Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = glycogen restoration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 305 KiB  
Article
Pre-Slaughter Rest Is Effective in Improving the Physiology and Quality of Nile Tilapia Fillets Subjected to In Vivo Transportation at High Densities
by Maria Ildilene da Silva, Valfredo Figueira da Silva, Marcio Douglas Goes, Sara Ugulino Cardoso, Leonardo Aluisio Baumgartner, Maria Luiza Rodrigues de Souza, Claucia Aparecida Honorato, Robie Allan Bombardelli and Elenice Souza dos Reis Goes
Foods 2025, 14(13), 2279; https://doi.org/10.3390/foods14132279 - 27 Jun 2025
Viewed by 543
Abstract
This study evaluated the impact of transporting Nile tilapia at stocking densities of 250 kg/m3 and 500 kg/m3 for 1 h, with post-transport resting periods of 0, 2, 4, and 6 h, on biochemical parameters and fillet quality. A 2 × [...] Read more.
This study evaluated the impact of transporting Nile tilapia at stocking densities of 250 kg/m3 and 500 kg/m3 for 1 h, with post-transport resting periods of 0, 2, 4, and 6 h, on biochemical parameters and fillet quality. A 2 × 4 factorial design was employed for the experiment, with 15 repetitions per treatment. The density of 500 kg/m3 resulted in a longer time to rigor mortis after 4 h of rest, while shorter rigor times were observed at 0 and 2 h. Fillets taken from fish transported at 250 kg/m3 for 4 h exhibited greater intensities of red and yellow color. The highest weight loss during cooking occurred in fish transported at 500 kg/m3 without rest. High-density stocking increased the pH of the fillets, reduced color intensity, and increased weight loss and drip loss. Resting periods of 4 and 6 h resulted in firmer fillets with improved water retention. Fish rested for 6 h at 250 kg/m3 recovered glycogen and glucose levels, indicating restored homeostasis. In contrast, fish subjected to high-density transport showed impaired metabolic recovery and compromised fillet quality. These results support the use of resting periods to improve fish welfare and product quality in aquaculture systems. Full article
(This article belongs to the Special Issue Effect of Pre-slaughter and Stunning Methods on Farmed Fish Quality)
Show Figures

Graphical abstract

13 pages, 4326 KiB  
Article
Asiatic Acid Alleviates Renal Damage by Upregulating STBD1-Mediated Glycophagy in Diabetic Kidney Disease
by Lei Guo, Peili Wu, Qijian Feng, Xiaochun Lin, Yuan Wang, Minghai Wu, Feifei Cai, Jin Zhang, Chuyi Yang, Xuelin Li, Churan Wen, Yingbei Lin, Nannan Liu, Yuxuan Hu, Huiyun Wang, Xinzhao Fan and Meiping Guan
Biomedicines 2025, 13(7), 1544; https://doi.org/10.3390/biomedicines13071544 - 25 Jun 2025
Viewed by 336
Abstract
Background/Objectives: The role of glycogen metabolism in diabetic kidney disease (DKD) remains unclear. This study investigated the therapeutic potential of asiatic acid (AA) on glycogen metabolism in DKD and its underlying mechanisms. Methods: A DKD mouse model was established using a high-fat diet [...] Read more.
Background/Objectives: The role of glycogen metabolism in diabetic kidney disease (DKD) remains unclear. This study investigated the therapeutic potential of asiatic acid (AA) on glycogen metabolism in DKD and its underlying mechanisms. Methods: A DKD mouse model was established using a high-fat diet and streptozotocin, followed by AA treatment for 8 weeks. Network pharmacology and molecular docking identified STBD1 as a potential target of AA, and its overexpression in mice was performed. Results: AA reduced blood glucose levels and the urinary albumin-to-creatinine ratio (UACR) and downregulated TGFβ-1, KIM-1, and PDK4. Additionally, AA treatment reversed abnormal glycogen accumulation and restored STBD1 expression. Network pharmacology and molecular docking identified STBD1 as a potential target of AA, and its overexpression in mice demonstrated similar beneficial effects. Gene enrichment analysis revealed that STBD1 is involved in key metabolic pathways related to DKD. Conclusions: These findings suggest that AA alleviates renal damage in DKD, possibly through modulation of STBD1, highlighting its therapeutic potential and the critical role of STBD1 in renal glycophagy. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

