Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = glutamic oxaloacetic transaminase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1111 KiB  
Article
Improvement of Bacillus thuringiensis Protein Contents with Increased Nitrogen Fertilizer Application in Gossypium hirsutum
by Yuting Liu, Fuqin Zhou, Mao Hong, Shaoyang Wang, Yuan Li, Shu Dong, Yuan Chen, Dehua Chen and Xiang Zhang
Agronomy 2025, 15(7), 1730; https://doi.org/10.3390/agronomy15071730 - 18 Jul 2025
Viewed by 282
Abstract
The insect resistance expression of Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) is unstable due to temporal and spatial variations in the Bt protein content in different organs and growth stages. The aim of this study was to improve the Bt protein [...] Read more.
The insect resistance expression of Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) is unstable due to temporal and spatial variations in the Bt protein content in different organs and growth stages. The aim of this study was to improve the Bt protein content in cotton flowers and investigate the underlying physiological mechanism using biochemical analytical methods. In this study, a split-plot design with three replications was used. The main plots included two Bt cotton cultivars (a conventional cultivar, Sikang1 (S1), and a hybrid cultivar, Sikang3 (S3)), while five soil nitrogen application levels (CK (control check): normal level; N1: 125% of the CK; N2: 150% of the CK; N3: 175% of the CK; N4: 200% of the CK) constituted the subplots. The Bt protein content and related nitrogen metabolism parameters were measured. We found that the Bt protein content increased and then decreased with increasing nitrogen rates. It reached its maximum at N3, with significant increases of 71.86% in 2021 and 39.36% in 2022 compared to the CK. Correlation analysis indicated that the Bt protein content was significantly positively related to the soluble protein and free amino acid contents, as well as the GPT (glutamic pyruvic transaminase), GOT (glutamic oxaloacetic transaminase), GS (glutamine synthetase) and GOGAT (glutamate synthetase) activities. On the other hand, negative correlations were found between the Bt protein content and protease and peptidase activities. In addition, stepwise regression and path analysis indicated that the increased Bt protein content was mainly due to the enhanced GS and GOGAT activities. In summary, appropriately increasing nitrogen fertilizer application is a practical way to increase flower Bt protein content and insecticidal efficacy of Bt cotton. These findings provide an actionable agronomic strategy for sustaining Bt expression during the critical flowering period. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 4468 KiB  
Article
Integrated Amino Acid Profiling and 4D-DIA Proteomics Reveal Protein Quality Divergence and Metabolic Adaptation in Cordyceps Species
by Chuyu Tang, Yuejun Fan, Tao Wang, Jie Wang, Mengjun Xiao, Min He, Xiyun Chang, Yuling Li and Xiuzhang Li
J. Fungi 2025, 11(5), 365; https://doi.org/10.3390/jof11050365 - 8 May 2025
Viewed by 847
Abstract
To explore the differences in protein quality among classic medicinal entomopathogenic fungi and to evaluate their metabolic adaptability, we analyzed the amino acid composition and proteomic characteristics of Cordyceps sinensis (CS), Cordyceps militaris (CM), and Cordyceps cicadae (CC). Quantitative analysis showed CM contained [...] Read more.
To explore the differences in protein quality among classic medicinal entomopathogenic fungi and to evaluate their metabolic adaptability, we analyzed the amino acid composition and proteomic characteristics of Cordyceps sinensis (CS), Cordyceps militaris (CM), and Cordyceps cicadae (CC). Quantitative analysis showed CM contained the highest crude protein and lysine, methionine, threonine, and valine. CS adapted to high-altitude hypoxia and exhibited lower protein but elevated leucine, isoleucine, and histidine contents, which may contribute to membrane stabilization and oxidative stress resistance. CC displayed higher non-essential amino acids such as arginine, proline, and tyrosine, reflecting active nitrogen metabolism. Four-dimensional data-independent acquisition (4D-DIA) proteomics identified 495 differentially expressed proteins (DEPs). Compared with CS, CM and CC displayed upregulated glutamate oxaloacetate transaminases 2 (GOT2), glutamate dehydrogenase (GDH), and argininosuccinate synthase 1 (ASS1) coordinately regulate nitrogen flux through the alanine-aspartate-glutamate metabolic network and urea cycle, supporting metabolic intermediate replenishment for energy metabolism. The upregulation of branched-chain keto acid dehydrogenase E1 subunit alpha (BCKDHA) and acyl-CoA dehydrogenase short/branched chain (ACADSB) in CM and CC facilitated the integration of branched-chain amino acid catabolism with the TCA cycle, explaining species-specific differences in protein content. This study presents the first application of 4D-DIA proteomics to compare CS, CM, and CC, providing insights into quality divergence mechanisms in medicinal fungi. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics)
Show Figures

