, personal information,
facility use history, and website use history.

Figure 1. SHAP of Characteristics of Feature Set with Respect to Dropout Information.



Appl. Sci. 2023, 13, 6275 8 of 20

Table 6. Feature Set Used in the Paper.

Feature Class Feature Name Type

Academic Data Academic Status Real
Number of Rewards and Penalty Real

Registration Fee Installments Count Real
Number of Volunteer Activities Real

Department Categorical
Number of Leave of Absence Real

Word Count of Counsel Report Real
Seasonal Semester Courses Count Real

Collage Categorical

Academic Records Grade Ranking Real
Grade Average Real

Number of Majors Real
Completed Credits Real

Number of Scholarships Received Real
Completed Credit of Seasonal Semester

Courses Real

Total Amount of Scholarships Real

Personal Information Disability Binary
Residence Postal Code Categorical

Gender Binary
Counseling Count Real

Facility Use History Library Overdue Count Real
Library Loan Count Real

Dormitory Use Count Real
Dormitory Penalty Count Real

Number of Facility Rentals Real

Website Use History Univ. Main Site Login Count Real

3.3. Measurements of Existing Methods

In this paper, we are interested in devising a method that produces high precision
and recall. Since the existing works used different data sets and features, comparing the
performance of existing works is challenging. To understand existing works’ precision
and recall performance, we used our data to measure the metrics. The results of running
the methods used in the existing works are illustrated in Figure 2. The methods used
in the experiment are TomekLinks [12], RandomUnderSampler [13], EditNearestNeigh-
bours [14], SMOTE [15], BorderlineSMOTE [16], ADASYN [17], SMOTEENN [18], and
SMOTETomek [19]. We used 10-fold cross-validation. We chose ensemble, logistic regres-
sion, artificial neural network, and gradient boosting methods to compare with the method
(SDP) proposed in this paper because, in general, they showed high precision and high
recall rates in the previous works.

As shown in Figure 2, the unprocessed methods showed high precision, whereas the
imbalanced data processing models showed high recall. In addition, gradient boosting and
ensemble methods showed relatively high precision and recall rates. Logistic regression
did not show good results on our data.

We have to emphasize that we need to have high precision and recall to correctly
identify the students and all the students who are about to drop out of the university.
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Figure 2. Dropout precision and recall performance of the existing works (GB: gradient boosting;
ensemble: ensemble of gradient boosting, random forest, and support vector machine; LR: logis-
tic regression; ANN: artificial neural network; none: unprocessed; under: undersampling; over:
oversampling; combine: undersampling and oversampling).

4. SDP (Dropout Student Prediction System)

This paper presents the SDP (Student Dropout Prediction) system for predicting stu-
dents who are about to drop out of universities. The architecture of the SDP system is
shown in Figure 3. We first preprocess the data using SMOTE and RandomOverSam-
plerSMOTEENN to treat the imbalanced data. Then, we combine the dropout prediction
results of XGBoost and CatBoost to produce high precision and recall. The system utilizes
both models depending on the university’s status and needs. A high-precision model can
identify candidates who require higher priority in consultation, and a recall model can
encompass a wider range of potential dropouts. By using the two different models in a
system, we were able to capture the advantages of the two models in a system. We first
introduce the imbalanced data processor, then present the dropout predictor that combines
the result of XGBoost and CatBoost methods.

Figure 3. The University Dropout Prediction Design Structure.

4.1. Imbalanced Data Processor

We use SMOTE [15] and RandomOverSamplerSMOTEEN on the imbalanced data
for producing high precision and high recall, respectively. SMOTE creates synthetic data
by oversampling the minor class in the data. We use the imbalanced-learn package for
the SMOTE algorithm. Since the SMOTE algorithm inflates the data of the minor class,
it increases the dropout precision of the minor class in the data of Gyeongsang National
University. We use RandomOverSamplerSMOTEENN to produce a better recall rate than
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SMOTEENN. Listing 1 describes the pseudo-code for RandomOverSamplerSMOTEENN.
We first apply RandomOverSampler and then apply SMOTE and ENN in order. The
RandomOverSamplerSMOTEENN method uses data oversampling and undersampling si-
multaneously to reinforce the minor class data by inserting an additional 10% more random
value before balancing the data. This method has the advantage of increasing the dropout
recall in the dropouts class, which is a minor class in the data of Gyeongsang National
University. We use make_pipeline, RandomOverSampler, and SMOTEENN libraries and
the specific algorithm RandomOverSamplerSMOTEENN shown in the Listing 1.

