Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = glyceryl monostearate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2227 KiB  
Article
Cellulose-Based Pickering Emulsion-Templated Edible Oleofoam: A Novel Approach to Healthier Solid-Fat Replacers
by Sang Min Lee, Su Jung Hong, Gye Hwa Shin and Jun Tae Kim
Gels 2025, 11(6), 403; https://doi.org/10.3390/gels11060403 - 28 May 2025
Viewed by 377
Abstract
As health concerns and regulatory pressures over saturated and trans fats grow, there is a growing need for healthier alternatives to traditional solid fats, such as butter and hydrogenated oils, that are still widely used in the food system. In this study, cellulose [...] Read more.
As health concerns and regulatory pressures over saturated and trans fats grow, there is a growing need for healthier alternatives to traditional solid fats, such as butter and hydrogenated oils, that are still widely used in the food system. In this study, cellulose particle-based Pickering emulsions (CP-PEs) were prepared from microcrystalline cellulose and ethylcellulose and then foamed to obtain edible oleofoams (CP-EOs) as a solid-fat replacer. The average size of CP-PE droplets without surfactant was 598 ± 69 nm, as confirmed by confocal and transmission electron microscopy. Foaming with citric acid/NaHCO3 and structuring with ≥6% glyceryl monostearate resulted in CP-EOs with an overrun of 147 ± 4% and volumetric stability for 72 h. Micro-computed tomography showed a uniform microcellular network, while the rheological analysis showed solid-like behavior with a storage modulus higher than butter. Differential scanning calorimetry showed a melting enthalpy similar to unsalted butter (10.1 ± 0.9 J/g). These physicochemical properties demonstrate that CP-EOs can closely mimic the firmness, thermal profile, and mouth-feel of conventional solid fats and may provide a promising solid-fat replacer. Full article
(This article belongs to the Special Issue Food Gels: Gelling Process and Innovative Applications)
Show Figures

Figure 1

13 pages, 3004 KiB  
Article
Crystallization Kinetics of Oleogels Prepared with Essential Oils from Thirteen Spices
by Wei Zhou, Lin Yu and Zihao Wei
Foods 2025, 14(3), 542; https://doi.org/10.3390/foods14030542 - 6 Feb 2025
Cited by 1 | Viewed by 1382
Abstract
In this study, corn oil and essential oils from thirteen spices were used as the oil phase, with glyceryl monostearate (GMS) serving as the gelling agent to prepare the oleogels. The effects of varying the concentrations of the gel additives (2%, 4%, 6%, [...] Read more.
In this study, corn oil and essential oils from thirteen spices were used as the oil phase, with glyceryl monostearate (GMS) serving as the gelling agent to prepare the oleogels. The effects of varying the concentrations of the gel additives (2%, 4%, 6%, and 8%) on the texture, oil retention, and rheological properties of the oleogels were investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results showed that GMS concentration markedly influenced the structure and properties of the gel. Positive correlations were observed between GMS concentration and the results of texture analysis, oil binding capacity, and microscopic morphology of the oleogels. Analyses via DSC and XRD demonstrated that gel formation was attributable to the crystalline network induced by GMS. Rheological assessments revealed that the oleogels exhibited pseudoplastic behavior and commendable thermal sensitivity. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

25 pages, 7754 KiB  
Article
Tailoring Fumaric Acid Delivery: The Role of Surfactant-Enhanced Solid Lipid Microparticles via Spray-Congealing
by Yen-Chiu Tsai, Ling Chen, Maoshen Chen, Yun Ma, Fang Zhong and Fei Liu
Foods 2024, 13(19), 3195; https://doi.org/10.3390/foods13193195 - 8 Oct 2024
Viewed by 1171
Abstract
Fumaric acid, a naturally occurring preservative with antimicrobial properties, has been widely used in the baking industry. However, its direct addition interferes with yeast activity and negatively impacts the gluten structure. This study investigates the potential of spray-congealing as a method for encapsulating [...] Read more.
Fumaric acid, a naturally occurring preservative with antimicrobial properties, has been widely used in the baking industry. However, its direct addition interferes with yeast activity and negatively impacts the gluten structure. This study investigates the potential of spray-congealing as a method for encapsulating fumaric acid within solid lipid microparticles. The selection of lipid carriers and surfactants is critical, so hydrogenated palm stearin, hydrogenated rapeseed oil, and Compritol ATO 888 (glyceryl behenate) were chosen as lipid carriers, and propylene glycol monostearate and glyceryl monolaurate were utilised as surfactants with varying concentrations. Rheological properties, encapsulation efficiency, particle size, moisture content, and thermal behaviour were assessed, along with the release profiles under different temperature conditions simulating the baking process. The findings indicate that the addition of surfactants significantly impacts the viscosity and stability of the molten mixtures, which in turn affects the spray-congealing process and the release of fumaric acid. The temperature-dependent and time-dependent release profiles demonstrate the potential for customising release kinetics to suit specific applications, such as the baking industry. This study may contribute to the development of a controlled-release system that synchronises with the baking process, thereby optimising fumaric acid’s functionality while preserving the quality of baked goods. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

