Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = glucosinolates (GLSs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1375 KiB  
Review
The Effects of Interventions with Glucosinolates and Their Metabolites in Cruciferous Vegetables on Inflammatory Bowel Disease: A Review
by Jichun Zhao, Xiaoqin Zhang, Fuhua Li, Xiaojuan Lei, Lihong Ge, Honghai Li, Nan Zhao and Jian Ming
Foods 2024, 13(21), 3507; https://doi.org/10.3390/foods13213507 - 1 Nov 2024
Cited by 5 | Viewed by 1889
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract which affects millions of individuals worldwide. Despite advancements in treatment options, there is increasing interest in exploring natural interventions with minimal side effects. Cruciferous vegetables, such as broccoli, cabbage, and [...] Read more.
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract which affects millions of individuals worldwide. Despite advancements in treatment options, there is increasing interest in exploring natural interventions with minimal side effects. Cruciferous vegetables, such as broccoli, cabbage, and radishes, contain bioactive compounds known as glucosinolates (GLSs), which have shown promising effects in alleviating IBD symptoms. This review aims to provide a comprehensive overview of the physiological functions and mechanisms of cruciferous GLSs and their metabolites in the context of IBD. Reviewed studies demonstrated that GLSs attenuated all aspects of IBD, including regulating the intestinal microbiota composition, exerting antioxidant and anti-inflammatory effects, restoring intestinal barrier function, and regulating epigenetic mechanisms. In addition, a few interventions with GLS supplementation in clinical studies were also discussed. However, there are still several challenges and remaining knowledge gaps, including variations in animals’ experimental outcomes, the bioavailability of certain compounds, and few clinical trials to validate their effectiveness in human subjects. Addressing these issues will contribute to a better understanding of the therapeutic potential of cruciferous GLSs and their metabolites in the management of IBD. Full article
Show Figures

Figure 1

18 pages, 15413 KiB  
Article
Insights into Osteogenesis Induced by Crude Brassicaceae Seeds Extracts: A Role for Glucosinolates
by Laura Gambari, Eleonora Pagnotta, Luisa Ugolini, Laura Righetti, Emanuela Amore, Brunella Grigolo, Giuseppe Filardo and Francesco Grassi
Nutrients 2024, 16(20), 3457; https://doi.org/10.3390/nu16203457 - 12 Oct 2024
Viewed by 1528
Abstract
Background/Objectives: Crude extracts from the Brassica genus have recently emerged as promising phytochemicals for preventing bone loss. While the most documented evidence suggests that their general biological activity is due to glucosinolates’ (GLSs’) hydrolysis products, the direct activity of GLSs is beginning [...] Read more.
Background/Objectives: Crude extracts from the Brassica genus have recently emerged as promising phytochemicals for preventing bone loss. While the most documented evidence suggests that their general biological activity is due to glucosinolates’ (GLSs’) hydrolysis products, the direct activity of GLSs is beginning to be uncovered. However, the contribution of GLSs to the bone-sparing activity of crude Brassicaceae extracts has seldom been addressed. Here, we aimed to gain insights into this gap by studying in the same in vitro model of human osteogenesis the effect of two Brassica seed extracts (Eruca sativa and Lepidium sativum) obtained from defatted seed meals, comparing them to the isolated GLSs most represented in their composition, glucoerucin (GER) and glucotropaeolin (GTL), for Eruca sativa and Lepidium sativum, respectively. Methods: Osteogenic differentiation of human mesenchymal stromal cells (hMSCs) was assessed by alizarin red staining assay and real-time PCR, respectively, evaluating mineral apposition and mRNA expression of specific osteogenic genes. Results: Both Brassica extracts and GLSs increased the osteogenic differentiation, indicating that the stimulating effect of Brassica extracts can be at least partially attributed to GLSs. Moreover, these data extend previous evidence of the effect of unhydrolyzed glucoraphanin (GRA) on osteogenesis to other types of GLSs: GER and GTL. Notably, E. sativa extract and GTL induced higher osteogenic stimulation than Lepidium sativum extract and GER, respectively. Conclusions: Overall, this study expands the knowledge on the possible application of Brassica-derived bioactive molecules as natural alternatives for the prevention and treatment of bone-loss pathologies. Full article
(This article belongs to the Special Issue Bioactive Ingredients in Plants Related to Human Health)
Show Figures

