Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (968)

Search Parameters:
Keywords = good environmental practices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 645 KiB  
Article
A KPI-Based Framework for Evaluating Sustainable Agricultural Practices in Southern Angola
by Eduardo E. Eliseu, Tânia M. Lima and Pedro D. Gaspar
Sustainability 2025, 17(15), 7019; https://doi.org/10.3390/su17157019 (registering DOI) - 1 Aug 2025
Abstract
Agricultural production in southern Angola faces challenges due to unsustainable practices, including inefficient use of water, fertilizers, and machinery, resulting in low yields and environmental degradation. Therefore, clear and measurable indicators are needed to guide farmers toward more sustainable practices. The scientific literature [...] Read more.
Agricultural production in southern Angola faces challenges due to unsustainable practices, including inefficient use of water, fertilizers, and machinery, resulting in low yields and environmental degradation. Therefore, clear and measurable indicators are needed to guide farmers toward more sustainable practices. The scientific literature insufficiently addresses this issue, leaving a significant gap in the evaluation of key performance indicators (KPIs) that can guide good agricultural practices (GAPs) adapted to the context of southern Angola, with the goal of promoting a more resilient and sustainable agricultural sector. So, the objective of this study is to identify and assess KPIs capable of supporting the selection of GAPs suitable for maize, potato, and tomato cultivation in the context of southern Angolan agriculture. A systematic literature review (SLR) was conducted, screening 2720 articles and selecting 14 studies that met defined inclusion criteria. Five KPIs were identified as the most relevant: gross margin, net profit, water use efficiency, nitrogen use efficiency, and machine energy. These indicators were analyzed and standardized to evaluate their contribution to sustainability across different GAPs. Results show that organic fertilizers are the most sustainable option for maize, drip irrigation for potatoes, and crop rotation for tomatoes in southern Angola because of their efficiency in low-resource environments. A clear, simple, and effective representation of the KPIs was developed to be useful in communicating to farmers and policy makers on the selection of the best GAPs in the cultivation of different crops. The study proposes a validated KPI-based methodology for assessing sustainable agricultural practices in developing regions such as southern Angola, aiming to lead to greater self-sufficiency and economic stability in this sector. Full article
27 pages, 3012 KiB  
Perspective
The Palisades Fire of Los Angeles: Lessons to Be Learned
by Vytenis Babrauskas
Fire 2025, 8(8), 303; https://doi.org/10.3390/fire8080303 (registering DOI) - 31 Jul 2025
Abstract
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which [...] Read more.
In 1961, Los Angeles experienced the disastrous Bel Air fire, which swept through an affluent neighborhood situated in a hilly, WUI (wildland–urban interface) location. In January 2025, the city was devastated again by a nearly-simultaneous series of wildfires, the most severe of which took place close to the 1961 fire location. Disastrous WUI fires are, unfortunately, an anticipatable occurrence in many U.S. cities. A number of issues identified earlier remained the same. Some were largely solved, while other new ones have emerged. The paper examines the Palisades Fire of January, 2025 in this context. In the intervening decades, the population of the city grew substantially. But firefighting resources did not keep pace. Very likely, the single-most-important factor in causing the 2025 disasters is that the Los Angeles Fire Department operational vehicle count shrank to 1/5 of what it was in 1961 (per capita). This is likely why critical delays were experienced in the initial attack on the Palisades Fire, leading to a runaway conflagration. Two other crucial issues were the management of vegetation and the adequacy of water supplies. On both these issues, the Palisades Fire revealed serious problems. A problem which arose after 1961 involves the unintended consequences of environmental legislation. Communities will continue to be devastated by wildfires unless adequate vegetation management is accomplished. Yet, environmental regulations are focused on maintaining the status quo, often making vegetation management difficult or ineffective. House survival during a wildfire is strongly affected by whether good vegetation management practices and good building practices (“ignition-resistant” construction features) have been implemented. The latter have not been mandatory for housing built prior to 2008, and the vast majority of houses in the area predated such building code requirements. California has also suffered from a highly counterproductive stance on insurance regulation. This has resulted in some residents not having property insurance, due to the inhospitable operating conditions for insurance firms in the state. Because of the historical precedent, the details in this paper focus on the Palisades Fire; however, many of the lessons learned apply to managing fires in all WUI areas. Policy recommendations are offered, which could help to reduce the potential for future conflagrations. Full article
Show Figures