32 pages, 10714 KiB  
Article
Evaluation of Cytotoxicity and Metabolic Profiling of Synechocystis sp. Extract Encapsulated in Nano-Liposomes and Nano-Niosomes Using LC-MS, Complemented by Molecular Docking Studies
by Lamya Azmy, Ibraheem B. M. Ibraheem, Sulaiman A. Alsalamah, Mohammed Ibrahim Alghonaim, Ahmed Zayed, Rehab H. Abd El-Aleam, Soad A. Mohamad, Usama Ramadan Abdelmohsen and Khaled N. M. Elsayed
Biology 2024, 13(8), 581; https://doi.org/10.3390/biology13080581 - 31 Jul 2024
Cited by 2 | Viewed by 2425
Abstract
Liposomes and niosomes can be considered excellent drug delivery systems due to their ability to load all compounds, whether hydrophobic or hydrophilic. In addition, they can reduce the toxicity of the loaded drug without reducing its effectiveness. Synechocystis sp. is a unicellular, freshwater [...] Read more.
Liposomes and niosomes can be considered excellent drug delivery systems due to their ability to load all compounds, whether hydrophobic or hydrophilic. In addition, they can reduce the toxicity of the loaded drug without reducing its effectiveness. Synechocystis sp. is a unicellular, freshwater cyanobacteria strain that contains many bioactive compounds that qualify its use in industrial, pharmaceutical, and many other fields. This study investigated the potential of nano-liposomes (L) and nano-niosomes (N) for delivering Synechocystis sp. extract against cancer cell lines. Four different types of nanoparticles were prepared using a dry powder formulation and ethanol extract of Synechocystis sp. in both nanovesicles (N1 and N2, respectively) and liposomes (L1 and L2, respectively). Analysis of the formed vesicles using zeta analysis, SEM morphological analysis, and visual examination confirmed their stability and efficiency. L1 and L2 in this investigation had effective diameters of 419 and 847 nm, respectively, with PDI values of 0.24 and 0.27. Furthermore, the zeta potentials were found to range from −31.6 mV to −43.7 mV. Regarding N1 and N2, their effective diameters were 541 nm and 1051 nm, respectively, with PDI values of 0.31 and 0.35, and zeta potentials reported from −31.6 mV to −22.2 mV, respectively. Metabolic profiling tentatively identified 22 metabolites (1–22) from the ethanolic extract. Its effect against representative human cancers was studied in vitro, specifically against colon (Caco2), ovarian (OVCAR4), and breast (MCF7) cancer cell lines. The results showed the potential activities of the prepared N1, N2, L1, and L2 against the three cell lines, where L1 had cytotoxicity IC50 values of 19.56, 33.52, and 9.24 µg/mL compared to 26.27, 56.23, and 19.61 µg/mL for L2 against Caco2, OVCAR4, and MCF7, respectively. On the other hand, N1 exhibited IC50 values of 9.09, 11.42, and 2.38 µg/mL, while N2 showed values of 15.57, 18.17, and 35.31 µg/mL against Caco2, OVCAR4, and MCF7, respectively. Meanwhile, the formulations showed little effect on normal cell lines (FHC, OCE1, and MCF10a). All of the compounds were evaluated in silico against the epidermal growth factor receptor tyrosine kinase (EGFR). The molecular docking results showed that compound 21 (1-hexadecanoyl-2-(9Z-hexadecenoyl)-3-(6′-sulfo-alpha-D-quinovosyl)-sn-glycerol), followed by compounds 6 (Sulfoquinovosyl monoacylgycerol), 7 (3-Hydroxymyristic acid), 8 (Glycolipid PF2), 12 (Palmitoleic acid), and 19 (Glyceryl monostearate), showed the highest binding affinities. These compounds formed good hydrogen bond interactions with the key amino acid Lys721 as the co-crystallized ligand. These results suggest that nano-liposomes and nano-niosomes loaded with Synechocystis sp. extract hold promise for future cancer treatment development. Further research should focus on clinical trials, stability assessments, and pharmacological profiles to translate this approach into effective anticancer drugs. Full article
(This article belongs to the Section Biotechnology)
Show Figures