Figure 1

15 pages, 2625 KiB  
Article
Effects of Probiotic-Fermented Chinese Herb on Immune Response and Growth Performance in Common Carp (Cyprinus carpio)
by Wenzheng Zou, Xuanxuan Huang, Fang Han and Zhongqin Li
Fishes 2025, 10(5), 196; https://doi.org/10.3390/fishes10050196 - 26 Apr 2025
Viewed by 619
Abstract
This study investigated the effects of fermented Chinese herb (FCH) on the growth indices, leukocyte activity, and biochemical indices of carp (Cyprinus carpio). Astragalus membranaceus (AM), Pericarpium Citri Reticulatae (PCR), and Glycyrrhizae Radix et Rhizoma (GRR) as feed additives enhance immune [...] Read more.
This study investigated the effects of fermented Chinese herb (FCH) on the growth indices, leukocyte activity, and biochemical indices of carp (Cyprinus carpio). Astragalus membranaceus (AM), Pericarpium Citri Reticulatae (PCR), and Glycyrrhizae Radix et Rhizoma (GRR) as feed additives enhance immune function, promote growth, and exert anti-inflammatory effects, respectively. Therefore, this study investigated the effects of co-fermented blends of these three herbs on growth performance and related parameters in common carp. By adding 2%, 5%, and 10% of the FCH to co-incubate with carp leukocytes, the results show that all three experimental treatments could enhance the respiratory burst activity and phagocytic activity of carp leukocytes. After 28 days of feeding with basal feed supplemented with 2%, 5%, and 10% (w/v) of the FCH, the weight gain rate and specific growth rate of carp were significantly higher than those of the control treatment without additives (ANOVA, p < 0.05), with the 5% treatment showing the highest. The activities of intestinal digestive enzymes were significantly increased (ANOVA, p < 0.05). On the 21st day, the activities of amylase (AMS), lipase (LPS), and chymotrypsin were increased compared to the control treatment. The 5% and 10% treatments showed significantly higher intestinal digestive enzyme activities compared to the 2% treatment. The serum superoxide dismutase (SOD) levels in both the control and experimental treatments initially increased and then decreased, with all three experimental treatments having higher levels than the control treatment. The activities of liver glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) in the experimental treatments showed no significant changes compared to the control treatment (ANOVA, p > 0.05). However, the serum GPT activity in the 5% treatment was significantly lower than that of the control treatment (ANOVA, p < 0.05), while no significant differences were observed in the other treatments. The results indicate that adding 2~10% of FCH to carp feed can improve intestinal digestion, enhance phagocytic activity and the body’s antioxidant defense capabilities, and effectively promote the growth of carp. It can significantly improve farming efficiency and economic benefits, reduce dependence on chemical drugs, and lower environmental pollution, showing good application prospects in production. Full article
(This article belongs to the Special Issue Intestinal Health of Aquatic Organisms)
Show Figures

Figure 1

30 pages, 2381 KiB  
Article
Effects of Dietary Gamma-Aminobutyric Acid (GABA) Inclusion on Acute Temperature Stress Responses in Juvenile Olive Flounder (Paralichthys olivaceus)
by Abayomi Oladimeji Ogun, Haham Kim, Sooa Yoon, Suhyun Lee, Hyuncheol Jeon, Deni Aulia, Junhyeok Hur and Seunghyung Lee
Animals 2025, 15(6), 809; https://doi.org/10.3390/ani15060809 - 12 Mar 2025
Cited by 1 | Viewed by 1252
Abstract
This study investigated the potential of dietary gamma-aminobutyric acid (GABA) inclusion to mitigate acute temperature stress impacting the physiological resilience of juvenile olive flounder (Paralichthys olivaceus). A total of 360 juvenile fish, with an average initial weight of 12.97 ± 0.1 [...] Read more.
This study investigated the potential of dietary gamma-aminobutyric acid (GABA) inclusion to mitigate acute temperature stress impacting the physiological resilience of juvenile olive flounder (Paralichthys olivaceus). A total of 360 juvenile fish, with an average initial weight of 12.97 ± 0.1 g (mean ± SEM), were randomly assigned in triplicate to 18 tanks (20 fish per tank) and reared at 19.5 °C for 8 weeks, with bi-monthly collection of growth performance data. The fish were fed one of six experimental diets: control (GABA74), 174 ppm of GABA (GABA174), 275 ppm of GABA (GABA275), 396 ppm of GABA (GABA396), 476 ppm of GABA (GABA476), and 516 ppm of GABA (GABA516). At the end of the trial, one group of fish was subjected to lethal temperature stress (31 °C) for 48 h, while another was exposed to acute temperature stress (29 °C) for 6 h. Growth performance remained relatively stable across all inclusion levels (p > 0.05), with the final body weight (FBW) ranging from 48.2 ± 0.3 g (GABA174) to 50.3 ± 0.6 g (GABA516) and the feed conversion ratio (FCR) varying between 2.06 ± 0.07 (GABA396) and 2.35 ± 0.07 (control). There were no significant differences in average whole-body composition across all dietary treatments, with moisture content ranging from 74.8 to 75.0%, crude protein from 17.8 to 18.2%, crude lipid from 2.89 to 3.15%, and crude ash from 3.62 to 3.80%. Similarly, there were no significant differences in cumulative survival rates during lethal temperature exposure between the GABA-supplemented groups and the control group, with an average of 28.5 ± 4.6%. Additionally, GABA inclusion did not significantly alter plasma-free amino acid profiles, antioxidant enzyme activities, or immune functions (p > 0.05). However, temperature significantly reduced the levels of superoxide dismutase (SOD) from 3.34 ± 0.17 to 2.29 ± 0.36 µg/mL and increased the levels of glutamate oxaloacetate transaminase (GOT) from 17.1 ± 0.8 to 46.3 ± 6.2 U/L, glutamate pyruvate transaminase (GPT) from 14.4 ± 0.6 to 30.2 ± 2.1 U/L, glucose (GLU) from 13.3 ± 0.5 to 68.7 ± 7.7 mg/dL, total protein (TP) from 2.94 ± 0.00 to 3.21 ± 0.1 g/dL, and cortisol from 5001 ± 147 to 6395 ± 194 ng/mL. Furthermore, no significant changes were observed in the expression of key stress-related genes, including heat shock proteins (hsp60, hsp70, and hsp90) and the warm water acclimation-related gene wap65. This study establishes the safety of GABA as a dietary inclusion for olive flounder and highlights its potential to enhance stress resilience in aquaculture. However, the effectiveness of GABA-based interventions could depend on critical factors such as dosage, stress duration, and species-specific responses. Our findings highlight the need for further research to optimize GABA inclusion strategies, particularly with consideration for long-term physiological impacts. Full article
Show Figures