Figure 1

20 pages, 1508 KiB  
Article
Using Community-Based Social Marketing to Promote Pro-Environmental Behavior in Municipal Solid Waste Management: Evidence from Norte de Santander, Colombia
by Myriam Carmenza Sierra Puentes, Elkin Manuel Puerto-Rojas, Sharon Naomi Correa-Galindo and Jose Alejandro Aristizábal Cuellar
Environments 2025, 12(8), 262; https://doi.org/10.3390/environments12080262 - 30 Jul 2025
Abstract
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South [...] Read more.
The sustainable management of Municipal Solid Waste (MSW) relies heavily on community participation in separating it at the source and delivering it to collection systems. These practices are crucial for reducing pollution, protecting ecosystems, and maximizing resource recovery. However, in the Global South context, with conditions of socioeconomic vulnerability, community participation in the sustainable management of MSW remains limited, highlighting the need to generate context-specific interventions. MSW includes items such as household appliances, batteries, and electronic devices, which require specialized handling due to their size, hazardous components, or material complexity. This study implemented a Community-Based Social Marketing approach during the research and design phases of an intervention focused on promoting source separation and management of hard-to-manage MSW in five municipalities within the administrative region of Norte de Santander (Colombia), which borders Venezuela. Using a mixed-methods approach, we collected data from 1775 individuals (63.83% women; M age = 33.48 years; SD = 17.25), employing social mapping, focus groups, semi-structured interviews, participant observation, and a survey questionnaire. The results show that the source separation and delivery of hard-to-manage MSW to collection systems are limited by a set of psychosocial, structural, and institutional barriers that interact with each other, affecting communities’ willingness and capacity for action. Furthermore, a prediction model of willingness to engage in separation and delivery behaviors showed a good fit (R2 = 0.83). The strongest predictors were awareness of the negative consequences of non-participation and perceived environmental benefits, with subjective norms contributing to a lesser extent. Based on these results, we designed a context-specific intervention focused on reducing these barriers and promoting community engagement in the sustainable management of hard-to-manage MSW. Full article
Show Figures

Figure 1

26 pages, 7736 KiB  
Article
Integrating Remote Sensing and Ground Data to Assess the Effects of Subsoiling on Drought Stress in Maize and Sunflower Grown on Haplic Chernozem
by Milena Kercheva, Dessislava Ganeva, Zlatomir Dimitrov, Atanas Z. Atanasov, Gergana Kuncheva, Viktor Kolchakov, Plamena Nikolova, Stelian Dimitrov, Martin Nenov, Lachezar Filchev, Petar Nikolov, Galin Ginchev, Maria Ivanova, Iliana Ivanova, Katerina Doneva, Tsvetina Paparkova, Milena Mitova and Martin Banov
Agriculture 2025, 15(15), 1644; https://doi.org/10.3390/agriculture15151644 - 30 Jul 2025
Abstract
In drought-prone regions without irrigation systems, effective agrotechnologies such as subsoiling are crucial for enhancing soil infiltration and water retention. However, the effects of subsoiling can vary depending on crop type and environmental conditions. Despite previous research, there is limited understanding of the [...] Read more.
In drought-prone regions without irrigation systems, effective agrotechnologies such as subsoiling are crucial for enhancing soil infiltration and water retention. However, the effects of subsoiling can vary depending on crop type and environmental conditions. Despite previous research, there is limited understanding of the contrasting responses of C3 (sunflower) and C4 (maize) crops to subsoiling under drought stress. This study addresses this knowledge gap by assessing the effectiveness of subsoiling as a drought mitigation practice on Haplic Chernozem in Northern Bulgaria, integrating ground-based and remote sensing data. Soil physical parameters, leaf area index (LAI), canopy temperature, crop water stress index (CWSI), soil moisture, and yield were evaluated under both conventional tillage and subsoiling for the two crops. A variety of optical and radar descriptive remote sensing products derived from Sentinel-1 and Sentinel-2 satellite data were calculated for different crop types. Consequently, the use of machine learning, utilizing all the processed remote sensing products, enabled the reasonable prediction of LAI, achieving a coefficient of determination (R2) after a cross-validation greater than 0.42 and demonstrating good agreement with in situ observations. Results revealed differing responses: subsoiling had a positive effect on sunflower, improving LAI, water status, and slightly increasing yield, while it had no positive effect on maize. These findings highlight the importance of crop-specific responses in evaluating subsoiling practices and demonstrate the added value of integrating unmanned aerial systems (UAS) and satellite-based remote sensing data into agricultural drought monitoring. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