Figure 1

22 pages, 9072 KiB  
Article
Antioxidant Activities of Ethanolic Extracts Obtained from α-Pinene-Containing Plants and Their Use in Cosmetic Emulsions
by Jadwiga Grzeszczak, Agnieszka Wróblewska, Adam Klimowicz, Sylwia Gajewska, Łukasz Kucharski, Zvi C. Koren and Katarzyna Janda-Milczarek
Antioxidants 2024, 13(7), 811; https://doi.org/10.3390/antiox13070811 - 4 Jul 2024
Cited by 6 | Viewed by 2005
Abstract
α-Pinene is the bicyclic, unsaturated terpene hydrocarbon present in many plants. Due to its beneficial chemical properties, this compound is of great interest and has found numerous applications as a raw material in many chemical industries as well as in medicine and cosmetics. [...] Read more.
α-Pinene is the bicyclic, unsaturated terpene hydrocarbon present in many plants. Due to its beneficial chemical properties, this compound is of great interest and has found numerous applications as a raw material in many chemical industries as well as in medicine and cosmetics. The aim of this study was to evaluate the antioxidant activities of ethanolic extracts obtained from plants containing α-pinene and to test the properties of cosmetic emulsions prepared with these extracts. The raw plant materials consisted of fresh parts of Pinus sylvestris L., such as cones, needles, and branches, as well as dried unground and ground pinecones; dried and fresh Rosmarinus officinalis leaves; dried Levisticum officinale leaves; and dried Salvia officinalis L. leaves. The plant materials were individually extracted with 40% (v/v), 70% (v/v), and 96% (v/v) ethanol using ultrasound-assisted extraction (UAE) for 15, 30, or 60 min. This method is a green extraction technique, frequently applied to isolate active substances from plants. For the selected plant materials, Soxhlet extraction with 96% (v/v) ethanol was also performed. The qualitative and quantitative analyses of the components in the selected extracts were performed with gas chromatography coupled with mass spectrometry (GC-MS). The antioxidant activities of the extracts were evaluated with the DPPH and ABTS methods. The extracts of three plant materials with the highest antioxidant activities—dried Rosmarinus officinalis leaves, dried Salvia officinalis L. leaves, and dried and ground Pinus sylvestris L. cones—were selected to be incorporated in cosmetic emulsions containing glyceryl monostearate and Olivem 1000 as emulsifiers. The stabilities and antioxidant activities of the emulsions were evaluated. Moreover, the antimicrobial properties of the emulsions using microbiological tests were also determined. The findings suggest that the prepared emulsions are stable cosmetic products with a high antioxidant potential. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

14 pages, 6562 KiB  
Article
Fabrication and Stability Improvement of Monoglyceride Oleogel/Polyglycerol Polyricinoleate-Stabilized W/O High Internal Phase Pickering Emulsions
by Yingzhu Zhang, Jinqi Xu, Jinhua Gong and Yan Li
Foods 2024, 13(12), 1944; https://doi.org/10.3390/foods13121944 - 20 Jun 2024
Cited by 3 | Viewed by 1954
Abstract
To decrease the lipid content in water-in-oil (W/O) emulsions, high internal phase Pickering W/O emulsions (HIPPE) were fabricated using magnetic stirring using a combination of monoglyceride (MAG) oleogel and polyglycerol polyacrylate oleate (PGPR) as stabilizers. Effects of MAGs (glyceryl monostearate-GMS, glycerol monolaurate-GML and [...] Read more.
To decrease the lipid content in water-in-oil (W/O) emulsions, high internal phase Pickering W/O emulsions (HIPPE) were fabricated using magnetic stirring using a combination of monoglyceride (MAG) oleogel and polyglycerol polyacrylate oleate (PGPR) as stabilizers. Effects of MAGs (glyceryl monostearate-GMS, glycerol monolaurate-GML and glycerol monocaprylate-GMC) and internal phase components on the formation and properties of HIPPEs were investigated. The results showed that milky-white stabilized W/O HIPPE with up to 85 wt% aqueous phase content was successfully prepared, and the droplet interfaces presented a network of MAG crystals, independent of the MAG type. All HIPPEs exhibited great stability under freeze–thaw cycles but were less plastic. Meanwhile, GML-oleogel-based HIPPEs had larger particle size and were less thermal stable than GMS and GMC-based HIPPEs. Compared to guar gum, the internal phase components of sodium chloride and sucrose were more effective in reducing the particle size of HIPPEs, improving their stability and plasticity, and stabilizing them during 100-day storage. HIPPEs presented great spreadability, ductility and plasticity after whipping treatment. This knowledge provides a new perspective on the use of oleogels as co-stabilizers for the formation of W/O HIPPEs, which can be used as a potential substitute for creams. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