Listing 1. RandomOverSamplerSMOTEENN.

1 input: training data (cleaned data)
2 output: RandomOverSamplerSMOTEENN data
3 method :
4 set size of majority class to Smaj
5 set size of minority class to Smin
6 repeat until Smin >= Smaj :
7 RandomOverSampler :
8 repeat until Smaj * 0.1 <= Smin :
9 set random data of minority class to dmin

10 compute: Smin.append(dmin)
11 SMOTE :
12 set random data of minority class to dmin
13 compute: diff = dmin and Smin by using
14 KNN = computeKNearestNeighbor():
15 for k in KNN:
16 compute: gap = random number between 0 and 1
17 compute: synthetick = diff * gap
18 compute: Smin.append(synthetick)
19 ENN :
20 set random data of minority class to dmin
21 set random data to dmin
22 set 3 nearest neighbors of dmin to knn3
23 set (more than half of) class name of (d and knn3)
24 to enn_clsName
25 if enn_clsName <> class_of(dmin):
26 remove knn3

4.2. Dropout Predictor

The SDP system uses XGBoost [20] and CatBoost for high precision and recall, re-
spectively. XGBoost is based on the gradient boosting framework and provides a parallel
tree boosting (also known as GBDT and GBM), which solves many data science problems
quickly and accurately. We set values with a high metric selected using GridSearchCV for
other hyperparameters in the scikit-learn package. The tree method parameter is set to
gpu_hist to use GPU using distributed training. CatBoost [21] is also a gradient-boosting
framework that attempts to solve problems by making permutations of the categorical
features. We set values with high metric selections using GridSearchCV in the scikit-learn
package.

Once the two models produce the output, we combine the prediction results using the
combiner depicted in Figure 3. We prioritize the model producing a high prediction rate
over a high recall rate for efficient counseling of the prospective candidates.

We defined the combiner’s rules as “High-Risk” dropouts when the high-precision
model predicted “True”. Next, we defined “Low-Risk” dropouts when even one model
predicted “True”. Finally, we defined non-dropout as when all models predicted “False”.
Table 7 describes the summary of the decision.



Appl. Sci. 2023, 13, 6275 11 of 20

Table 7. Risk Criteria.

Model/Risk High Risk High Risk Low Risk Non-
Dropout

High-Precision Model
(SMOTE+XGBoost) True True False False

High-Recall Model
(RandomOverSamplerSMO-

TEENN+CatBoost)
True False True False

5. Experiment and Analysis
5.1. Environment

As we analyzed in Section 3, the features used in the existing works vary. We ran
preliminary experiments using our data with the existing methods and identified important
features using permutation importance and SHAP analysis. Furthermore, we found that
most existing works did not meet our criteria of producing high dropout precision and recall
rates. We excluded senior students’ records because they were about to graduate from the
university. After sanitization and anonymization of the data, we gathered 67,060 student
records. The features used in the paper are described in Table 6. Table 8 describes the
hardware and software specifications and versions used for the experiment.

Table 8. Experiment Environment.

Category Type Description and Version

Hardware

CPU AMD Ryzen9

Memory DDR4 128GByte

Mainboard X570 AORUS ELITE

Storage Samsung SDD 970 plus 1TB

GPU Geforce RTX 2080 super

Software

Python 3.8

Pytorch-tabnet 3.1.1

Catboost 0.26.1

Xgboost 1.4.2

Lightgbm 3.2.1

Scikit-learn 0.24.2

Numpy 1.19.5

Pandas 1.2.4

Category-encoders 2.5.1.post0

Imbalanced-learn 0.8.0

We preprocessed the data for XGBoost and CatBoost with SMOTE and RandomOver-
SamplerSMOTEENN, respectively. We used 10-fold cross-validation to reduce the depen-
dencies on the data in all experiments unless otherwise stated. The architecture of the
SDP system is illustrated in Figure 3. The results of the two methods are combined in the
combiner, and the results are prioritized based on the precision rate. We further analyzed
the result to identify “Low-Risk”, and “High-Risk” groups; the identified groups can be
delivered to the counselors and administrators for decision-making and supportive actions.