30 pages, 915 KiB  
Review
Dysfunctional Astrocyte Metabolism: A Driver of Imbalanced Excitatory/Inhibitory Tone and Support for Therapeutic Intervention Targets
by Uchechukwu G. Joseph, Mega O. Oyovwi, Ejayeta Jeroh, Daniel T. Esuku and Benneth Ben-Azu
J. Mol. Pathol. 2025, 6(2), 12; https://doi.org/10.3390/jmp6020012 - 11 Jun 2025
Cited by 1 | Viewed by 788
Abstract
A balanced excitatory/inhibitory (E/I) tone is crucial for proper brain function, and disruptions can lead to neurological disorders. This review explores the role of astrocytes in maintaining a balanced E/I tone in the brain, which is crucial for proper functioning. It highlights the [...] Read more.
A balanced excitatory/inhibitory (E/I) tone is crucial for proper brain function, and disruptions can lead to neurological disorders. This review explores the role of astrocytes in maintaining a balanced E/I tone in the brain, which is crucial for proper functioning. It highlights the potential for dysfunctional astrocyte metabolism to disrupt E/I balance, leading to neuronal dysfunction and potentially causing neurological disease pathogenesis. The review focuses on glucose, lactate shuttling, and glutamate metabolism. This review synthesizes findings from in vitro, in vivo, and human studies examining the interplay between astrocyte metabolism, neuronal activity, and E/I balance. Literature searches were conducted using keywords including “astrocyte metabolism”, “excitatory/inhibitory balance”, “glutamate”, “lactate shuttle”, “neurometabolic coupling”, and “neurological disorders” in databases such as PubMed and Web of Science. Disruptions in astrocyte glucose uptake or glycolysis can impair lactate production, reducing neuronal energy supply and affecting neuronal excitability. Impaired glutamate uptake and conversion to glutamine within astrocytes leads to elevated extracellular glutamate, promoting excitotoxicity. Altered glycogen metabolism and other metabolic impairments within astrocytes can also affect neuronal health and contribute to imbalances between excitation and inhibition. Dysfunctional astrocyte metabolism represents a significant contributor to E/I imbalance in the brain. Understanding the specific metabolic vulnerabilities of astrocytes and their impact on neuronal function provides potential therapeutic targets for neurological disorders characterized by E/I dysregulation. Targeting astrocyte metabolism may offer a novel approach to restoring E/I balance and improving neurological outcomes. Full article
Show Figures

Figure 1

31 pages, 5529 KiB  
Review
The 4Rs Framework of Sports Nutrition: An Update with Recommendations to Evaluate Allostatic Load in Athletes
by Diego A. Bonilla, Jeffrey R. Stout, Michael Gleeson, Bill I. Campbell, Guillermo Escalante, Daniel Rojas-Valverde, Jorge L. Petro, Richard B. Kreider and Adrián Odriozola-Martínez
Life 2025, 15(6), 867; https://doi.org/10.3390/life15060867 - 27 May 2025
Cited by 1 | Viewed by 3812
Abstract
The 4Rs of sports nutrition were proposed in recent years as an evidence-based framework to optimize post-exercise recovery within the context of allostasis. Under this paradigm, it is important to consider that each R represents a factor with a tremendous influence on the [...] Read more.
The 4Rs of sports nutrition were proposed in recent years as an evidence-based framework to optimize post-exercise recovery within the context of allostasis. Under this paradigm, it is important to consider that each R represents a factor with a tremendous influence on the allostatic response and improves individual components of the allostatic load (AL), which will positively impact the exercise-induced adaptations and the athlete’s recovery. The 4Rs correspond to the following. (i) Rehydration—This is necessary to guarantee the post-exercise consumption of at least 150% of the body mass lost during the exercise accompanied by sodium (if faster replacement is required). (ii) Refuel—Carbohydrate intake (~1.2 g/kg body mass per hour for up to 4 h post-exercise) is essential not only in restoring glycogen reserves but also in supporting the energy needs of the immune system and facilitating tissue repair. Despite changes in substrate utilization, a ketogenic diet generally has neutral or negative effects on athletic performance compared to carbohydrate-rich diets. (iii) Repair—The ingestion of high-quality protein stimulates post-exercise net muscle protein anabolism and might contribute to faster tissue growth and repair. The use of certain supplements, such as creatine monohydrate, might help to enhance recovery, while tart cherry, omega-3 fatty acids, and dietary nitrate (e.g., Beta vulgaris, Amaranthus L.), as well as other herbal extracts containing flavonoid-rich polyphenols, deserve further clinical research. (iv) Recuperate—Pre-sleep nutrition (casein- or protein-rich meal with slow digestion rate) has a restorative effect, facilitating the recovery of the musculoskeletal, endocrine, immune, and nervous systems. In this article, we update the 4Rs framework, delve deeper into the allostasis paradigm, and offer theoretical foundations and practical recommendations (the 4Rs app) for the assessment of AL in athletes. We cautiously propose an AL index (ALindex) for physique competitors and elite athletes to evaluate the cumulative physiological stress induced by exercise and, thereby, to adjust exercise and nutrition interventions. Full article
(This article belongs to the Special Issue Biomarker Analysis for Sports Performance and Health)
Show Figures