14 pages, 1889 KiB  
Article
Determination of Phenylurea Herbicides in Water Samples by Magnet-Integrated Fabric Phase Sorptive Extraction Combined with High Performance Liquid Chromatography
by Natalia Manousi, Apostolia Tsiasioti, Abuzar Kabir and Erwin Rosenberg
Molecules 2025, 30(15), 3135; https://doi.org/10.3390/molecules30153135 - 26 Jul 2025
Viewed by 264
Abstract
In this study, a magnet-integrated fabric phase sorptive extraction (MI-FPSE) protocol was developed in combination with high pressure liquid chromatography—diode array detection (HPLC-DAD) for the simultaneous determination of five phenylurea pesticides (i.e., chlorbromuron, diuron, linuron, metoxuron, monuron) in environmental water samples. To produce [...] Read more.
In this study, a magnet-integrated fabric phase sorptive extraction (MI-FPSE) protocol was developed in combination with high pressure liquid chromatography—diode array detection (HPLC-DAD) for the simultaneous determination of five phenylurea pesticides (i.e., chlorbromuron, diuron, linuron, metoxuron, monuron) in environmental water samples. To produce the MI-FPSE device, two individual sol-gel coated carbowax 20 M (CW 20 M) cellulose membranes were fabricated and stitched to each other, while a magnetic rod was inserted between them to give the resulting device the ability to spin and serve as a stand-alone microextraction platform. The adsorption and desorption step of the MI-FPSE protocol was optimized to achieve high extraction efficiency and the MI-FPSE-HPLC-DAD method was validated in terms of linearity, sensitivity, selectivity, accuracy, and precision. The limits of detection (LODs) were found to be 0.3 μg L−1. The relative recoveries were 85.2–110.0% for the intra-day and 87.7–103.2% for the inter-day study. The relative standard deviations were better than 13% in all cases. The green character and the practicality of the developed procedure were assessed using ComplexGAPI and Blue Analytical Grade Index metric tools, showing good method performance. Finally, the developed method was successfully used for the analysis of tap, river, and lake water samples. Full article
Show Figures

Graphical abstract

23 pages, 3371 KiB  
Article
Scheduling Control Considering Model Inconsistency of Membrane-Wing Aircraft
by Yanxuan Wu, Yifan Fu, Zhengjie Wang, Yang Yu and Hao Li
Processes 2025, 13(8), 2367; https://doi.org/10.3390/pr13082367 - 25 Jul 2025
Viewed by 174
Abstract
Inconsistency in the structural strengths of a membrane wing under positive and negative loads has undesirable impacts on the aeroelastic deflections of the wing, which results in more significant flight control system modeling errors and worsens the performance of the aircraft. In this [...] Read more.
Inconsistency in the structural strengths of a membrane wing under positive and negative loads has undesirable impacts on the aeroelastic deflections of the wing, which results in more significant flight control system modeling errors and worsens the performance of the aircraft. In this paper, an integrated dynamic model is derived for a membrane-wing aircraft based on the structural dynamics equation of the membrane wing and the flight dynamics equation of the traditional fixed wing. Based on state feedback control theory, an autopilot system is designed to unify the flight and control properties of different flight and wing deformation statuses. The system uses models of different operating regions to estimate the dynamic response of the vehicle and compares the estimation results with the sensor signals. Based on the compared results, the autopilot can identify the overall flight and select the correct operating region for the control system. By switching to the operating region with the minimum modeling error, the autopilot system maintains good flight performance while flying in turbulence. According to the simulation results, compared with traditional rigid aircraft autopilots, the proposed autopilot can reduce the absolute maximum attack angles by nearly 27% and the absolute maximum wingtip twist angles by nearly 25% under gust conditions. This enhanced robustness and stability performance demonstrates the autopilot’s significant potential for practical deployment in micro-aerial vehicles, particularly in applications demanding reliable operation under turbulent conditions, such as military surveillance, environmental monitoring, precision agriculture, or infrastructure inspection. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
Show Figures