Figure 1

33 pages, 6032 KiB  
Article
Effects of Low-Temperature Stress During the Grain-Filling Stage on Carbon–Nitrogen Metabolism and Grain Yield Formation in Rice
by Huimiao Ma, Yan Jia, Weiqiang Wang, Jin Wang, Detang Zou, Jingguo Wang, Weibin Gong, Yiming Han, Yuxiang Dang, Jing Wang, Ziming Wang, Qianru Yuan, Yu Sun, Xiannan Zeng, Shiqi Zhang and Hongwei Zhao
Agronomy 2025, 15(2), 417; https://doi.org/10.3390/agronomy15020417 - 7 Feb 2025
Cited by 4 | Viewed by 1218
Abstract
Interactions between carbon and nitrogen metabolism are essential for balancing source–sink dynamics in plants. Frequent cold stress disrupts these metabolic processes in rice and reduces grain yield. Two rice cultivars (DN428: cold-tolerant; SJ10: cold-sensitive) were subjected to 19 °C low-temperature stress at full-heading [...] Read more.
Interactions between carbon and nitrogen metabolism are essential for balancing source–sink dynamics in plants. Frequent cold stress disrupts these metabolic processes in rice and reduces grain yield. Two rice cultivars (DN428: cold-tolerant; SJ10: cold-sensitive) were subjected to 19 °C low-temperature stress at full-heading for varying lengths of time to analyze the effects on leaf and grain metabolism. The objective was to track carbon–nitrogen flow and identify factors affecting grain yield. Low-temperature stress significantly reduced the activity of nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), glutamate dehydrogenase (GDH), glutamic oxaloacetic transaminase (GOT), and glutamic pyruvic transaminase (GPT), in functional leaves compared to the control. This reduction decreased nitrogen accumulation, inhibited chlorophyll synthesis, and slowed photosynthesis. To preserve intracellular osmotic balance and lessen the effects of low temperatures, sucrose, fructose, and total soluble sugar levels, as well as sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities, surged in response to low-temperature stress. However, low-temperature stress significantly reduced the activity of adenosine diphosphate glucose pyrophosphorylase (AGPase), granule-bound starch synthase (GBSS), soluble starch synthase (SSS), and starch branching enzyme (SBE). At the same time, low-temperature stress reduced the area of vascular bundles and phloem, making it difficult to transport carbon and nitrogen metabolites to grains on time. The response of grains to low-temperature stress differs from that of leaves, with prolonged low-temperature exposure causing a gradual decrease in carbon and nitrogen metabolism-related enzyme activities and product accumulation within the grains. The insufficient synthesis of starch precursors and carbon skeletons results in significantly lower thousand-grain weight and seed-setting rates, ultimately contributing to grain yield loss. This decline was more pronounced in inferior grains compared to superior grains. Compared to SJ10, DN428 exhibited higher values across various indicators and smaller declines under low-temperature stress, suggesting enhanced cold-tolerance and a greater capacity to maintain grain yield stability. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Graphical abstract