The metrics used for measuring the prediction performance are based on the confusion
matrix. We used the information on dropout as the label, and the definitions of the metrics
we used are as follows:
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Accuracy =
TP + TN

TP + TN + FP + FN

DropoutRecall =
TP

TP + FN

DropoutPrecision =
TP

TP + FP

DropoutF1 = 2 ∗ DropoutPrecision ∗ DropoutRecall
DropoutPrecision + DropoutRecall

5.2. Analysis of Imbalanced Data Processing Methods

As we discussed in Section 3, the dropout record in our data is imbalanced and is a
minor class, which has an adverse effect on producing high precision and recall rates in
Figure 4a–d.

(a) LightGBM (b) CatBoost

(c) XGBoost (d) Tabnet

Figure 4. Comparison of Imbalanced Data Processing Methods.

To produce a high recall rate, which other methods failed to do, we used RandomOver-
SamplerSMOTEENN. In this section, we measure the performance (accuracy, recall, preci-
sion, F1) of XGBoost, LightGBM, CatBoost, and Tabnet combined with different over/un-
der sampling algorithms. The undersampling methods we tested are TomekLinks [12],
RandomUnderSampler [13], NeighborhoodCleaningRule [22], AllKNN [23], RepeatedEdit-
edNearestNeighbours [23], EditedNearestNeighbours [14], and ClusterCentroids [24]. The
oversampling methods we tested are SMOTE [15], BorderlineSMOTE [16], ADASYN [17],
RandomOverSampler [25], and SVMSMOTE [26]. We tested the combined methods SMO-
TEENN [18] and SMOTETOMEK [19]. The proposed method, RandomOverSamplerSMO-
TEENN, combines the advantages of the RandomOverSampler and SMOTEENN meth-
ods. There were ensemble models, but we excluded them because of their complexity.
Tables 9–12 show the experiment results of XGBoost, LightGBM, CatBoost, and Tabnet
combined with different imbalanced data processing methods, respectively.
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Table 9. Performance of XGBoost with Imbalanced Data Processing.

Category Processing Accuracy Dropout Recall Dropout Precision Dropout F1
TomekLinks 0.990 (±0.00) 0.692 (±0.09) 0.952 (±0.05) 0.802 (±0.06)

RandomUnderSampler 0.904 (±0.04) 0.840 (±0.06) 0.202 (±0.09) 0.325 (±0.11)
NeighbourhoodCleaningRule 0.990 (±0.01) 0.701 (±0.08) 0.923 (±0.15) 0.797 (±0.10)

AllKNN 0.990 (±0.01) 0.700 (±0.08) 0.921 (±0.12) 0.796 (±0.11)
RepeatedEditedNearestNeighbours 0.990 (±0.02) 0.698 (±0.08) 0.926 (±0.12) 0.796 (±0.10)

EditedNearestNeighbours 0.990 (±0.02) 0.698 (±0.08) 0.926 (±0.12) 0.796 (±0.10)

Undersampling

ClusterCentroids 0.232 (±0.05) 0.981 (±0.07) 0.034 (±0.11) 0.065 (±0.12)
SMOTE 0.990 (±0.03) 0.698 (±0.07) 0.947 (±0.10) 0.803 (±0.10)

BorderlineSMOTE 0.990 (±0.05) 0.695 (±0.07) 0.940 (±0.11) 0.799 (±0.12)
ADASYN 0.990 (±0.05) 0.696 (±0.07) 0.945 (±0.11) 0.802 (±0.12)

RandomOverSampler 0.985 (±0.05) 0.726 (±0.07) 0.749 (±0.11) 0.737 (±0.12)
Oversampling

SVMSMOTE 0.990 (±0.05) 0.698 (±0.07) 0.946 (±0.11) 0.803 (±0.12)
SMOTEENN 0.989 (±0.02) 0.702 (±0.07) 0.914 (±0.10) 0.794 (±0.10)

Combined
SMOTETOMEK 0.990 (±0.03) 0.691 (±0.07) 0.956 (±0.10) 0.803 (±0.10)

Proposed RSMOTEENN 0.988 (±0.03) 0.714 (±0.07) 0.828 (±0.10) 0.767 (±0.10)

Table 10. Performance of LightGBM with Imbalanced Data Processing.