Figure 1

17 pages, 3477 KiB  
Article
A Combination of Resveratrol and Quercetin Prevents Sarcopenic Obesity: Its Role as a Signaling Inhibitor of Myostatin/ActRIIA and ActRIIB/Smad and as an Enhancer of Insulin Actions
by Agustina Cano-Martínez, Jimena Alejandra Méndez-Castro, Viviana Estefanía García-Vázquez, Elizabeth Carreón-Torres, Eulises Díaz-Díaz, María Sánchez-Aguilar, Vicente Castrejón-Téllez and María Esther Rubio-Ruíz
Int. J. Mol. Sci. 2025, 26(10), 4952; https://doi.org/10.3390/ijms26104952 - 21 May 2025
Viewed by 1006
Abstract
Sarcopenic obesity (SO), characterized by an excess of fat and a decrease in muscle strength or mass, is a global public health concern and is linked to metabolic conditions such as metabolic syndrome (MetS). Different mechanisms contribute to SO, such as inflammation, fatty [...] Read more.
Sarcopenic obesity (SO), characterized by an excess of fat and a decrease in muscle strength or mass, is a global public health concern and is linked to metabolic conditions such as metabolic syndrome (MetS). Different mechanisms contribute to SO, such as inflammation, fatty acid infiltration, and insulin resistance (IR). Recently, myostatin (MYOST), an inhibitory factor for skeletal muscle tissue, was proposed as an aimed compound for the treatment of conditions of muscular metabolic imbalance mass and MetS. On the other hand, a therapy with natural compounds such as resveratrol (R) and quercetin (Q) is effective for the treatment of MetS, but its effect on the MYOST pathway has been poorly explored. The control group received water, and the MetS group received 30% commercial sugar in the drinking water for 6 months. Polyphenol mix (R at a dose of 50 mg/kg/day and Q at 0.95 mg/kg/day) was administered for 1 month. MetS rats present SO linked to an increase in the expression of MYOST/ActRIIA and ActRIIB (p < 0.0001). R+Q treatment prevented SO by lowering the expression of MYOST and its receptors and increased the expression of Smad 7 in MetS rats (p < 0.0001). Moreover, the polyphenol treatment reverted IR by increasing Akt phosphorylation, leading to an increase in muscle mass. It decreased lipid stores, restored glycogen accumulation, and increased myosin expression (p < 0.0001). The results of this work indicate that R+Q supplementation could be a promising therapeutic agent to prevent SO and sarcopenia derived from other metabolic alterations. Full article
Show Figures

Figure 1

20 pages, 7045 KiB  
Article
Iris germanica L. Rhizome-Derived Exosomes Ameliorated Dihydrotestosterone-Damaged Human Follicle Dermal Papilla Cells Through the Activation of Wnt/β-Catenin Pathway
by Mujun Kim, Jung Woo, Jinsick Kim, Minah Choi, Hee Jung Shin, Youngseok Kim, Junoh Kim and Dong Wook Shin
Int. J. Mol. Sci. 2025, 26(9), 4070; https://doi.org/10.3390/ijms26094070 - 25 Apr 2025
Viewed by 831
Abstract
Hair loss is often associated with oxidative stress and mitochondrial dysfunction in human follicle dermal papilla cells (HFDPCs), resulting in impaired cellular function and follicle degeneration. Thus, many studies have been conducted on natural plants aimed at inhibiting hair loss. This study investigated [...] Read more.
Hair loss is often associated with oxidative stress and mitochondrial dysfunction in human follicle dermal papilla cells (HFDPCs), resulting in impaired cellular function and follicle degeneration. Thus, many studies have been conducted on natural plants aimed at inhibiting hair loss. This study investigated the therapeutic potential of exosomes derived from the rhizomes of Iris germanica L. (Iris-exosomes) in HFDPCs damaged by dihydrotestosterone (DHT). Iris-exosomes significantly reduced reactive oxygen species (ROS) levels, restoring mitochondrial membrane potential and ATP production, thereby mitigating oxidative stress and improving mitochondrial function. These effects occurred alongside enhanced cellular processes critical for hair follicle regeneration, including increased cell migration, alkaline phosphatase (ALP) activity, and three-dimensional (3D) spheroid formation, which replicates the follicle-like microenvironment and promotes inductive potential. Furthermore, Iris-exosomes stimulated the Wnt/β-catenin signaling pathway by enhancing glycogen synthase kinase-3β (GSK-3β), AKT, and extracellular signal-regulated kinase (ERK), leading to β-catenin stabilization and nuclear translocation, thereby supporting the expression of genes essential for hair growth. Taken together, these findings suggest that Iris-exosomes can be promising ingredients for alleviating hair loss. Full article
(This article belongs to the Special Issue Molecular Insights into Hair Regeneration)
Show Figures