Figure 1

29 pages, 2926 KiB  
Review
Microbial Symbiosis in Lepidoptera: Analyzing the Gut Microbiota for Sustainable Pest Management
by Abdul Basit, Inzamam Ul Haq, Moazam Hyder, Muhammad Humza, Muhammad Younas, Muhammad Rehan Akhtar, Muhammad Adeel Ghafar, Tong-Xian Liu and Youming Hou
Biology 2025, 14(8), 937; https://doi.org/10.3390/biology14080937 - 25 Jul 2025
Viewed by 317
Abstract
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, [...] Read more.
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, and others that are transient and context-dependent. We highlight key microorganisms—including Bacillus, Lactobacillus, Escherichia coli, Pseudomonas, Rhizobium, Fusarium, Aspergillus, Saccharomyces, Bifidobacterium, and Wolbachia—that play critical roles in microbial ecology, biotechnology, and microbiome studies. The fitness implications of these microbial communities can be variable; some microbes improve host performance, while others neither positively nor negatively impact host fitness, or their impact is undetectable. This review examines the central position played by the gut microbiota in interactions of insects with plants, highlighting the functions of the microbiota in the manipulation of the behavior of herbivorous pests, modulating plant physiology, and regulating higher trophic levels in natural food webs. It also bridges microbiome ecology and applied pest management, emphasizing S. frugiperda as a model for symbiont-based intervention. As gut microbiota are central to the life history of herbivorous pests, we consider how these interactions can be exploited to drive the development of new, environmentally sound biocontrol strategies. Novel biotechnological strategies, including symbiont-based RNA interference (RNAi) and paratransgenesis, represent promising but still immature technologies with major obstacles to overcome in their practical application. However, microbiota-mediated pest control is an attractive strategy to move towards sustainable agriculture. Significantly, the gut microbiota of S. frugiperda is essential for S. frugiperda to adapt to a wide spectrum of host plants and different ecological niches. Studies have revealed that the microbiome of S. frugiperda has a close positive relationship with the fitness and susceptibility to entomopathogenic fungi; therefore, targeting the S. frugiperda microbiome may have good potential for innovative biocontrol strategies in the future. Full article
(This article belongs to the Special Issue Recent Advances in Wolbachia and Spiroplasma Symbiosis)
Show Figures