Category Processing Accuracy Dropout Recall Dropout Precision Dropout F1
TomekLinks 0.990 (±0.00) 0.695 (±0.09) 0.965 (±0.01) 0.808 (±0.06)

RandomUnderSampler 0.902 (±0.04) 0.845 (±0.07) 0.199 (±0.08) 0.323 (±0.09)
NeighbourhoodCleaningRule 0.990 (±0.01) 0.697 (±0.08) 0.939 (±0.14) 0.800 (±0.11)

AllKNN 0.990 (±0.02) 0.700 (±0.07) 0.939 (±0.10) 0.802 (±0.09)
RepeatedEditedNearestNeighbours 0.990 (±0.01) 0.697 (±0.07) 0.936 (±0.09) 0.799 (±0.09)

EditedNearestNeighbours 0.990 (±0.01) 0.701 (±0.07) 0.951 (±0.09) 0.807 (±0.09)

Undersampling

ClusterCentroids 0.122 (±0.02) 0.988 (±0.07) 0.030 (±0.07) 0.058 (±0.08)
SMOTE 0.990 (±0.02) 0.694 (±0.07) 0.959 (±0.06) 0.805 (±0.06)

BorderlineSMOTE 0.990 (±0.02) 0.695 (±0.07) 0.959 (±0.07) 0.806 (±0.08)
ADASYN 0.990 (±0.02) 0.694 (±0.07) 0.952 (±0.07) 0.803 (±0.08)

RandomOverSampler 0.984 (±0.02) 0.735 (±0.07) 0.703 (±0.07) 0.719 (±0.08)
Oversampling

SVMSMOTE 0.990 (±0.02) 0.696 (±0.07) 0.959 (±0.07) 0.806 (±0.08)
SMOTEENN 0.990 (±0.02) 0.696 (±0.07) 0.940 (±0.06) 0.800 (±0.06)

Combined
SMOTETOMEK 0.990 (±0.02) 0.694 (±0.07) 0.966 (±0.06) 0.808 (±0.06)

Proposed RSMOTEENN 0.988 (±0.02) 0.719 (±0.07) 0.830 (±0.06) 0.770 (±0.06)
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Table 11. Performance of CatBoost with Imbalanced Data Processing.

Category Processing Accuracy Dropout Recall Dropout Precision Dropout F1
TomekLinks 0.990 (±0.04) 0.686 (±0.09) 0.948 (±0.06) 0.796 (±0.06)

RandomUnderSampler 0.942 (±0.03) 0.774 (±0.08) 0.294 (±0.12) 0.427 (±0.12)
NeighbourhoodCleaningRule 0.989 (±0.07) 0.687 (±0.08) 0.918 (±0.11) 0.786 (±0.08)

AllKNN 0.990 (±0.01) 0.690 (±0.08) 0.948 (±0.07) 0.798 (±0.06)
RepeatedEditedNearestNeighbours 0.990 (±0.01) 0.685 (±0.09) 0.951 (±0.08) 0.796 (±0.07)

EditedNearestNeighbours 0.989 (±0.01) 0.690 (±0.09) 0.920 (±0.08) 0.788 (±0.07)

Undersampling

ClusterCentroids 0.507 (±0.01) 0.948 (±0.09) 0.050 (±0.08) 0.095 (±0.08)
SMOTE 0.987 (±0.01) 0.691 (±0.09) 0.821 (±0.08) 0.751 (±0.08)

BorderlineSMOTE 0.982 (±0.01) 0.705 (±0.09) 0.665 (±0.08) 0.685 (±0.08)
ADASYN 0.957 (±0.01) 0.745 (±0.09) 0.369 (±0.08) 0.493 (±0.08)

RandomOverSampler 0.947 (±0.01) 0.800 (±0.09) 0.318 (±0.08) 0.455 (±0.08)
Oversampling

SVMSMOTE 0.984 (±0.01) 0.700 (±0.09) 0.727 (±0.08) 0.714 (±0.08)
SMOTEENN 0.986 (±0.01) 0.700 (±0.09) 0.776 (±0.09) 0.736 (±0.08)

Combined
SMOTETOMEK 0.990 (±0.01) 0.686 (±0.09) 0.949 (±0.08) 0.796 (±0.07)

Proposed RSMOTEENN 0.967 (±0.01) 0.752 (±0.09) 0.450 (±0.08) 0.563 (±0.07)

Table 12. Performance of Tabnet with Imbalanced Data Processing.