Graphical abstract

40 pages, 1048 KiB  
Review
Antidiabetic GLP-1 Receptor Agonists Have Neuroprotective Properties in Experimental Animal Models of Alzheimer’s Disease
by Melinda Urkon, Elek Ferencz, József Attila Szász, Monica Iudita Maria Szabo, Károly Orbán-Kis, Szabolcs Szatmári and Előd Ernő Nagy
Pharmaceuticals 2025, 18(5), 614; https://doi.org/10.3390/ph18050614 - 23 Apr 2025
Cited by 3 | Viewed by 2048
Abstract
In addition to the classically accepted pathophysiological features of Alzheimer’s disease (AD), increasing attention is paid to the role of the insulin-resistant state of the central nervous system. Glucagon-like peptide-1 receptor (GLP-1R) agonism demonstrated neuroprotective consequences by mitigating neuroinflammation and oxidative damage. The [...] Read more.
In addition to the classically accepted pathophysiological features of Alzheimer’s disease (AD), increasing attention is paid to the role of the insulin-resistant state of the central nervous system. Glucagon-like peptide-1 receptor (GLP-1R) agonism demonstrated neuroprotective consequences by mitigating neuroinflammation and oxidative damage. The present review aims to offer a comprehensive overview of the neuroprotective properties of GLP-1R agonists (GLP-1RAs), with a particular focus on experimental animal models of AD. Ameliorated amyloid-β plaque and neurofibrillary tangle formation and deposition following exenatide, liraglutide, and lixisenatide treatment was confirmed in several models. The GLP-1RAs studied alleviated central insulin resistance, as evidenced by the decreased serine phosphorylation of insulin receptor substrate 1 (IRS-1) and restored downstream phosphoinositide 3-kinase/RAC serine/threonine–protein kinase (PI3K/Akt) signaling. Furthermore, the GLP-1RAs influenced multiple mitogen-activated protein kinases (extracellular signal-regulated kinase: ERK; c-Jun N-terminal kinase: JNK, p38) positively and suppressed glycogen synthase kinase 3 (GSK-3β) hyperactivation. A lower proportion of reactive microglia and astrocytes was associated with better neuronal preservation following their administration. Finally, restoration of cognitive functions, particularly spatial memory, was also observed for semaglutide and dulaglutide. GLP-1RAs, therefore, hold promising disease-modifying potential in the management of AD. Full article
Show Figures

Graphical abstract

17 pages, 2001 KiB  
Article
Farnesol Improves Endoplasmic Reticulum Stress and Hepatic Metabolic Dysfunction Induced by Tunicamycin in Mice
by Naqash Goswami, Lionel Kinkpe, Lun Hua, Yong Zhuo, Zhengfeng Fang, Lianqiang Che, Yan Lin, Shengyu Xu, Xuemei Jiang, Bin Feng and De Wu
Biology 2025, 14(2), 213; https://doi.org/10.3390/biology14020213 - 18 Feb 2025
Viewed by 898
Abstract
Endoplasmic reticulum (ER) stress significantly affects liver metabolism, often leading to disorders such as hepatic steatosis. Tunicamycin (TM), a known ER stress inducer, is frequently used to model metabolic stress, but its specific effects on liver energy homeostasis remain unclear. This study investigates [...] Read more.
Endoplasmic reticulum (ER) stress significantly affects liver metabolism, often leading to disorders such as hepatic steatosis. Tunicamycin (TM), a known ER stress inducer, is frequently used to model metabolic stress, but its specific effects on liver energy homeostasis remain unclear. This study investigates how farnesol (FOH), a natural compound with antioxidant and anti-inflammatory properties, counteracts TM-induced ER stress and its associated metabolic disruptions in the liver. Using both primary hepatocytes and a mouse model, this study demonstrates that TM treatment caused upregulation of ER stress markers, including ATF4, and disrupted genes related to lipid metabolism and gluconeogenesis. Co-treatment with FOH reduced these stress markers and restored the expression of metabolic genes. In vivo, FOH treatment alleviated oxidative stress, reduced lipid accumulation, and restored normal glycogen and lipid metabolism. Histological analysis further confirmed that FOH preserved liver architecture and minimized cellular damage. FOH also stabilized serum lipid profiles and modulated key metabolic biomarkers, suggesting its protective role against TM-induced liver injury. These findings suggest that FOH has therapeutic potential in mitigating ER stress-related metabolic dysfunctions, offering promising insights for the treatment of liver diseases linked to metabolic stress. Full article
(This article belongs to the Special Issue Molecular Basis of Metabolic Homeostasis)
Show Figures