16 pages, 3293 KiB  
Article
Loss of γ-aminobutyric acid D-Type Motor Neurons in Young Adult Caenorhabditis elegans Following Exposition with Silica Nanoparticles
by Dang Tri Le, Stella Pauls, Gereon Poschmann, Kai Stühler and Anna von Mikecz
Cells 2025, 14(3), 190; https://doi.org/10.3390/cells14030190 - 27 Jan 2025
Viewed by 1383
Abstract
Although Caenorhabditis elegans is commonly used to assess the neurotoxicity of environmental pollutants, studies that explore the intricate biology of its nervous system, particularly those addressing long-term effects and aging in adult worms, are rare. These models offer significant advantages for understanding the [...] Read more.
Although Caenorhabditis elegans is commonly used to assess the neurotoxicity of environmental pollutants, studies that explore the intricate biology of its nervous system, particularly those addressing long-term effects and aging in adult worms, are rare. These models offer significant advantages for understanding the full spectrum of neurobiological impacts. Here, we investigated the effects of silica nanomaterials on the γ-aminobutyric acid (GABA) neural system in young to middle-aged nematodes and found a unique degeneration pattern characterized by loss of anterior- and posteriormost GABAergic D-type motor neurons. Four-day-old nematodes were identified as a vulnerable age group, where the pollutant-accelerated neurodegeneration that is typically seen in old C. elegans. Proteomics of 4-day-old C. elegans revealed significant alterations of protein abundance, including the downregulation of proteins such as glutamate dehydrogenase (gdh-1) and glutamate oxaloacetate transaminase (got-1.2), which are essentially involved in GABA metabolic pathways. Consistent with these findings, we demonstrated locomotion deficits in C. elegans exposed to nanoscale silica by establishing a semi-automated behavioral arena. Our setup not only visualizes but also automatically quantifies vulnerabilities at the individual worm level. This novel neurodegeneration model now enables the simulation of real-world pollutant mixtures and environmental conditions, capturing the complexity of the exposome. Full article
Show Figures

Graphical abstract

18 pages, 1303 KiB  
Article
Effect of Lactobacillus paracasei LK01 on Growth Performance, Antioxidant Capacity, Immunity, Intestinal Health, and Serum Biochemical Indices in Broilers
by Weixin Liu, Hong Cheng, Hao Zhang, Guozhen Liu, Xinyu Yin, Cheng Zhang, Runsheng Jiang, Zaigui Wang and Xiaoling Ding
Animals 2024, 14(23), 3474; https://doi.org/10.3390/ani14233474 - 1 Dec 2024
Cited by 3 | Viewed by 1236
Abstract
This study aimed to investigate the effects of adding L. paracasei LK01 to the diet on the growth performance, antioxidant capacity, immunity, intestinal health, and serum biochemical indicators of broilers. This study selected 1080 one-day-old broiler chickens with similar body weight, and randomly [...] Read more.
This study aimed to investigate the effects of adding L. paracasei LK01 to the diet on the growth performance, antioxidant capacity, immunity, intestinal health, and serum biochemical indicators of broilers. This study selected 1080 one-day-old broiler chickens with similar body weight, and randomly divided them into six groups, with six replicates in each group and 30 chicks in each replicate. The chicks were fed (1) the basal diet (CON), (2) the basal diet with 106 CFU/kg L. paracasei LK01(T1), (3) the basal diet with 107 CFU/kg L. paracasei LK01(T2), (4) the basal diet with 108 CFU/kg L. paracasei LK01(T3), (5) the basal diet with 109 CFU/kg L. paracasei LK01(T4), and (6) the basal diet with 1010 CFU/kg L. paracasei LK01(T5). The experiment lasted for 42 days. In this study, compared with the CON group, the diet supplemented with L. paracasei significantly increased body weight from 1 to 21 days (p < 0.05). In addition, the 106 CFU/kg L. paracasei LK01 group significantly reduced the activity of glutamic oxaloacetic transaminase and triglyceride levels; the 107 CFU/kg,108 CFU/kg, and 109 CFU/kg L. paracasei LK01 groups also reduced serum uric acid and total cholesterol levels (p < 0.05). The experimental groups all had lower serum levels of malondialdehyde and interleukin-1β (p < 0.01). Except for the 106 CFU/kg group, all experimental groups had significantly lower tumor necrosis factor-α, and the 106 and 107 CFU/kg groups had higher immunoglobulin M levels (p < 0.05). In addition, the 106 CFU/kg group significantly reduced the depth of the ileocecal crypts and increased the villus-to-crypt ratio (V/C) of the jejunum and ileum. In addition, dietary supplementation with L. paracasei LK01 did not change the α diversity of the microbial community in the cecum, but significantly increased the proportion of Bacteroides (phylum) (p < 0.05). The 106 CFU/kg group also significantly increased the abundance of beneficial bacteria such as Ruminococcaceae (genus), Lachnospiraceae (genus), and Faecalibacterium (genus) (p < 0.05). In summary, this study revealed that adding 106 CFU/kg of L. paracasei LKO1 to broiler diets can improve their production performance, serum biochemical indicators, antioxidant, and immune capabilities, as well as cecal flora. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