Category Processing Accuracy Dropout Recall Dropout Precision Dropout F1
TomekLinks 0.982 (±0.00) 0.396 (±0.09) 0.920 (±0.07) 0.553 (±0.06)

RandomUnderSampler 0.981 (±0.01) 0.427 (±0.14) 0.811 (±0.20) 0.559 (±0.13)
NeighbourhoodCleaningRule 0.982 (±0.00) 0.378 (±0.10) 0.979 (±0.11) 0.546 (±0.13)

AllKNN 0.984 (±0.05) 0.442 (±0.06) 0.976 (±0.05) 0.609 (±0.08)
RepeatedEditedNearestNeighbours 0.980 (±0.01) 0.331 (±0.07) 0.923 (±0.04) 0.487 (±0.15)

EditedNearestNeighbours 0.984 (±0.01) 0.470 (±0.07) 0.969 (±0.04) 0.633 (±0.15)

Undersampling

ClusterCentroids 0.932 (±0.00) 0.523 (±0.07) 0.209 (±0.14) 0.298 (±0.07)
SMOTE 0.970 (±0.04) 0.600 (±0.06) 0.467 (±0.35) 0.525 (±0.11)

BorderlineSMOTE 0.971 (±0.00) 0.615 (±0.07) 0.480 (±0.14) 0.539 (±0.07)
ADASYN 0.945 (±0.00) 0.698 (±0.07) 0.293 (±0.14) 0.412 (±0.07)

RandomOverSampler 0.965 (±0.00) 0.574 (±0.07) 0.414 (±0.14) 0.481 (±0.07)
Oversampling

SVMSMOTE 0.961 (±0.00) 0.686 (±0.07) 0.388 (±0.14) 0.496 (±0.07)
SMOTEENN 0.969 (±0.00) 0.641 (±0.07) 0.463 (±0.13) 0.537 (±0.08)

Combined
SMOTETOMEK 0.985 (±0.04) 0.473 (±0.06) 0.992 (±0.05) 0.641 (±0.11)

Proposed RSMOTEENN 0.972 (±0.04) 0.619 (±0.06) 0.499 (±0.15) 0.553 (±0.11)
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Tables 9–12 show that ClusterCentroids have the highest recall on XGBoost, Light-
GBM, and CatBoost at 0.981, 0.988, and 0.948, respectively. SMOTETOMEK showed the
highest precision on LightGBM, Tabnet, and XGBoost at 0.966, 0.992, and 0.956, respectively.
SMOTETOMEK also showed the highest accuracy on LightGBM, Tabnet, and XGBoost
at 0.99, 0.985, and 0.99, respectively. The ClusterCentroids method iteratively replaces
the non-dropout data with dropout data based on the median value of the dropout data.
However, this method was not suitable because the dropout precision and dropout F1 were
significantly lower in all models and the matrix varied from measurement to measurement.
However, the RandomOverSamplerSMOTEENN method had high dropout recall while
maintaining dropout precision. As seen from Tables 9–12, since the data of Gyeongsang
National University are imbalanced, we could not find a model with both high dropout
precision and high dropout recall. Therefore, we selected a model with high dropout
precision and a model with high dropout recall, then created a hybrid model to increase
both metrics. We selected the group with the highest dropout precision and dropout recall
and sorted by the highest ROC curve and dropout F1 to select the top model. XGBoost
with SMOTE is the model with the highest true positive rate when the false positive rate is
low on the ROC curve. Moreover, the dropout precision of XGBoost with SMOTE is 0.947
and its dropout F1 is 0.803, which makes it the highest-ranked model. CatBoost’s Rando-
mOverSamplerSMOTEENN is the model with the highest area under the curve and highest
dropout recall of 0.752 on average across grades in the ROC curve comparing imbalanced
data processing in Figure 5a. The model was also stable over repeated measurements for
all other metrics including the dropout recall.

(a) CatBoost (b) XGBoost

Figure 5. ROC Curve (Freshman).

Figure 5a,b show the ROC curve of XGBoost, a candidate for the high precision group,
and CatBoost, a candidate for the high dropout recall group, using freshman data, which
exhibits the highest dropout number. The yellow line represents “Non-Processing”, the
blue line represents “TomekLinks”, the green line represents “SMOTE”, and the brown line
represents “SMOTEENN”. The red represents “RandomOverSamplerSMOTEENN”, de-
noted as “SMOTEENRND” in the graphs. CatBoost showed distinct differences depending
on the imbalanced data processing method, and XGBoost showed less sensitive results. In
“ROC Curves of 1st Grade CatBoost”, the model using RandomOverSamplerSMOTEENN
showed good performance. The SMOTE model showed a slightly higher performance in
“ROC Curves of 1st Grade XGBoost.” Figure 5a shows that when the false positive rate
is less than 0.8, CatBoost shows high volatility in the ROC curve. In Figure 5b, XGBoost
shows relatively low volatility and high dropout precision.