Figure 1

16 pages, 3048 KiB  
Article
Lipid Emulsion Mitigates the Cardiotoxic Effects of Labetalol in Rat Cardiomyoblasts
by Gyujin Sim, Seong-Ho Ok, Soo Hee Lee, Kyeong-Eon Park, Seunghyeon Park and Ju-Tae Sohn
Cells 2025, 14(3), 187; https://doi.org/10.3390/cells14030187 - 26 Jan 2025
Viewed by 824
Abstract
Lipid emulsion has recently emerged as an effective agent for improving the cardiotoxicity of highly lipophilic drugs. However, its effect on cardiotoxicity induced by labetalol, a nonselective beta-blocker, remains unknown. In this study, we investigated the effects of lipid emulsion on the cardiotoxicity [...] Read more.
Lipid emulsion has recently emerged as an effective agent for improving the cardiotoxicity of highly lipophilic drugs. However, its effect on cardiotoxicity induced by labetalol, a nonselective beta-blocker, remains unknown. In this study, we investigated the effects of lipid emulsion on the cardiotoxicity of labetalol in rat cardiomyoblasts and tried to decipher the underlying mechanisms. The effects of lipid emulsion on labetalol-induced changes in cell viability, expression of Bax/Bcl-2, cleaved caspase-3, and cleaved caspase-9, and phosphorylation of GSK-3β, Akt, and PI3K were examined. Lipid emulsion inhibited labetalol-induced decrease in cell viability, whereas LY294002, MK2206, and SB216763, the inhibitors of phosphoinositide 3-kinase (PI3K), Akt, glycogen synthase kinase-3β (GSK-3β), respectively, partially attenuated this restoration of cell viability. Lipid emulsion reversed the increase in expression of cleaved caspase-3, cleaved caspase-9, and Bax/Bcl-2 and decrease in the phosphorylation of GSK-3β, Akt, and PI3K by labetalol. Lipid emulsion and cyclosporin, a mitochondrial permeability transition pore (MPTP) inhibitor, reduced the labetalol-induced increase in the number of TUNEL-positive cells and promoted late-stage apoptosis. Overall, lipid emulsion inhibited apoptotic cell death caused by labetalol toxicity via the inhibition of intrinsic apoptotic pathway and MPTP in rat cardiomyoblasts, which appears to involve PI3K, Akt, and GSK-3β signaling pathways. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