29 pages, 3834 KiB  
Article
Cannabidiol-Loaded Solid Lipid Nanoparticles Ameliorate the Inhibition of Proinflammatory Cytokines and Free Radicals in an In Vitro Inflammation-Induced Cell Model
by Khent Primo Alcantara, John Wilfred T. Malabanan, Nonthaneth Nalinratana, Worathat Thitikornpong, Pornchai Rojsitthisak and Pranee Rojsitthisak
Int. J. Mol. Sci. 2024, 25(9), 4744; https://doi.org/10.3390/ijms25094744 - 26 Apr 2024
Cited by 8 | Viewed by 3242
Abstract
Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor [...] Read more.
Cannabidiol (CBD) is a non-psychoactive compound derived from Cannabis sativa. It has demonstrated promising effects in combating inflammation and holds potential as a treatment for the progression of chronic inflammation. However, the clinical application of CBD is limited due to its poor solubility and bioavailability. This study introduces an effective method for preparing CBD-loaded solid lipid nanoparticles (CBD-SLNs) using a combination of low-energy hot homogenization and ultrasonication. We enhanced this process by employing statistical optimization with response surface methodology (RSM). The optimized CBD-SLN formulation utilizes glyceryl monostearate as the primary lipid component of the nanocarrier. The CBD-SLN formulation is screened as a potential tool for managing chronic inflammation. Stable, uniformly dispersed spherical nanoparticles with a size of 123 nm, a surface charge of −32.1 mV, an encapsulation efficiency of 95.16%, and a drug loading of 2.36% were obtained. The CBD-SLNs exhibited sustained release properties, ensuring prolonged and controlled CBD delivery, which could potentially amplify its therapeutic effects. Additionally, we observed that CBD-SLNs significantly reduced both reactive oxygen and nitrogen species and proinflammatory cytokines in chondrocyte and macrophage cell lines, with these inhibitory effects being more pronounced than those of free CBD. In conclusion, CBD-SLNs demonstrated superiority over free CBD, highlighting its potential as an effective delivery system for CBD. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science)
Show Figures

Graphical abstract

12 pages, 3738 KiB  
Article
Mannose-Decorated Solid-Lipid Nanoparticles for Alveolar Macrophage Targeted Delivery of Rifampicin
by Hriday Bera, Caizhu Zhao, Xidong Tian, Dongmei Cun and Mingshi Yang
Pharmaceutics 2024, 16(3), 429; https://doi.org/10.3390/pharmaceutics16030429 - 20 Mar 2024
Cited by 8 | Viewed by 3006
Abstract
Alveolar macrophages play a vital role in a variety of lung diseases, including tuberculosis. Thus, alveolar macrophage targeted anti-tubercular drug delivery through nanocarriers could improve its therapeutic response against tuberculosis. The current study aimed at exploring the efficacy of glyceryl monostearate (GMS)-based solid-lipid [...] Read more.
Alveolar macrophages play a vital role in a variety of lung diseases, including tuberculosis. Thus, alveolar macrophage targeted anti-tubercular drug delivery through nanocarriers could improve its therapeutic response against tuberculosis. The current study aimed at exploring the efficacy of glyceryl monostearate (GMS)-based solid-lipid nanoparticles (SLNs) and their mannose functionalized forms on the alveolar macrophage targeting ability of an anti-tubercular model drug, rifampicin (Rif). Rif-loaded SLNs were accomplished by the solvent diffusion method. These carriers with unimodal particle size distribution (~170 nm) were further surface-modified with mannose via Schiff-base reaction, leading to slight enhancement of particle diameter and a decline of drug loading capacity. The encapsulated Rif, which was molecularly dispersed within the matrices as indicated by their XRD patterns, was eluted in a sustained manner with an initial burst release effect. The uptake efficiency of mannose-modified SLNs was remarkably higher than that of corresponding native forms on murine macrophage Raw 264.7 cells and human lung adenocarcinoma A549 cells. Eventually, the mannose-modified SLNs showed a greater cytotoxicity on Raw 264.7 and A549 cells relative to their unmodified forms. Overall, our study demonstrated that mannose modification of SLNs had an influence on their uptake by alveolar macrophages, which could provide guidance for the future development of alveolar macrophage targeted nanoformulations. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