After analyzing various imbalanced data preprocessing methods and metrics, we chose
to use XGBoost with SMOTE (Model 1) and CatBoost with RandomOverSamplerSMO-
TEENN (Model 2). Table 13 describes the performance of each model. To test the SDP
system, 46,104 data records (70% of the total 67,060 data) were used as training data, and
20956 data records (30% of the data) were used as test data. The results show that both
models predict with high accuracy. The dropout precision was higher in Model 1 by 17%,
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21%, and 9% for each grade, and in the case of dropout F1, it was higher by 7%, 5%, and
3%, respectively. The dropout recall was 3%, 4%, and 2% higher in Model 2 for each
grade. In summary, Model 1 had high dropout precision and dropout F1, and Model 2 had
high dropout recall. When high-dropout-precision Model 1 predicts students as dropout
candidates using the combiner’s rule in Table 7, we categorize them as high-risk and advise
counselors to consult them first. When high-dropout-recall Model 2 predicts students as
dropout candidates, we categorize them as low-risk. When all models categorize students
as non-dropout, we exclude them from counseling.

Table 13. Performance of SDP with Respect to Academic Year.

Academic
Year Model Accuracy Dropout

Recall
Dropout
Precision Dropout F1

Model 1 99% 76% 95% 85%
Freshman

Model 2 98% 79% 78% 78%
Model 1 98% 65% 96% 77%

Sophomore
Model 2 98% 69% 75% 72%
Model 1 99% 80% 98% 88%

Junior
Model 2 99% 82% 89% 85%

5.3. Prediction Performance of the SDP System

We compare the prediction performance of the SDP system with logistic regression,
artificial neural network, gradient boosting, and ensemble (gradient boosting, random
forest, and support vector machine) methods. Note that the SDP system combines the
results from the two models and prioritizes the results over precision. Table 14 summarizes
the results. The proposed method’s accuracy, dropout recall, dropout precision, and F1
metrics show the best results compared to the other methods. The algorithm ranked in
second place for accuracy and dropout recall rate is artificial neural networks. In this
experiment, we organized data by combining students of all grades. In the case of SDP,
we inferred the results from each model and combined them to make one result, and the
metric was measured by comparing it with the validation result set. As for the SDP system,
its accuracy and dropout F1 were 0.989 and 0.786, respectively, which were higher than the
other models. As for the dropout precision, artificial neural networks showed the highest
value at 0.870, but their dropout recall was 0.442, which was lower than average compared
to the other models. The gradient boosting method had the same dropout recall value as
the SDP system at 0.755, but the dropout precision and dropout F1 were 0.181 and 0.095
lower than the SDP, respectively. In this experiment, we can see that the SDP made with
the hybrid model came out better than the other models.

Table 14. Comparison of related studies.

Model Type Imbalanced Data
Processing

Model
Accuracy

Dropout
Precision

Dropout
Recall Dropout F1

Logistic Regression SMOTE 0.953 0.223 0.202 0.212
Artificial Neural Networks RandomOverSampler 0.982 0.870 0.442 0.583

Gradient Boosting SMOTETOMEK 0.980 0.638 0.755 0.691
Ensemble SMOTETOMEK 0.978 0.606 0.749 0.670

SDP (XGBoost, Catboost)
(This Paper)

SMOTE, Randomoversam-
plerSMOTEENN 0.989 0.819 0.755 0.786

5.4. Classification by Reason for Dropout

Once the SDP system predicted the students who are about to drop out of the univer-
sity, we classified the reasons for dropping out. We used a total of 1269 dropout student
records for the classification. We encoded the categorical data using ordinal encoding. We
conjectured that if dropouts shared similar reasons for their dropout, their data would
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also be similar. Thus, we used PCA to identify the fields associated with the reasons for
dropping out of the university. We have categorized the reasons in to the following labels:
“Employment”, “Did Not Register”, “Admitted to Other University”, and “Personal Issues.”
We used PCA to compress the features listed in Table 6 into five principal components.
Figure 6 illustrates the scatter plot of five principal components of PCA. The component
in PC1 was “Number of Scholarships Received” with a value of 1.000; in PC2, there was
“Residence Postal Code” and “Login Count” with values of 0.917 and 0.386, respectively;
PC3 had “Login Count” with a value of 0.900; PC4 had “Department” with a value of 0.995;
and PC5 had “Grade Ranking” and “Completed Credits” with values of 0.580 and 0.643,
respectively.