13 pages, 2637 KiB  
Article
Effects of Transport Stress (Duration and Density) on the Physiological Conditions of Marbled Rockfish (Sebastiscus marmoratus, Cuvier 1829) Juveniles and Water Quality
by Jiahao Wang, Kaida Xu, Xinyi Chen, Haoxue Wang and Zhe Li
Fishes 2024, 9(12), 474; https://doi.org/10.3390/fishes9120474 - 22 Nov 2024
Cited by 1 | Viewed by 1357
Abstract
Live transportation is a critical component of fish farming and hatchery release. To optimize hatchery-release techniques and improve the survival rate of marbled rockfish (Sebastiscus marmoratus, Cuvier 1829) juveniles, the effects of varying transport durations (2, 4, 6, and 8 h) [...] Read more.
Live transportation is a critical component of fish farming and hatchery release. To optimize hatchery-release techniques and improve the survival rate of marbled rockfish (Sebastiscus marmoratus, Cuvier 1829) juveniles, the effects of varying transport durations (2, 4, 6, and 8 h) and densities (60, 90, 120, and 150 kg m−3) on the physiological indicators of the fish and water quality were investigated under controlled laboratory conditions. We found that as transport duration and density increased, water quality significantly deteriorated, with ammonia nitrogen levels rising and dissolved oxygen content and pH levels decreasing. Physiological indicators including levels of lactate, cortisol, and malondialdehyde and activities of superoxide dismutase, alkaline phosphatase, and glutamate oxaloacetate transaminase notably increased, indicating that the fish experienced heightened stress during transport. Additionally, the mortality rate of juveniles increased significantly with increasing density and transport duration. The high mortality rate might be associated with sustained elevated cortisol levels and liver damage. Our results are helpful for determining the optimal transport conditions for S. marmoratus juveniles and also provide valuable insights for improving transport techniques for other aquatic animal species. Full article
(This article belongs to the Special Issue Biodiversity and Spatial Distribution of Fishes, Second Edition)
Show Figures

Figure 1

15 pages, 2093 KiB  
Article
Comparative Transcriptome Analysis Reveals the Impact of a High-Fat Diet on Hepatic Metabolic Function in Tilapia (Oreochromis niloticus)
by Rui Jia, Yiran Hou, Linjun Zhou, Liqiang Zhang, Bing Li and Jian Zhu
Animals 2024, 14(22), 3204; https://doi.org/10.3390/ani14223204 - 8 Nov 2024
Cited by 1 | Viewed by 1232
Abstract
Hepatic steatosis is prevalent among cultured fish, yet the molecular mechanisms remain incompletely understood. This study aimed to assess changes in hepatic metabolic function in tilapia and to explore the underlying molecular mechanisms through transcriptomic analyses. Tilapia were allocated into two groups: a [...] Read more.
Hepatic steatosis is prevalent among cultured fish, yet the molecular mechanisms remain incompletely understood. This study aimed to assess changes in hepatic metabolic function in tilapia and to explore the underlying molecular mechanisms through transcriptomic analyses. Tilapia were allocated into two groups: a normal control (Ctr)-fed group and a high-fat diet (HFD)-fed group. Serum biochemical analyses revealed that HFD feeding led to liver damage and lipid accumulation, characterized by elevated levels of glutamic-pyruvic transaminase (GPT), glutamic-oxaloacetic transaminase (GOT), triglycerides (TGs), and total cholesterol (TC). Transcriptome analysis showed that 538 genes were significantly downregulated, and 460 genes were significantly upregulated in the HFD-fed fish. Gene Ontology (GO) enrichment analysis showed that these differentially expressed genes (DEGs) were apparently involved in the lipid metabolic process and monocarboxylic acid metabolic process. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated significant alterations in pathways of steroid biosynthesis, porphyrin metabolism, terpenoid backbone biosynthesis, and retinol metabolism after HFD feeding. Additionally, results from Gene Set Enrichment Analysis (GSEA) revealed that gene expression patterns in pathways including oxidative phosphorylation, protein export, protein processing in the endoplasmic reticulum, and ribosome biogenesis were positively enriched in the HFD-fed tilapia. These findings provide novel insights into the mechanisms underlying HFD-induced hepatic dysfunction in fish, contributing to the optimization of feeding strategies in aquaculture. Full article
(This article belongs to the Special Issue Research Progress in Growth, Health and Metabolism of Fishes)
Show Figures

Figure 1

12 pages, 2726 KiB  
Article
Asparagine Availability Is a Critical Limiting Factor for Infectious Spleen and Kidney Necrosis Virus Replication
by Baofu Ma, Fangying Li, Xiaozhe Fu, Xia Luo, Qiang Lin, Hongru Liang, Yinjie Niu and Ningqiu Li
Viruses 2024, 16(10), 1540; https://doi.org/10.3390/v16101540 - 29 Sep 2024
Cited by 1 | Viewed by 1200
Abstract
Infectious spleen and kidney necrosis virus (ISKNV) has brought huge economic loss to the aquaculture industry. Through interfering with the viral replication and proliferation process that depends on host cells, its pathogenicity can be effectively reduced. In this study, we investigated the role [...] Read more.
Infectious spleen and kidney necrosis virus (ISKNV) has brought huge economic loss to the aquaculture industry. Through interfering with the viral replication and proliferation process that depends on host cells, its pathogenicity can be effectively reduced. In this study, we investigated the role of asparagine metabolites in ISKNV proliferation. The results showed that ISKNV infection up-regulated the expression of some key enzymes of the asparagine metabolic pathway in Chinese perch brain (CPB) cells. These key enzymes, including glutamic oxaloacetic transaminase 1/2 (GOT1/2) and malate dehydrogenase1/2 (MDH1/2) associated with the malate-aspartate shuttle (MAS) pathway and asparagine synthetase (ASNS) involved in the asparagine biosynthesis pathway, were up-regulated during ISKNV replication and release stages. In addition, results showed that the production of ISKNV was significantly reduced by inhibiting the MAS pathway or reducing the expression of ASNS by 1.3-fold and 0.6-fold, respectively, indicating that asparagine was a critical limiting metabolite for ISKNV protein synthesis. Furthermore, when asparagine was added to the medium without glutamine, ISKNV copy number was restored to 92% of that in the complete medium, indicating that ISKNV could be fully rescued from the absence of glutamine by supplementing asparagine. The above results indicated that asparagine was a critical factor in limiting the effective replication of ISKNV, which provided a new idea for the treatment of aquatic viral diseases. Full article
(This article belongs to the Special Issue Iridoviruses, 2nd Edition)
Show Figures