Graphical abstract

27 pages, 6977 KiB  
Article
Urbanization and Health Inequity in Sub-Saharan Africa: Examining Public Health and Environmental Crises in Douala, Cameroon
by Babette Linda Safougne Djomekui, Chrétien Ngouanet and Warren Smit
Int. J. Environ. Res. Public Health 2025, 22(8), 1172; https://doi.org/10.3390/ijerph22081172 - 24 Jul 2025
Viewed by 311
Abstract
Africa’s rapid urbanization often exceeds the capacity of governments to provide essential services and infrastructure, exacerbating structural inequalities and exposing vulnerable populations to serious health risks. This paper examines the case of Douala, Cameroon, to demonstrate that health inequities in African cities are [...] Read more.
Africa’s rapid urbanization often exceeds the capacity of governments to provide essential services and infrastructure, exacerbating structural inequalities and exposing vulnerable populations to serious health risks. This paper examines the case of Douala, Cameroon, to demonstrate that health inequities in African cities are not simply the result of urban growth but are shaped by spatial inequities, historical legacies, and systemic exclusion. Disadvantaged neighborhoods are particularly impacted, becoming epicenters of health crises. Using a mixed-methods approach combining spatial analysis, household surveys and interviews, the study identifies three key findings: (1) Healthcare services in Douala are unevenly distributed and dominated by private providers, which limits access for low-income residents. (2) Inadequate infrastructure and environmental risks in informal settlements lead to a higher disease burden and an overflow of demand into better-equipped districts, which overwhelms public health centers across the city. (3) This structural mismatch fuels widespread reliance on informal and unregulated care practices. This study positions Douala as a microcosm of broader public health challenges in rapidly urbanizing African cities. It highlights the need for integrated urban planning and health system reforms that address spatial inequalities, strengthen public health infrastructure, and prioritize equity—key principles for achieving the third Sustainable Development Goal (ensuring good health and well-being for all residents) in sub-Saharan Africa. Full article
(This article belongs to the Special Issue SDG 3 in Sub-Saharan Africa: Emerging Public Health Issues)
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 301
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

46 pages, 1185 KiB  
Review
Shared Producer Responsibility for Sustainable Packaging in FMCG: The Convergence of SDGs, ESG Reporting, and Stakeholder Engagement
by Fotios Misopoulos and Priyanka Bajiraj
Sustainability 2025, 17(14), 6654; https://doi.org/10.3390/su17146654 - 21 Jul 2025
Viewed by 352
Abstract
Packaging waste is a major environmental issue, making the transition to sustainable solutions imperative. This article proposes the concept of Shared Producer Responsibility (SPR) as a key approach to advancing sustainable packaging in the fast-moving consumer goods (FMCG) sector. The study explores how [...] Read more.
Packaging waste is a major environmental issue, making the transition to sustainable solutions imperative. This article proposes the concept of Shared Producer Responsibility (SPR) as a key approach to advancing sustainable packaging in the fast-moving consumer goods (FMCG) sector. The study explores how the United Nations Sustainable Development Goals (SDGs), environmental, social, and governance (ESG) reporting, and stakeholder engagement converge to support this transition. The research identifies current trends, challenges, and gaps in sustainable packaging practices through a systematic literature review (SLR) and analysis of sustainability and ESG reports from leading FMCG and packaging companies. The findings highlight the need for standardised reporting frameworks and improved stakeholder cooperation to enhance transparency and accountability in sustainability efforts. This study proposes a conceptual framework for accelerating sustainable packaging adoption through combining strategies like consumer education, regulatory incentives, and clear product labelling. The proposal to implement the concept of Shared Producer Responsibility emphasises the shared accountability of FMCG companies and packaging manufacturers in managing the full environmental lifecycle of packaging materials. This approach is crucial for achieving SDG 12 (responsible consumption and production) and SDG 13 (climate action) and driving more effective and sustainable packaging practices across the FMCG industry. Full article
Show Figures

Figure 1

16 pages, 1506 KiB  
Article
Theoretical Framework (Module) for Short-Sea Shipping System Evaluation
by Vytautas Paulauskas, Birutė Plačienė, Donatas Paulauskas, Rafał Koba, Patryk Lipka, Krzysztof Czaplewski, Adam Weintrit and Andrzej Chybicki
Appl. Sci. 2025, 15(14), 8058; https://doi.org/10.3390/app15148058 - 20 Jul 2025
Viewed by 297
Abstract
Short-sea shipping, abbreviated SSS, is the transportation of goods by sea over relatively short distances, in contrast to intercontinental ocean and deep-sea shipping. Short-sea shipping (SSS) is important for cargo transportation in some regions of the world with many ports and well-developed liner [...] Read more.
Short-sea shipping, abbreviated SSS, is the transportation of goods by sea over relatively short distances, in contrast to intercontinental ocean and deep-sea shipping. Short-sea shipping (SSS) is important for cargo transportation in some regions of the world with many ports and well-developed liner shipping. The development and improvement of SSS systems is an important scientific and practical task. This article presents theoretical and experimental results of the development and optimization of SSS. A methodology for connecting and evaluating SSS and other transport chains was developed and tested by experimental studies, with the help of which it is possible to assess the efficiency of SSS and other transport chains, e.g., in terms of economy, freight transportation time, and environmental impact. The developed SSS methodology includes sea and land transport corridors, their assessment, and possible ways of optimizing transport chains using a comparative method and can be applied to various transport and logistics chains. The basis for the development and verification of the SSS methodology was the theoretical and experimental results of real short-sea shipping operations. The use of a comparative method based on which transport and logistics chains are assessed allows one to search for the most optimal SSS routes and possible factors that allow optimizing transportation costs and reducing transportation time and environmental impact. Full article
(This article belongs to the Special Issue Advances in Land, Rail and Maritime Transport and in City Logistics)
Show Figures