Figure 1

19 pages, 885 KiB  
Article
The Influence of Nitrogen and Sulfur Fertilization on Oil Quality and Seed Meal in Different Genotypes of Winter Oilseed Rape (Brassica napus L.)
by Stanisław Spasibionek, Franciszek Wielebski, Alina Liersch and Magdalena Walkowiak
Agriculture 2024, 14(8), 1232; https://doi.org/10.3390/agriculture14081232 - 26 Jul 2024
Cited by 1 | Viewed by 1228
Abstract
Adequate nitrogen (N) and sulfur (S) fertilization of oilseed rape crops is necessary to obtain good-quality oil and post-extraction rapeseed meal. The aim of this study was to determine the effect of different doses of N fertilization (100, 160 and 220 kg ha [...] Read more.
Adequate nitrogen (N) and sulfur (S) fertilization of oilseed rape crops is necessary to obtain good-quality oil and post-extraction rapeseed meal. The aim of this study was to determine the effect of different doses of N fertilization (100, 160 and 220 kg ha−1) and S (0, 30, 60 and 90 kg ha−1) on the value of seeds of three winter oilseed rape genotypes. Two winter oilseed rape genotypes obtained by mutagenesis (cultivar Polka and breeding genotype PN440) were characterized by changed fatty acid profile. The cultivar Polka, type HO (high oleic), had a high content of oleic acid (C18:1, 78.0%) and the breeding genotype PN440, type HOLL (high-oleic and low-linolenic), had a high content of oleic acid (C18:1, 75.0%) and a low content of linolenic acid (C18:3, 3.0%). We also used the canola type of winter oilseed rape cultivar, Monolit. The analysed winter oilseed rape genotypes responded similarly to the N and S fertilization factors with regard to the content of crude fat and total protein in the seeds and the composition of fatty acids in the oil. N fertilization increased the content of glucosinolates (GLS-alkenyl, indole and total) in seeds, whereas S application decreased the content of saturated fatty acids (stearic acid-C18:0) in oil and increased the content of alkenyl and total glucosinolates (GLSs) in seeds. A significant interaction between N and S was observed for crude-fat and total-protein content. This study suggests that ensuring an adequate supply of both nitrogen and sulfur in the soil is essential for optimizing meal and oil quality in different types of winter oilseed rape cultivars. Proper management of these nutrients can lead to improved oil content and overall crop performance. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

15 pages, 1524 KiB  
Article
Ultrasound-Assisted Extraction of Bioactive Compounds from Broccoli By-Products
by Lorena Martínez-Zamora, Seyedehzeinab Hashemi, Marina Cano-Lamadrid, María Carmen Bueso, Encarna Aguayo, Mathieu Kessler and Francisco Artés-Hernández
Foods 2024, 13(10), 1441; https://doi.org/10.3390/foods13101441 - 7 May 2024
Cited by 6 | Viewed by 3167
Abstract
The objective of this work was to gain insight into the operating conditions that affect the efficiency of ultrasound-assisted extraction (UAE) parameters to achieve the best recovery of bioactive compounds from broccoli leaf and floret byproducts. Therefore, total phenolic content (TPC) and the [...] Read more.
The objective of this work was to gain insight into the operating conditions that affect the efficiency of ultrasound-assisted extraction (UAE) parameters to achieve the best recovery of bioactive compounds from broccoli leaf and floret byproducts. Therefore, total phenolic content (TPC) and the main sulfur bioactive compounds (sulforaphane (SFN) and glucosinolates (GLSs)) were assayed. Distilled water was used as solvent. For each byproduct type, solid/liquid ratio (1:25 and 2:25 g/mL), temperature (25, 40, and 55 °C), and extraction time (2.5, 5, 7.5, 10, 15, and 20 min) were the studied variables to optimize the UAE process by using a kinetic and a cubic regression model. TPC was 12.5-fold higher in broccoli leaves than in florets, while SFN was from 2.5- to 4.5-fold higher in florets regarding the leaf’s extracts obtained from the same plants, their precursors (GLS) being in similar amounts for both plant tissues. The most efficient extraction conditions were at 25 °C, ratio 2:25, and during 15 or 20 min according to the target phytochemical to extract. In conclusion, the type of plant tissue and used ratio significantly influenced the extraction of bioactive compounds, the most efficient UAE parameters being those with lower energy consumption. Full article
Show Figures