Figure 1

24 pages, 2104 KiB  
Article
Effects of Dietary Chitosan on Growth Performance, Serum Biochemical Indices, Antioxidant Capacity, and Immune Response of Juvenile Tilapia (Oreochromis niloticus) under Cadmium Stress
by Qin Zhang, Yi Xie, Jiaqiong Tang, Liuqing Meng, Enhao Huang, Dongsheng Liu, Tong Tong, Yongqiang Liu and Zhongbao Guo
Animals 2024, 14(15), 2259; https://doi.org/10.3390/ani14152259 - 3 Aug 2024
Cited by 4 | Viewed by 1395
Abstract
The objective of this study was to examine the effects of varying levels of dietary chitosan supplementation on mitigating cadmium stress and its influence on growth performance, serum biochemical indices, antioxidant capacity, immune response, inflammatory response, and the expression of related genes in [...] Read more.
The objective of this study was to examine the effects of varying levels of dietary chitosan supplementation on mitigating cadmium stress and its influence on growth performance, serum biochemical indices, antioxidant capacity, immune response, inflammatory response, and the expression of related genes in juvenile Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus). Five groups of juvenile tilapias (initial body weight 21.21 ± 0.24 g) were fed five diets with different levels (0%, 0.5%, 1.0%, 1.5%, and 2.0%) of chitosan supplementation for 60 days under cadmium stress (0.2 mg/L Cd2+). The findings indicated that, compared with the 0% chitosan group, dietary chitosan could significantly increase (p < 0.05) the final weight (Wf), weight gain rate (WGR), specific growth rate (SGR), daily growth index (DGI), and condition factor (CF), while the feed conversion ratio (FCR) expressed the opposite trend in juvenile GIFT. Dietary chitosan could significantly increase (p < 0.05) the activities (contents) of cholinesterase (CHE), albumin (ALB), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), acid phosphatase (ACP), and lysozyme (LZM), while glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), and complement 3 (C3) in the serum of juvenile GIFT expressed the opposite trend. Dietary chitosan could significantly increase (p < 0.05) the activities of superoxide dismutase (SOD) and catalase (CAT) and significantly decrease (p < 0.05) the activities (contents) of glutathione S-transferase (GST), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) in the serum of juvenile GIFT. Dietary chitosan could significantly increase (p < 0.05) the activities (contents) of CAT, GST, GSH-Px, and total antioxidant capacity (T-AOC) and significantly decrease (p < 0.05) the contents of MDA in the liver of juvenile GIFT. Dietary chitosan could significantly increase (p < 0.05) the activities (contents) of SOD, GSH-Px, T-AOC, Na+-K+-ATPase, and Ca2+-ATPase and significantly decrease (p < 0.05) the activities (contents) of CAT, GST, and MDA in the gills of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of cat, sod, gst, and gsh-px in the liver of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of interferon-γ (inf-γ) in the gills and spleen and significantly down-regulate (p < 0.05) the gene expression of inf-γ in the liver and head kidney of juvenile GIFT. Dietary chitosan could significantly down-regulate (p < 0.05) the gene expression of interleukin-6 (il-6), il-8, and tumor necrosis factor-α (tnf-α) in the liver, gills, head kidney, and spleen of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of il-10 in the liver, gills, head kidney, and spleen of juvenile GIFT. Dietary chitosan could significantly up-regulate (p < 0.05) the gene expression of transforming growth factor-β (tgf-β) in the liver and significantly down-regulate (p < 0.05) the gene expression of tgf-β in the head kidney and spleen of juvenile GIFT. In conclusion, dietary chitosan could mitigate the impact of cadmium stress on growth performance, serum biochemical indices, antioxidant capacity, immune response, inflammatory response, and related gene expression in juvenile GIFT. According to the analysis of second-order polynomial regression, it was found that the optimal dietary chitosan levels in juvenile GIFT was approximately 1.42% to 1.45%, based on its impact on Wf, WGR, SGR, and DGI. Full article
Show Figures