19 pages, 2205 KiB  
Systematic Review
Navigating the Nose-to-Brain Route: A Systematic Review on Lipid-Based Nanocarriers for Central Nervous System Disorders
by Edoardo Agosti, Marco Zeppieri, Sara Antonietti, Luigi Battaglia, Tamara Ius, Caterina Gagliano, Marco Maria Fontanella and Pier Paolo Panciani
Pharmaceutics 2024, 16(3), 329; https://doi.org/10.3390/pharmaceutics16030329 - 27 Feb 2024
Cited by 8 | Viewed by 3836
Abstract
Background: The blood–brain barrier (BBB) regulates brain substance entry, posing challenges for treating brain diseases. Traditional methods face limitations, leading to the exploration of non-invasive intranasal drug delivery. This approach exploits the direct nose-to-brain connection, overcoming BBB restrictions. Intranasal delivery enhances drug bioavailability, [...] Read more.
Background: The blood–brain barrier (BBB) regulates brain substance entry, posing challenges for treating brain diseases. Traditional methods face limitations, leading to the exploration of non-invasive intranasal drug delivery. This approach exploits the direct nose-to-brain connection, overcoming BBB restrictions. Intranasal delivery enhances drug bioavailability, reduces dosage, and minimizes systemic side effects. Notably, lipid nanoparticles, such as solid lipid nanoparticles and nanostructured lipid carriers, offer advantages like improved stability and controlled release. Their nanoscale size facilitates efficient drug loading, enhancing solubility and bioavailability. Tailored lipid compositions enable optimal drug release, which is crucial for chronic brain diseases. This review assesses lipid nanoparticles in treating neuro-oncological and neurodegenerative conditions, providing insights for effective nose-to-brain drug delivery. Methods: A systematic search was conducted across major medical databases (PubMed, Ovid MEDLINE, and Scopus) up to 6 January 2024. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to “lipid nanoparticles”, “intranasal administration”, “neuro-oncological diseases”, and “neurodegenerative disorders”. This review consists of studies in vitro, in vivo, or ex vivo on the intranasal administration of lipid-based nanocarriers for the treatment of brain diseases. Results: Out of the initial 891 papers identified, 26 articles met the eligibility criteria after a rigorous analysis. The exclusion of 360 articles was due to reasons such as irrelevance, non-reporting selected outcomes, the article being a systematic literature review or meta-analysis, and lack of method/results details. This systematic literature review, focusing on nose-to-brain drug delivery via lipid-based nanocarriers for neuro-oncological, neurodegenerative, and other brain diseases, encompassed 60 studies. A temporal distribution analysis indicated a peak in research interest between 2018 and 2020 (28.3%), with a steady increase over time. Regarding drug categories, Alzheimer’s disease was prominent (26.7%), followed by antiblastic drugs (25.0%). Among the 65 drugs investigated, Rivastigmine, Doxorubicin, and Carmustine were the most studied (5.0%), showcasing a diverse approach to neurological disorders. Notably, solid lipid nanoparticles (SLNs) were predominant (65.0%), followed by nanostructured lipid carriers (NLCs) (28.3%), highlighting their efficacy in intranasal drug delivery. Various lipids were employed, with glyceryl monostearate being prominent (20.0%), indicating preferences in formulation. Performance assessment assays were balanced, with in vivo studies taking precedence (43.3%), emphasizing the translation of findings to complex biological systems for potential clinical applications. Conclusions: This systematic review reveals the transformative potential of intranasal lipid nanoparticles in treating brain diseases, overcoming the BBB. Positive outcomes highlight the effectiveness of SLNs and NLCs, which are promising new approaches for ailments from AD to stroke and gliomas. While celebrating progress, addressing challenges like nanoparticle toxicity is also crucial. Full article
Show Figures