Figure 6. Scatter Plot of Top 5 Principal Components of PCA.

We used the PCA-compressed results as input to the K-means clustering algorithm to
cluster the data by reason. We randomly selected the initial value of the cluster’s center and
used 80% of the data for training and 20% for validation with 10-fold cross-validation. We
used multiple rounds of K-means with K = 2 to identify the reasons. By using K = 2 in the
K-means, we could simplify the modeling process and improve computational efficiency.
We created two groups for each reason and determined if a value was included in the
corresponding group. For instance, we created the categories of “Employment” and “Other
Reasons” and assigned a value of True or False depending on whether they were included.
In the second round, we ran another round of K-means with the labels “Did not register”
and “Other Reasons”. In this way, we can understand the intention of students who have
chosen multiple reasons for dropping out. After the four rounds of K-means, we identified
the main reason for dropping out based on the resulting cluster. Dropout precision is
crucial in this experiment because the SDP system first selects dropout students with a
hybrid model and then conducts “classification by reason” for dropout. The “Employment”
category showed the lowest accuracy at 0.238 because the volume of data was too small.
However, we are not too concerned about the “Employment” category because these
students successfully began professional careers. The “Personal Issues” category was
0.405, which did not show high dropout precision for various reasons. The precision of
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“Admission to Other Universities” and “Did Not Register” was 0.672 and 0.569, respectively.
We present the experiment results for each dropout reason in Table 15.

Table 15. Dropout Student K-means Clustering Classification.

Reason Students Accuracy Dropout Precision Dropout Recall Dropout F1
Employment 180 0.848 0.238 0.161 0.192

Did Not Register 540 0.722 0.569 0.471 0.516
Personal Issues 514 0.659 0.405 0.268 0.323
Admission to

Other Universities 608 0.776 0.672 0.512 0.581

6. Discussion

Since the world is moving towards personalized services, universities are also striving
to provide personalized services to students. Administration and Consultation are two
areas that need meticulous relationship management with the students. Until now, the
universities have reacted passively to the voices or actions of the students. However, it is
now required to act upon the hidden needs of the students proactively. There are many
ways universities can use student data; in this paper, we focus on dropout rates of students,
which are becoming a severe issue in South Korea. Once the administrators identify the
students who are having trouble in academics or are about to drop out of the university,
they can proactively support the students by making appointments with a counselor and
other professionals. To make this happen, we can provide the risk level of the students.
Using Table 7, we identified the risk levels of students in the year 2020, AS shown in
Table 16. The priority order is academic year, then high-risk students, followed by low-risk
students. No-risk students have the lowest priority. According to the table, 143 first-year
students have the highest priority, and counselors must take action immediately upon
acknowledgment of the risk group of the students. Depending on the classification group
associated with a student, the counselor can decide which topic to discuss with the student.
We believe such approaches are critical to the administrators and the students; however,
the universities did not find the need to act upon the issue. We believe that universities can
provide better student services by using the methods proposed in this paper.

Table 16. Risk Analysis of the Students.

Academic Year High-Risk
Students

Low-Risk
Students

No-Risk
Students Total

Freshman 143 181 6406 6873
Sophomore 153 216 6412 6938

Junior 120 137 6768 7145

7. Conclusions

In this paper, we present the SDP system with high precision and recall rates to accu-
rately predict students at risk of dropping out of universities. This system is intended to
assist administrators and counselors in providing personalized support to these students.
The student records used in the system were asymmetrical, so various imbalanced data
processing techniques were employed to determine the best algorithm for the data. Fifteen
different sampling algorithms were tested with four different prediction algorithms. The
SDP system employs XGBoost with SMOTE and CatBoost with RandomOverSamplerSMO-
TEENN to improve the precision and recall of the predictions. The results of these two
algorithms were then compared with those of four existing algorithms: logistic regression,
artificial neural networks, gradient boosting, and an ensemble method. The SDP system
achieved the highest scores in dropout F1. Its scores were 0.989 for accuracy, 0.819 for
precision, 0.755 for recall, and 0.786 for F1. In addition, K-means clustering was used to
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classify the reasons for dropping out and identify the risk levels of the students, allowing
administrators and counselors to provide more targeted support.
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