Figure 1

36 pages, 1254 KiB  
Review
Do Brassica Vegetables Affect Thyroid Function?—A Comprehensive Systematic Review
by Agnieszka Galanty, Marta Grudzińska, Wojciech Paździora, Piotr Służały and Paweł Paśko
Int. J. Mol. Sci. 2024, 25(7), 3988; https://doi.org/10.3390/ijms25073988 - 3 Apr 2024
Cited by 10 | Viewed by 10504
Abstract
Brassica vegetables are widely consumed all over the world, especially in North America, Asia, and Europe. They are a rich source of sulfur compounds, such as glucosinolates (GLSs) and isothiocyanates (ITCs), which provide health benefits but are also suspected of having a goitrogenic [...] Read more.
Brassica vegetables are widely consumed all over the world, especially in North America, Asia, and Europe. They are a rich source of sulfur compounds, such as glucosinolates (GLSs) and isothiocyanates (ITCs), which provide health benefits but are also suspected of having a goitrogenic effect. Adhering to PRISMA guidelines, we conducted a systematic review to assess the impact of dietary interventions on thyroid function, in terms of the potential risk for people with thyroid dysfunctions. We analyzed the results of 123 articles of in vitro, animal, and human studies, describing the impact of brassica plants and extracts on thyroid mass and histology, blood levels of TSH, T3, T4, iodine uptake, and the effect on thyroid cancer cells. We also presented the mechanisms of the goitrogenic potential of GLSs and ITCs, the limitations of the studies included, as well as further research directions. The vast majority of the results cast doubt on previous assumptions claiming that brassica plants have antithyroid effects in humans. Instead, they indicate that including brassica vegetables in the daily diet, particularly when accompanied by adequate iodine intake, poses no adverse effects on thyroid function. Full article
Show Figures

Figure 1

22 pages, 1765 KiB  
Article
The Antimicrobial Effects of Myrosinase Hydrolysis Products Derived from Glucosinolates Isolated from Lepidium draba
by Zoltán Polozsányi, Helena Galádová, Michal Kaliňák, Martin Jopčík, Barbora Kaliňáková, Albert Breier and Martin Šimkovič
Plants 2024, 13(7), 995; https://doi.org/10.3390/plants13070995 - 30 Mar 2024
Cited by 2 | Viewed by 2286
Abstract
Lepidium draba (hoary cress) is a perennial plant belonging to the Brassicaceae family that produces two dominant glucosinolates (GLSs): glucoraphanin (GRN) and sinalbin (SBN). They represent the stored form, which is converted upon the myrosinase (Myr) hydrolysis activity to active compounds, mainly isothiocyanates [...] Read more.
Lepidium draba (hoary cress) is a perennial plant belonging to the Brassicaceae family that produces two dominant glucosinolates (GLSs): glucoraphanin (GRN) and sinalbin (SBN). They represent the stored form, which is converted upon the myrosinase (Myr) hydrolysis activity to active compounds, mainly isothiocyanates (ITCs) such as sulforaphane (SFN) or p-hydroxybenzyl isothiocyanate (pHBITC). Research on ITCs that have proven anticancer, antimicrobial, and chemoprotective properties is usually conducted with pure commercially available compounds. However, these are chemically reactive, making it difficult to use them directly for preventive purposes in dietary supplements. Efforts are currently being made to prepare dietary supplements enriched with GLS and/or Myr. In this study, we report a simple but efficient chromatographic procedure for the isolation and purification of GLSs from MeOH extract from hoary cress based on a combination of ion exchange and gel permeation chromatography on DEAE-Sephadex A-25 and Sephadex LH-20. To obtain the Myr required for efficient hydrolysis of GLSs into antibacterial ITCs, we developed a rapid method for its extraction from the seeds of Lepidium sativum (garden cress). The yields of GLSs were 22.9 ± 1.2 mg GRN (purity 96%) and 10.4 ± 1.1 mg SBN (purity 92%) from 1 g of dry plant material. Both purified GLSs were used as substrates for the Myr. Analysis of the composition of hydrolysis products (HPs) revealed differences in their hydrolysis rates and in the degree of conversion from GLSs to individual ITCs catalyzed by Myr. When GRNs were cleaved, SFNs were formed in an equimolar ratio, but the formation of pHBITCs was only half that of cleaved SBNs. The decrease in pHBITC content is due to its instability compared to SFN. While SFN is stable in aqueous media during the measurement, pHBITC undergoes non-enzymatic hydrolysis to p-hydroxybenzyl alcohol and thiocyanate ions. Testing of the antimicrobial effects of the HPs formed from GRN by Myr under premix or in situ conditions showed inhibition of the growth of model prokaryotic and eukaryotic microorganisms. This observation could serve as the jumping-off point for the design of a two-component mixture, based on purified GLSs and Myr that is, usable in food or the pharmaceutical industry in the future. Full article
(This article belongs to the Special Issue Research of Bioactive Substances in Plant Extracts II)
Show Figures