Figure 1

16 pages, 4502 KiB  
Article
Influence of Glyceryl Monostearate Adsorption on the Lubrication Behavior of a Slider Bearing
by Qiaoni Xu, Zhaogang Jing, Shijie Du, Feng Guo and Ruitao Mu
Lubricants 2024, 12(3), 67; https://doi.org/10.3390/lubricants12030067 - 23 Feb 2024
Cited by 1 | Viewed by 2141
Abstract
Glyceryl monostearate (GMS) was used as an organic friction modifier (OFM) and added to the base oil (PAO10, polyα-olefin) in this study. The film thickness and friction coefficient of the base oil added with GMS (PAO10G) under different slider inclinations and loads were [...] Read more.
Glyceryl monostearate (GMS) was used as an organic friction modifier (OFM) and added to the base oil (PAO10, polyα-olefin) in this study. The film thickness and friction coefficient of the base oil added with GMS (PAO10G) under different slider inclinations and loads were investigated experimentally by using a slider-on-disc contact lubricant film measurement system, and the effect of the adsorption of GMS on the friction behavior of lubricant was studied. Contact angle hysteresis (CAH) was used to evaluate the wettability of the solid–liquid interface, and its correlation with the coefficient of friction was analyzed. The results show that CAH is in good agreement with the wettability of the solid–liquid interface. Compared with the base oil, the wettability of POA10G is weak, which can effectively reduce the coefficient of friction. However, different from the classical lubrication theory, the film thickness of PAO10G is higher than that of PAO10; this unusual phenomenon is preliminarily explained by the interface slippage in this paper. Full article
Show Figures

Figure 1

19 pages, 4204 KiB  
Article
Sulconazole-Loaded Solid Lipid Nanoparticles for Enhanced Antifungal Activity: In Vitro and In Vivo Approach
by Ayesha Samee, Faisal Usman, Tanveer A. Wani, Mudassir Farooq, Hamid Saeed Shah, Ibrahim Javed, Hassan Ahmad, Riffat Khan, Seema Zargar and Safina Kausar
Molecules 2023, 28(22), 7508; https://doi.org/10.3390/molecules28227508 - 9 Nov 2023
Cited by 16 | Viewed by 2973
Abstract
Solid lipid nanoparticles (SLNs) have the advantages of a cell-specific delivery and sustained release of hydrophobic drugs that can be exploited against infectious diseases. The topical delivery of hydrophobic drugs needs pharmaceutical strategies to enhance drug permeation, which is a challenge faced by [...] Read more.
Solid lipid nanoparticles (SLNs) have the advantages of a cell-specific delivery and sustained release of hydrophobic drugs that can be exploited against infectious diseases. The topical delivery of hydrophobic drugs needs pharmaceutical strategies to enhance drug permeation, which is a challenge faced by conventional formulations containing a drug suspended in gel, creams or ointments. We report the fabrication and optimization of SLNs with sulconazole (SCZ) as a model hydrophobic drug and then a formulation of an SLN-based topical gel against fungal infections. The SLNs were optimized through excipients of glyceryl monostearate and Phospholipon® 90 H as lipids and tween 20 as a surfactant for its size, drug entrapment and sustained release and resistance against aggregation. The SCZ-SLNs were physically characterized for their particle size (89.81 ± 2.64), polydispersity index (0.311 ± 0.07), zeta potential (−26.98 ± 1.19) and encapsulation efficiency (86.52 ± 0.53). The SCZ-SLNs showed sustained release of 85.29% drug at the 12 h timepoint. The TEM results demonstrated spherical morphology, while DSC, XRD and FTIR showed the compatibility of the drug inside SLNs. SCZ-SLNs were incorporated into a gel using carbopol and were further optimized for their rheological behavior, pH, homogeneity and spreadability on the skin. The antifungal activity against Candida albicans and Trichophyton rubrum was increased in comparison to a SCZ carbopol-based gel. In vivo antifungal activity in rabbits presented faster healing of skin fungal infections. The histopathological examination of the treated skin from rabbits presented restoration of the dermal architecture. In summary, the approach of formulating SLNs into a topical gel presented an advantageous drug delivery system against mycosis. Full article
Show Figures