27 pages, 13861 KiB  
Article
Antidiabetic Effects of Quercetin and Silk Sericin in Attenuating Dysregulation of Hepatic Gluconeogenesis in Diabetic Rats Through Potential Modulation of PI3K/Akt/FOXO1 Signaling: In Vivo and In Silico Studies
by Heba M. Abdou, Ghada M. Abd Elmageed, Hussein K. Hussein, Imane Yamari, Samir Chtita, Lamia M. El-Samad and Mohamed A. Hassan
J. Xenobiot. 2025, 15(1), 16; https://doi.org/10.3390/jox15010016 - 19 Jan 2025
Cited by 1 | Viewed by 2085
Abstract
Type 2 diabetes mellitus (T2DM) is an intricate disease correlated with many metabolic deregulations, including disordered glucose metabolism, oxidative stress, inflammation, and cellular apoptosis due to hepatic gluconeogenesis aberrations. However, there is no radical therapy to inhibit hepatic gluconeogenesis disturbances yet. We thus [...] Read more.
Type 2 diabetes mellitus (T2DM) is an intricate disease correlated with many metabolic deregulations, including disordered glucose metabolism, oxidative stress, inflammation, and cellular apoptosis due to hepatic gluconeogenesis aberrations. However, there is no radical therapy to inhibit hepatic gluconeogenesis disturbances yet. We thus sought to probe the effectiveness and uncover the potential mechanism of quercetin (QCT) and silk sericin (SS) in mitigating hyperglycemia-induced hepatic gluconeogenesis disorder, which remains obscure. Administration of QCT and SS to diabetic male albino rats markedly restored the levels of glucose, insulin, advanced glycation end-products (AGEs), liver function enzymes, alpha-fetoprotein (AFP), globulin, and glycogen, in addition to hepatic carbohydrate metabolizing enzymes and gluconeogenesis in comparison with diabetic rats. Furthermore, treatment with QCT and SS modulated hepatic malondialdehyde (MD), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), nitric oxide, tumor necrosis factor-alpha (TNF-α), and interleukin-1β (IL-1β), in addition to serum interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), implying their effectiveness in safeguarding cells against oxidative impairment and inflammation. Remarkably, QCT and SS treatments led to the upregulation of expression of phosphatidylinositol 3-kinases (PI3K), phospho-Akt (p-Akt), and forkhead box-O1 (FOXO1) genes in hepatic tissues compared to diabetic rats, orchestrating these singling pathways for curtailing hyperglycemia and pernicious consequences in hepatic tissues. Importantly, immunohistochemical investigations exhibited downregulation of caspase-3 expression in rats treated with QCT and SS compared to diabetic animals. Beyond that, the histopathological results of hepatic tissues demonstrated notable correlations with biochemical findings. Interestingly, the in silico results supported the in vivo findings, showing notable binding affinities of QCT and SS to PI3K, GPx, and TNF-α proteins. These results imply that QCT and SS could mitigate oxidative stress and inflammation and regulate hepatic gluconeogenesis in diabetic rats. However, QCT revealed greater molecular interactions with the studied proteins than SS. Overall, our results emphasize that QCT and SS have significant therapeutic effects on attenuating hyperglycemia-induced hepatic gluconeogenesis, with QCT showing superior effectiveness. Full article
Show Figures

Graphical abstract

10 pages, 3268 KiB  
Article
Protocadherin-7 Regulates Monocyte Migration Through Regulation of Small GTPase RhoA and Rac1
by Hyunsoo Kim, Noriko Takegahara and Yongwon Choi
Int. J. Mol. Sci. 2025, 26(2), 572; https://doi.org/10.3390/ijms26020572 - 11 Jan 2025
Viewed by 996
Abstract
Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)–glycogen synthase kinase-3β (GSK3β)–small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper [...] Read more.
Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)–glycogen synthase kinase-3β (GSK3β)–small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7’s biological features is valuable. Using an in vitro mouse monocyte cell culture system, we demonstrate that Pcdh7 plays a role in regulating monocyte migration by modulating the small GTPases RhoA and Rac1. Pcdh7-deficient (Pcdh7−/−) bone marrow-derived monocytes exhibited impaired migration along with the reduced activation of RhoA and Rac1. This impaired migration was rescued by transduction with constitutively active forms of RhoA and Rac1. Treatment with the PP2A-specific activator DT-061 enhanced cell migration, whereas treatment with the GSK3β-specific inhibitor AR-A014418 inhibited migration in wild-type monocytes. In contrast, treatment with DT-061 failed to restore the impaired migration in Pcdh7−/− monocytes. These findings suggest the involvement of PP2A and GSK3β in monocyte migration, although the forced activation of PP2A alone is insufficient to restore impaired migration in Pcdh7−/− monocytes. Taken together, these results indicate that Pcdh7 regulates monocyte migration through the activation of RhoA and Rac1. Given the pivotal role of cell migration in both physiological and pathological processes, our findings provide a foundation for future research into therapeutic strategies targeting Pcdh7-regulated migration. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 3776 KiB  
Article
Anti-Fatigue Activity of Corn Protein Hydrolysate Fermented by Lactic Acid Bacteria
by Nan Hu, Jingyi Sun, Yujia Cao, Hongji Zhao, Meng Sun, Guanlong Li, Xiaolan Liu and Shanzi Cong
Nutrients 2025, 17(2), 199; https://doi.org/10.3390/nu17020199 - 7 Jan 2025
Cited by 2 | Viewed by 1099
Abstract
Objectives: This study aimed to clarify the effect of lactic acid bacteria-fermented corn protein hydrolysate (FCH) on fatigue in mice and explore the connection between fatigue-related indicators and intestinal microbial flora. Methods: The fatigue model of mice was constructed by exercise endurance experiment. [...] Read more.
Objectives: This study aimed to clarify the effect of lactic acid bacteria-fermented corn protein hydrolysate (FCH) on fatigue in mice and explore the connection between fatigue-related indicators and intestinal microbial flora. Methods: The fatigue model of mice was constructed by exercise endurance experiment. The anti-fatigue level of FCH was evaluated by measuring physiological and biochemical indexes in mouse serum, liver and skeletal muscle. The relationship between FCH, intestinal flora and fatigue was explored through the analysis of intestinal microbial diversity in mice, and the anti-fatigue mechanism of FCH was further analyzed. Results: The results showed that the weight-bearing swimming time of mice was prolonged by 1.96 times, and the running time of mice was prolonged by 2.63 times in the high-dose FCH (FCH-H) group. Moreover, the lactic acid contents in the blood were reduced by 16.00%, and lactate dehydrogenase activity and urea nitrogen contents basically returned to the normal level. Meanwhile, the malondialdehyde contents were reduced by 31.24%, and superoxide dismutase activity and glutathione contents were increased by 1.84 times and 1.72 times, respectively. In addition, the glycogen contents of the body were restored, and the muscle glycogen and liver glycogen were increased by 1.81 and 5.81 times, respectively. Analysis of intestinal microbial flora diversity in mice showed that the highest relative abundance was Lactobacillus, and the FCH group could recover and even increase its relative abundance. Lactobacillus was significantly positively correlated with muscle glycogen and SOD. Conclusions: FCH can alleviate fatigue by regulating fatigue-related indicators and improving the intestinal microbial flora of the organism. Full article
(This article belongs to the Special Issue Nutrition and Quality of Life for Patients with Chronic Disease)
Show Figures