Figure 1

11 pages, 1267 KiB  
Article
Analysis of Molecular Imaging and Laboratory Baseline Biomarkers in PSMA-RLT: Whole-Body Total Lesion PSMA (TLP) Predicts Overall Survival
by Connor Hein, Caroline Burgard, Arne Blickle, Moritz B. Bastian, Stephan Maus, Andrea Schaefer-Schuler, Manuela A. Hoffmann, Mathias Schreckenberger, Samer Ezziddin and Florian Rosar
Cancers 2024, 16(15), 2670; https://doi.org/10.3390/cancers16152670 - 26 Jul 2024
Cited by 1 | Viewed by 1268
Abstract
The aim of this retrospective study was to identify pre-therapeutic predictive laboratory and molecular imaging biomarkers for response and overall survival (OS) in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT). Pre-therapeutic laboratory and [ [...] Read more.
The aim of this retrospective study was to identify pre-therapeutic predictive laboratory and molecular imaging biomarkers for response and overall survival (OS) in patients with metastatic castration-resistant prostate cancer (mCRPC) treated with prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT). Pre-therapeutic laboratory and [68Ga]Ga-PSMA-11 PET/CT data of n = 102 mCRPC patients receiving [177Lu]Lu-PSMA-617 RLT within a prospective registry (REALITY Study, NCT04833517) were analyzed including laboratory parameters such as alkaline phosphatase (ALP), prostate-specific antigen (PSA), gamma glutamyl transferase (GGT), glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), neuron specific enolase (NSE), hemoglobin (Hb), and imaging parameters such as maximum standardized uptake value of the tumor lesions (SUVmax), the mean standardized uptake value of all tumor lesions (SUVmean), the whole-body molecular tumor volume (MTV), and the whole-body total lesion PSMA (TLP). Mann–Whitney U test, univariate and multivariable Cox-regression were performed to test for association of the parameters with response and OS. The SUVmean of all lesions was significantly different between responders and non-responders (SUVmean responders 8.95 ± 2.83 vs. non-responders 7.88 ± 4.46, p = 0.003), whereas all other tested biochemical and imaging parameters did not reveal significant differences. Hb and the molecular imaging parameters MTV and TLP showed a significant association with OS (p = 0.013, p = 0.005; p = 0.009) in univariant Cox regression; however, only TLP remained significant in multivariable analysis (Hazard ratio 1.033, p = 0.009). This study demonstrates a statistically significant association between the quantitative PET/CT imaging parameter SUVmean and PSA response, as well as between the baseline TLP and OS of mCRPC patients undergoing RLT. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

15 pages, 275 KiB  
Article
Effectiveness of Hydrated Sodium Calcium Aluminosilicates and Discarded Date Pits as Dietary Adsorbents for Aflatoxin B1 in Enhancing Broiler Chicken Productive Performance, Hepatic Function, and Intestinal Health
by Ala E. Abudabos, Riyadh S. Aljumaah, Abdulaziz A. Alabdullatif, Ali R. Al Sulaiman, Zafar Hakmi and Abdulrahman S. Alharthi
Animals 2024, 14(14), 2124; https://doi.org/10.3390/ani14142124 - 21 Jul 2024
Cited by 2 | Viewed by 1630
Abstract
The research aimed to evaluate how effective hydrated sodium calcium aluminosilicates (HSCASs) and discarded date pits (DDPs) are as dietary adsorbents for aflatoxin B1 (AFB1) in enhancing the performance and health of broiler chickens aged 16 to 30 days. A total of 240 [...] Read more.
The research aimed to evaluate how effective hydrated sodium calcium aluminosilicates (HSCASs) and discarded date pits (DDPs) are as dietary adsorbents for aflatoxin B1 (AFB1) in enhancing the performance and health of broiler chickens aged 16 to 30 days. A total of 240 Ross 308 straight-run broilers were randomly allocated into four dietary groups, each with 10 replicates: a control diet, a control diet with 1000 ppb AFB1, an AFB1-contaminated diet with 0.5% HSCAS, and an AFB1-contaminated diet with 4% DDP. Incorporating HSCASs or DDPs into the AFB1-contaminated diet resulted in significant improvements across various parameters, involving increased body weight, improved feed conversion ratio, higher dressing percentage, decreased relative weights of kidney and spleen, elevated serum levels of total protein, globulin, and glucose, reduced serum alanine aminotransferase activity, and heightened hepatic protein concentration and glutathione peroxidase activity, along with diminished hepatic malondialdehyde content and glutamic oxaloacetic transaminase activity. Moreover, both supplements led to increased ileal villus height and surface area, enhanced apparent nitrogen-corrected metabolizable energy digestibility, and decreased AFB1 residues in the liver and kidney. Moreover, the dietary inclusion of DDPs significantly decreased relative liver weight, raised serum albumin concentration, lowered serum alkaline phosphatase activity, enhanced hepatic total antioxidant capacity level, and augmented ileal villus width. Conversely, the dietary addition of HSCASs significantly heightened apparent crude protein digestibility. In conclusion, the inclusion of HSCASs and DDPs in AFB1-contaminated diets can mitigate the toxic effects of AFB1 on broiler chickens, with DDPs exhibiting additional advantages in optimizing liver function and gut morphology. Full article
(This article belongs to the Collection Poultry Feeding and Gut Health)
13 pages, 1719 KiB  
Article
Comparative Efficacy of Inhaled and Intravenous Corticosteroids in Managing COVID-19-Related Acute Respiratory Distress Syndrome
by Ahmed A. Abdelkader, Bshra A. Alsfouk, Asmaa Saleh, Mohamed E. A. Abdelrahim and Haitham Saeed
Pharmaceutics 2024, 16(7), 952; https://doi.org/10.3390/pharmaceutics16070952 - 18 Jul 2024
Cited by 2 | Viewed by 2322
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening condition in which the lungs fail to provide sufficient oxygen to the body’s vital organs. It is commonly associated with COVID-19 patients. Severe cases of COVID-19 can lead to lung damage and organ failure due [...] Read more.
Acute respiratory distress syndrome (ARDS) is a life-threatening condition in which the lungs fail to provide sufficient oxygen to the body’s vital organs. It is commonly associated with COVID-19 patients. Severe cases of COVID-19 can lead to lung damage and organ failure due to an immune response in the body. To mitigate these effects, corticosteroids, which are known for their anti-inflammatory properties, have been suggested as a potential treatment option. The primary focus of this study was to assess the impact of various corticosteroid administration methods on the outcomes of patients with COVID-19. Methods: The current study was conducted on COVID-19 patients divided into three groups. The first group was administered 6 mg of intravenous (IV) dexamethasone; the second group received 1 mg/kg of IV methylprednisolone (methylprednisolone); and the third group received budesonide respirable solution at a dosage of 1mg twice daily. The neubilizer used was a vibrating mesh nebulizer (VMN). All patients received standard care. We found that dexamethasone administered intravenously led to a significant reduction in C-reactive protein levels, surpassing the effectiveness of both IV methylprednisolone and inhaled budesonide. Oxygen saturation without mask change over time showed statistically significant differences (p = 0.004) in favor of the budesonide and dexamethasone groups for all days. Individuals who received methylprednisolone showed a significant decrease in mortality rate and an extended survival duration, with statistical significance observed at p = 0.024. The rest of the parameters, including ferritin, lymphocytes, total leukocyte count, platelets, hemoglobin, urea, serum potassium, serum sodium, serum creatinine, serum glutamic-pyruvic transaminase, serum glutamic-oxaloacetic transaminase, uric acid, albumin, globulin, erythrocyte sedimentation rate, international normalized ratio, oxygen saturation with flow, and oxygen flow, showed no statistically significant differences between the three drugs. In conclusion, treatment with IV methylprednisolone (1 mg/kg) resulted in a shorter hospital stay, decreased reliance on ventilation, and improved health outcomes for COVID-19 patients compared to using dexamethasone at a daily dosage of 6 mg or budesonide respirable solution at a dosage of 1mg twice daily. Full article
Show Figures