Figure 1

13 pages, 286 KiB  
Article
The Contemporary Discourse of Public Theology in the Face of Technological and Socio-Environmental Crises
by Jesús Sánchez-Camacho
Religions 2025, 16(7), 923; https://doi.org/10.3390/rel16070923 - 17 Jul 2025
Viewed by 712
Abstract
This study explores the role of public theology in addressing contemporary societal challenges, emphasizing ethical dialogue in response to secularization, pluralism, technological transformation, and social and environmental issues. It situates pastoral theology in the Christian tradition as an active social practice aimed at [...] Read more.
This study explores the role of public theology in addressing contemporary societal challenges, emphasizing ethical dialogue in response to secularization, pluralism, technological transformation, and social and environmental issues. It situates pastoral theology in the Christian tradition as an active social practice aimed at promoting justice, equality, and the common good. The study highlights the emergence of public theology as a response to the participation of religious discourse in the public arena, considering communication and digital technology, and articulating theological reflection with real-world social issues. Additionally, it examines the profound significance of dialogue within religious discourse and stresses the importance of ethical reflection in technological advancements, particularly concerning AI (Artificial Intelligence). Moreover, Catholic social thought and the concept of integral ecology are analyzed in dialogue with the SDGs (Sustainable Development Goals), underlining the potential of public theology to promote socio-environmental justice through a holistic approach. Full article
(This article belongs to the Special Issue Religion, Culture and Spirituality in a Digital World)
14 pages, 915 KiB  
Article
Sustainability in Allied Health Education and Practice: An Exploratory Survey of Student Perspectives, Knowledge, and Attitudes
by Carlos Carvalhais, Inês Ribeiro, Ana Xavier and Miguel Saúde
Sustainability 2025, 17(14), 6457; https://doi.org/10.3390/su17146457 - 15 Jul 2025
Viewed by 309
Abstract
The growing urgency of the climate crisis has heightened the importance of integrating sustainability into health education. Allied health professionals are well positioned to lead sustainable healthcare efforts, yet evidence suggests a persistent gap between student awareness and formal training. This study explored [...] Read more.
The growing urgency of the climate crisis has heightened the importance of integrating sustainability into health education. Allied health professionals are well positioned to lead sustainable healthcare efforts, yet evidence suggests a persistent gap between student awareness and formal training. This study explored the perspectives, knowledge, and attitudes of Portuguese allied health students regarding sustainability. An online and anonymous cross-sectional survey was conducted among undergraduate and graduate students across multiple allied health disciplines. The questionnaire assessed general knowledge, perceptions of curricular integration, and attitudes toward sustainable clinical practice. A total of 247 (response rate of 8.23%) students participated, with the majority expressing high concern about climate change and strong support for environmentally responsible healthcare. However, the results revealed inconsistent awareness of healthcare’s environmental footprint and a limited exposure to structured sustainability education. Friedman tests indicated significant variability in students’ knowledge, perceived responsibility, and curricular experiences. Students identified priority themes for curricular inclusion—such as the environmental impact of the health system—and recognized their alignment with the UN Sustainable Development Goals (SDGs), particularly SDG 3 (Good Health) and SDG 13 (Climate Action). The findings highlight the need for the systematic, competency-based integration of sustainability into allied health curricula to support a climate-resilient and ecologically responsible future healthcare workforce. Full article
Show Figures