Figure 1

20 pages, 6780 KiB  
Article
AIBP Protects Müller Glial Cells Against Oxidative Stress-Induced Mitochondrial Dysfunction and Reduces Retinal Neuroinflammation
by Seunghwan Choi, Soo-Ho Choi, Tonking Bastola, Keun-Young Kim, Sungsik Park, Robert N. Weinreb, Yury I. Miller and Won-Kyu Ju
Antioxidants 2024, 13(10), 1252; https://doi.org/10.3390/antiox13101252 - 17 Oct 2024
Cited by 2 | Viewed by 1851
Abstract
Glaucoma, an optic neuropathy with the loss of retinal ganglion cells (RGCs), is a leading cause of irreversible vision loss. Oxidative stress and mitochondrial dysfunction have a significant role in triggering glia-driven neuroinflammation and subsequent glaucomatous RGC degeneration in the context of glaucoma. [...] Read more.
Glaucoma, an optic neuropathy with the loss of retinal ganglion cells (RGCs), is a leading cause of irreversible vision loss. Oxidative stress and mitochondrial dysfunction have a significant role in triggering glia-driven neuroinflammation and subsequent glaucomatous RGC degeneration in the context of glaucoma. It has previously been shown that apolipoprotein A-I binding protein (APOA1BP or AIBP) has an anti-inflammatory function. Moreover, Apoa1bp−/− mice are characterized by retinal neuroinflammation and RGC loss. In this study, we found that AIBP deficiency exacerbated the oxidative stress-induced disruption of mitochondrial dynamics and function in the retina, leading to a further decline in visual function. Mechanistically, AIBP deficiency-induced oxidative stress triggered a reduction in glycogen synthase kinase 3β and dynamin-related protein 1 phosphorylation, optic atrophy type 1 and mitofusin 1 and 2 expression, and oxidative phosphorylation, as well as the activation of mitogen-activated protein kinase (MAPK) in Müller glia dysfunction, leading to cell death and inflammatory responses. In vivo, the administration of recombinant AIBP (rAIBP) effectively protected the structural and functional integrity of retinal mitochondria under oxidative stress conditions and prevented vision loss. In vitro, incubation with rAIBP safeguarded the structural integrity and bioenergetic performance of mitochondria and concurrently suppressed MAPK activation, apoptotic cell death, and inflammatory response in Müller glia. These findings support the possibility that AIBP promotes RGC survival and restores visual function in glaucomatous mice by ameliorating glia-driven mitochondrial dysfunction and neuroinflammation. Full article
Show Figures