Figure 1

14 pages, 1572 KiB  
Article
Precision Medicine for Blood Glutamate Grabbing in Ischemic Stroke
by Pablo Hervella, Ana Sampedro-Viana, Sabela Fernández-Rodicio, Manuel Rodríguez-Yáñez, Iria López-Dequidt, José M. Pumar, Antonio J. Mosqueira, Marcos Bazarra-Barreiros, María Teresa Abengoza-Bello, Sara Ortega-Espina, Alberto Ouro, María Pérez-Mato, Francisco Campos, Tomás Sobrino, José Castillo, Maria Luz Alonso-Alonso and Ramón Iglesias-Rey
Int. J. Mol. Sci. 2024, 25(12), 6554; https://doi.org/10.3390/ijms25126554 - 14 Jun 2024
Viewed by 1642
Abstract
Glutamate grabbers, such as glutamate oxaloacetate transaminase (GOT), have been proposed to prevent excitotoxicity secondary to high glutamate levels in stroke patients. However, the efficacy of blood glutamate grabbing by GOT could be dependent on the extent and severity of the disruption of [...] Read more.
Glutamate grabbers, such as glutamate oxaloacetate transaminase (GOT), have been proposed to prevent excitotoxicity secondary to high glutamate levels in stroke patients. However, the efficacy of blood glutamate grabbing by GOT could be dependent on the extent and severity of the disruption of the blood–brain barrier (BBB). Our purpose was to analyze the relationship between GOT and glutamate concentration with the patient’s functional status differentially according to BBB serum markers (soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) and leukoaraiosis based on neuroimaging). This retrospective observational study includes 906 ischemic stroke patients. We studied the presence of leukoaraiosis and the serum levels of glutamate, GOT, and sTWEAK in blood samples. Functional outcome was assessed using the modified Rankin Scale (mRS) at 3 months. A significant negative correlation between GOT and glutamate levels at admission was shown in those patients with sTWEAK levels > 2900 pg/mL (Pearson’s correlation coefficient: −0.249; p < 0.0001). This correlation was also observed in patients with and without leukoaraiosis (Pearson’s correlation coefficients: −0.299; p < 0.001 vs. −0.116; p = 0.024). The logistic regression model confirmed the association of higher levels of GOT with lower odds of poor outcome at 3 months when sTWEAK levels were >2900 pg/mL (OR: 0.41; CI 95%: 0.28–0.68; p < 0.0001) or with leukoaraiosis (OR: 0.75; CI 95%: 0.69–0.82; p < 0.0001). GOT levels are associated with glutamate levels and functional outcomes at 3 months, but only in those patients with leukoaraiosis and elevated sTWEAK levels. Consequently, therapies targeting glutamate grabbing might be more effective in patients with BBB dysfunction. Full article
(This article belongs to the Special Issue New Trends in Research on Cerebral Ischemia)
Show Figures

Figure 1

Back to TopTop