Figure 1

16 pages, 1541 KiB  
Article
Green Processing of Black Raspberry Pomace: Application of Sonotrode-Based Extraction Technique and Particles from Gas-Saturated Solutions (PGSS) Technology
by Nataša Nastić, Zorana Mutavski, Jelena Živković, Rita Ambrus, Naiara Fernández, Nebojša Menković and Senka Vidović
Foods 2023, 12(20), 3867; https://doi.org/10.3390/foods12203867 - 22 Oct 2023
Cited by 3 | Viewed by 2202
Abstract
The aim of this study was to develop, for the first time, anthocyanin-enriched fractions from black raspberry pomace (BRP) using ultrasound-assisted extraction (UAE) via sonotrode and the Particles from Gas-Saturated Solutions (PGSS) process. UAEs with different amplitudes and sonication times were evaluated and [...] Read more.
The aim of this study was to develop, for the first time, anthocyanin-enriched fractions from black raspberry pomace (BRP) using ultrasound-assisted extraction (UAE) via sonotrode and the Particles from Gas-Saturated Solutions (PGSS) process. UAEs with different amplitudes and sonication times were evaluated and showed relevant effects on the yields of target analytes. The raspberry pomace extracts were formulated in a powder form by PGSS using glyceryl monostearate as a carrier at different extract-to-carrier ratios of 1:11, 1:5, and 1:3. The effects of all variables were evaluated in terms of extraction yield, total phenolic content, and encapsulation yield. UAE was strongly affected by amplitude, and the highest amplitude (100%) provided the best results for extraction yield and total phenolics. HPLC of UAE extracts and powders was utilized for quantification of polyphenol compounds, showing cyanidin-3-rutinoside as a main compound, followed by cyanidin-3-glucoside, rutin, ellagic acid, and gallic acid. These results show that these time-efficient and high-performance techniques enable the production of natural fractions from industrial BRP with acceptable characteristics to be used for the development of nutraceuticals and different food formulations. Full article
(This article belongs to the Special Issue Green Extraction and Valorization of By-Products from Food Processing)
Show Figures

Graphical abstract

20 pages, 20959 KiB  
Article
Development of A Nanostructured Lipid Carrier-Based Drug Delivery Strategy for Apigenin: Experimental Design Based on CCD-RSM and Evaluation against NSCLC In Vitro
by Xiaoxue Wang, Jinli Liu, Yufei Ma, Xinyu Cui, Cong Chen, Guowei Zhu, Yue Sun and Lei Tong
Molecules 2023, 28(18), 6668; https://doi.org/10.3390/molecules28186668 - 17 Sep 2023
Cited by 8 | Viewed by 2424
Abstract
Non-small-cell lung cancer (NSCLC) is the main cause of cancer-related deaths worldwide, with a low five-year survival rate, posing a serious threat to human health. In recent years, the delivery of antitumor drugs using a nanostructured lipid carrier (NLC) has become a subject [...] Read more.
Non-small-cell lung cancer (NSCLC) is the main cause of cancer-related deaths worldwide, with a low five-year survival rate, posing a serious threat to human health. In recent years, the delivery of antitumor drugs using a nanostructured lipid carrier (NLC) has become a subject of research. This study aimed to develop an apigenin (AP)-loaded nanostructured lipid carrier (AP-NLC) by melt sonication using glyceryl monostearate (GMS), glyceryl triacetate, and poloxamer 188. The optimal prescription of AP-NLC was screened by central composite design response surface methodology (CCD-RSM) based on a single-factor experiment using encapsulation efficiency (EE%) and drug loading (DL%) as response values and then evaluated for its antitumor effects on NCI-H1299 cells. A series of characterization analyses of AP-NLC prepared according to the optimal prescription were carried out using transmission electron microscopy (TEM), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). Subsequent screening of the lyophilization protectants revealed that mannitol could better maintain the lyophilization effect. The in vitro hemolysis assay of this formulation indicated that it may be safe for intravenous injection. Moreover, AP-NLC presented a greater ability to inhibit the proliferation, migration, and invasion of NCI-H1299 cells compared to AP. Our results suggest that AP-NLC is a safe and effective nano-delivery vehicle that may have beneficial potential in the treatment of NSCLC. Full article
Show Figures