Figure 1

19 pages, 14615 KiB  
Article
Citrus Flavanone Effects on the Nrf2-Keap1/GSK3/NF-κB/NLRP3 Regulation and Corticotroph-Stress Hormone Loop in the Old Pituitary
by Marko Miler, Jasmina Živanović, Sanja Kovačević, Nevena Vidović, Ana Djordjevic, Branko Filipović and Vladimir Ajdžanović
Int. J. Mol. Sci. 2024, 25(16), 8918; https://doi.org/10.3390/ijms25168918 - 16 Aug 2024
Cited by 3 | Viewed by 4499
Abstract
Oxidative stress and inflammation are significant causes of aging. At the same time, citrus flavanones, naringenin (NAR), and hesperetin (HES) are bioactives with proven antioxidant and anti-inflammatory properties. Nevertheless, there are still no data about flavanone’s influence and its potential effects on the [...] Read more.
Oxidative stress and inflammation are significant causes of aging. At the same time, citrus flavanones, naringenin (NAR), and hesperetin (HES) are bioactives with proven antioxidant and anti-inflammatory properties. Nevertheless, there are still no data about flavanone’s influence and its potential effects on the healthy aging process and improving pituitary functioning. Thus, using qPCR, immunoblot, histological techniques, and biochemical assays, our study aimed to elucidate how citrus flavanones (15 mg/kg b.m. per os) affect antioxidant defense, inflammation, and stress hormone output in the old rat model. Our results showed that HES restores the redox environment in the pituitary by down-regulating the nuclear factor erythroid 2-related factor 2 (Nrf2) protein while increasing kelch-like ECH-associated protein 1 (Keap1), thioredoxin reductase (TrxR1), and superoxide dismutase 2 (SOD2) protein expression. Immunofluorescent analysis confirmed Nrf2 and Keap1 down- and up-regulation, respectively. Supplementation with NAR increased Keap1, Trxr1, glutathione peroxidase (Gpx), and glutathione reductase (Gr) mRNA expression. Decreased oxidative stress aligned with NLRP3 decrement after both flavanones and glycogen synthase kinase-3 (GSK3) only after HES. The signal intensity of adrenocorticotropic hormone (ACTH) cells did not change, while corticosterone levels in serum decreased after both flavanones. HES showed higher potential than NAR in affecting a redox environment without increasing the inflammatory response, while a decrease in corticosterone level has a solid link to longevity. Our findings suggest that HES could improve and facilitate redox and inflammatory dysregulation in the rat’s old pituitary. Full article
Show Figures

Graphical abstract

16 pages, 3934 KiB  
Article
New Glycotoxin Inhibitor from Sesuvium sesuvioides Mitigates Symptoms of Insulin Resistance and Diabetes by Suppressing AGE-RAGE Axis in Skeletal Muscle
by Safina Ghaffar, Rizwana Sanaullah Waraich, Raha Orfali, Areej Al-Taweel, Hanan Y. Aati, Sonia Kamran and Shagufta Perveen
Molecules 2024, 29(15), 3649; https://doi.org/10.3390/molecules29153649 - 1 Aug 2024
Cited by 1 | Viewed by 1605
Abstract
The current study intended to investigate the role of new natural compounds derived from the Sesuvium sesuvioides plant in mitigating symptoms of diabetes and insulin resistance in the diabetic mice model. Anti-advanced glycation activity, insulin, and adiponectin were quantified by enzyme-linked immunosorbent assay [...] Read more.
The current study intended to investigate the role of new natural compounds derived from the Sesuvium sesuvioides plant in mitigating symptoms of diabetes and insulin resistance in the diabetic mice model. Anti-advanced glycation activity, insulin, and adiponectin were quantified by enzyme-linked immunosorbent assay (ELISA). Glucose uptake was performed using enzymatic fluorescence assay, and glycogen synthesis was measured using PAS staining. Gene and protein expression was assessed using real time PCR (RT-PCR), and immunoblotting and fluorescent microscopy, respectively. The new flavonoid glycoside eupalitin 3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside 1 isolated from S. sesuvioides exhibited anti-AGE activity by reducing human glycated albumin in liver cells. In a diabetic mouse model treated with compound 1, we observed improved glucose tolerance, increased adiponectin levels, and decreased insulin resistance. We also observed alleviated AGEs induced reduction in glucose uptake and restored glycogen synthesis in the compound 1-treated diabetic mice muscles. Exploring the molecular mechanism of action in skeletal muscle tissue of diabetic mice, we found that 1 reduced AGE-induced reactive oxygen species and the inflammatory gene in the muscle of diabetic mice. Additionally, 1 exhibited these effects by reducing the gene and protein expression of receptor for advanced glycation end products (RAGE) and inhibiting protein kinase C (PKC) delta activation. This further led us to demonstrate that compound 1 reduced serine phosphorylation of IRS-1, thereby restoring insulin sensitivity. We conclude that a new flavonoid glycoside from S. sesuvioides could be a therapeutic target for the treatment of symptoms of insulin resistance and diabetes. Full article
Show Figures

Figure 1

Back to TopTop