Figure 1

13 pages, 2832 KiB  
Article
Eco-Friendly Synthesis of Silver Nanoparticles from Ligustrum ovalifolium Flower and Their Catalytic Applications
by Thangamani Kaliraja, Reddi Mohan Naidu Kalla, Fatimah Ali M. Al-Zahrani, Surya Veerendra Prabhakar Vattikuti and Jaewoong Lee
Nanomaterials 2025, 15(14), 1087; https://doi.org/10.3390/nano15141087 - 14 Jul 2025
Viewed by 352
Abstract
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well [...] Read more.
The green-chemical preparation of silver nanoparticles (AgNPs) offers a sustainable and environmentally friendly alternative to conventional synthesis methods, thereby representing a paradigm shift in the field of nanotechnology. The biological synthesis process, which involves the synthesis, characterization, and management of materials, as well as their further development at the nanoscale, is the most economical, environmentally friendly, and rapid synthesis process compared to physical and chemical processes. Ligustrum ovalifolium flower extract was used for the preparation of AgNPs. The synthesized AgNPs were examined by using UV–visible spectroscopy, XRD, SEM, and TEM analysis. It indicates that AgNPs were formed in good size. AgNPs were applied as a catalyst for the degradation of pollutants, such as methyl orange, Congo red, and methylene blue, which were degraded within 8–16 min. Additionally, the reduction of para-nitrophenol (PNP) to para-aminophenol (PAP) was achieved within 2 min. This work demonstrates a practical, reproducible, and efficient method for synthesizing cost-effective and stable AgNPs, which serve as active catalysts for the rapid degradation of hazardous organic dyes in an aqueous environment. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

28 pages, 4718 KiB  
Article
Analysis and Prospective Use of Local Mineral Raw Materials to Increase the Aesthetic and Recreational Value of the Vyzhyvka River (Western Ukraine)
by Yuliia Trach, Tetiana Tkachenko, Maryna Kravchenko, Viktor Mileikovskyi, Oksana Tsos, Mariia Boiaryn, Olha Biedunkova, Roman Trach and Ihor Statnyk
Environments 2025, 12(7), 235; https://doi.org/10.3390/environments12070235 - 10 Jul 2025
Viewed by 590
Abstract
Macrophytes are important components of aquatic ecosystems performing essential ecological functions. Their species composition and density reflect the ecological status of water bodies. The optimal ratio of morphological types of macrophytes is an important condition for preventing eutrophication. The aim of the study [...] Read more.
Macrophytes are important components of aquatic ecosystems performing essential ecological functions. Their species composition and density reflect the ecological status of water bodies. The optimal ratio of morphological types of macrophytes is an important condition for preventing eutrophication. The aim of the study is to analyse the species composition, distribution, and density of macrophytes in the Vyzhyvka River (Ukraine) in a seasonal aspect (2023–2024) under constant physical and chemical characteristics of water. To assess the seasonal dynamics of water quality, changes in indicators in three representative areas were analysed. The MIR method of environmental indexation of watercourses was used to assess the ecological state of the river. The water quality in the Vyzhyvka River at all test sites corresponds to the second class of the “good” category with the trophic status of “mesotrophic”. This is confirmed by the identified species diversity, which includes 64 species of higher aquatic and riparian plants. Among the various morphological types of macrophytes, submerged rooted forms account for only 10.56% of the total species composition. To ensure a functional balance between submerged and other forms of macrophytes, a scientifically based approach is proposed, which involves the use of mineral raw materials of local origin, in particular, mining and quarrying wastes rich in silicon, calcium and other mineral components. The results obtained are of practical value for water management, environmental protection, and ecological reclamation and can be used to develop effective measures to restore river ecosystems. Full article
Show Figures

Figure 1

Back to TopTop