Figure 1

15 pages, 3503 KiB  
Article
Ocular Delivery of Bimatoprost-Loaded Solid Lipid Nanoparticles for Effective Management of Glaucoma
by Sandeep Divate Satyanarayana, Amr Selim Abu Lila, Afrasim Moin, Ehssan H. Moglad, El-Sayed Khafagy, Hadil Faris Alotaibi, Ahmad J. Obaidullah and Rompicherla Narayana Charyulu
Pharmaceuticals 2023, 16(7), 1001; https://doi.org/10.3390/ph16071001 - 13 Jul 2023
Cited by 29 | Viewed by 2925
Abstract
Glaucoma is a progressive optic neuropathy characterized by a rise in the intraocular pressure (IOP) leading to optic nerve damage. Bimatoprost is a prostaglandin analogue used to reduce the elevated IOP in patients with glaucoma. The currently available dosage forms for Bimatoprost suffer [...] Read more.
Glaucoma is a progressive optic neuropathy characterized by a rise in the intraocular pressure (IOP) leading to optic nerve damage. Bimatoprost is a prostaglandin analogue used to reduce the elevated IOP in patients with glaucoma. The currently available dosage forms for Bimatoprost suffer from relatively low ocular bioavailability. The objective of this study was to fabricate and optimize solid lipid nanoparticles (SLNs) containing Bimatoprost for ocular administration for the management of glaucoma. Bimatoprost-loaded SLNs were fabricated by solvent evaporation/ultrasonication technique. Glyceryl Monostearate (GMS) was adopted as solid lipid and poloxamer 407 as surfactant. Optimization of SLNs was conducted by central composite design. The optimized formulation was assessed for average particle size, entrapment efficiency (%), zeta potential, surface morphology, drug release study, sterility test, isotonicity test, Hen’s egg test-chorioallantoic membrane (HET-CAM) test and histopathology studies. The optimized Bimatoprost-loaded SLNs formulation had an average size of 183.3 ± 13.3 nm, zeta potential of −9.96 ± 1.2 mV, and encapsulation efficiency percentage of 71.8 ± 1.1%. Transmission electron microscopy (TEM) study revealed the nearly smooth surface of formulated particles with a nano-scale size range. In addition, SLNs significantly sustained Bimatoprost release for up to 12 h, compared to free drug (p < 005). Most importantly, HET-CAM test nullified the irritancy of the formulation was verified its tolerability upon ocular use, as manifested by a significant reduction in mean irritation score, compared to positive control (1% sodium dodecyl sulfate; p < 0.001). Histopathology study inferred the absence of any signs of cornea tissue damage upon treatment with Bimatoprost optimized formulation. Collectively, it was concluded that SLNs might represent a viable vehicle for enhancing the corneal permeation and ocular bioavailability of Bimatoprost for the management of glaucoma. Full article
(This article belongs to the Special Issue Current Insights on Lipid-Based Nanosystems 2023)
Show Figures

Figure 1

28 pages, 15070 KiB  
Article
Statistically Optimized Tacrolimus and Thymoquinone Co-Loaded Nanostructured Lipid Carriers Gel for Improved Topical Treatment of Psoriasis
by Meraj Alam, Md. Rizwanullah, Showkat R. Mir and Saima Amin
Gels 2023, 9(7), 515; https://doi.org/10.3390/gels9070515 - 25 Jun 2023
Cited by 20 | Viewed by 3210
Abstract
The aim of this investigation was to develop and analyze a tacrolimus and thymoquinone co-loaded nanostructured lipid carriers (TAC-THQ-NLCs)-based nanogel as a new combinatorial approach for the treatment of psoriasis. The NLCs were formulated by an emulsification-solvent-evaporation technique using glyceryl monostearate, Capryol 90 [...] Read more.
The aim of this investigation was to develop and analyze a tacrolimus and thymoquinone co-loaded nanostructured lipid carriers (TAC-THQ-NLCs)-based nanogel as a new combinatorial approach for the treatment of psoriasis. The NLCs were formulated by an emulsification-solvent-evaporation technique using glyceryl monostearate, Capryol 90 (oil), and a mixture of Tween 80 and Span 20 as a solid lipid, liquid lipid, and surfactant, respectively. Their combination was optimized using a three-factor and three-level Box–Behnken design (33-BBD). The optimized TAC-THQ-NLCs were observed to be smooth and spherical with a particle size of 144.95 ± 2.80 nm, a polydispersity index of 0.160 ± 0.021, a zeta potential of −29.47 ± 1.9 mV, and an entrapment efficiency of >70% for both drugs. DSC and PXRD studies demonstrated the amorphous state of TAC and THQ in the lipid matrix of the NLCs. An FTIR analysis demonstrated the excellent compatibility of the drugs with the excipients without interactions. The TAC-THQ-NLC-based nanogel (abbreviated as TAC-THQ-NG) exhibited a good texture profile and good spreadability. The in vitro release study demonstrated a sustained drug release for 24 h from the TAC-THQ-NG that followed the Korsmeyer–Peppas kinetic model with a Fickian diffusion mechanism. Moreover, the TAC-THQ-NG revealed significantly higher dose-dependent toxicity against an HaCaT cell line compared to a TAC-THQ suspension gel (abbreviated as TAC-THQ-SG). Furthermore, the developed formulations demonstrated antioxidant activity comparable to free THQ. Confocal microscopy revealed improved permeation depth of the dye-loaded nanogel in the skin compared to the suspension gel. Based on these findings, it was concluded that TAC-THQ-NG is a promising combinatorial treatment approach for psoriasis. Full article
(This article belongs to the Special Issue Gel-Based Materials: Preparations and Characterization)
Show Figures

Graphical abstract

Back to TopTop