Figure 1

11 pages, 1050 KiB  
Article
A Fast and Simple Solid Phase Extraction-Based Method for Glucosinolate Determination: An Alternative to the ISO-9167 Method
by Yanfang Li, Mengliang Zhang, Pamela Pehrsson, James M. Harnly, Pei Chen and Jianghao Sun
Foods 2024, 13(5), 650; https://doi.org/10.3390/foods13050650 - 21 Feb 2024
Cited by 2 | Viewed by 2077
Abstract
Glucosinolates (GLSs) are a well-studied sulfur-containing compound found in Brassicaceae plants that play critical roles in plant resistance and human health. Correctly identifying and reliably quantifying the total and individual GLS content is of great importance. An improved method as an alternative to [...] Read more.
Glucosinolates (GLSs) are a well-studied sulfur-containing compound found in Brassicaceae plants that play critical roles in plant resistance and human health. Correctly identifying and reliably quantifying the total and individual GLS content is of great importance. An improved method as an alternative to the ISO 9167-1 (ISO) method is developed in the present study. An efficient extraction and purification procedure is proposed with a commercially available dimethylaminopropyl (DEA)-based weak anion exchange solid-phase extraction (SPE) cartridge instead of using the self-prepared ion-exchange columns in the ISO method. The GLSs are identified and quantified by ultra high-performance liquid chromatography (UHPLC) high-resolution mass spectrometry (HRMS). The method demonstrates a comparable quantification of total and individual GLSs on certified rapeseeds and other Brassicaceae vegetables when compared to the ISO method. The developed SPE method is simpler and more efficient, thus allowing for applications to a large sample size with reduced analysis time, improved repeatability and accuracy, and possible automation. Full article
(This article belongs to the Special Issue Analysis and Possible Utilization of Food Bioactive Compounds)
Show Figures

Graphical abstract

17 pages, 714 KiB  
Article
How Plant Toxins Cause Early Larval Mortality in Herbivorous Insects: An Explanation by Modeling the Net Energy Curve
by Suman Chakraborty and Stefan Schuster
Toxins 2024, 16(2), 72; https://doi.org/10.3390/toxins16020072 - 1 Feb 2024
Cited by 2 | Viewed by 2261
Abstract
Plants store chemical defenses that act as toxins against herbivores, such as toxic isothiocyanates (ITCs) in Brassica plants, hydrolyzed from glucosinolate (GLS) precursors. The fitness of herbivorous larvae can be strongly affected by these toxins, causing immature death. We modeled this phenomenon using [...] Read more.
Plants store chemical defenses that act as toxins against herbivores, such as toxic isothiocyanates (ITCs) in Brassica plants, hydrolyzed from glucosinolate (GLS) precursors. The fitness of herbivorous larvae can be strongly affected by these toxins, causing immature death. We modeled this phenomenon using a set of ordinary differential equations and established a direct relationship between feeding, toxin exposure, and the net energy of a larva, where the fitness of an organism is proportional to its net energy according to optimal foraging theory. Optimal foraging theory is widely used in ecology to model the feeding and searching behavior of organisms. Although feeding provides energy gain, plant toxins and foraging cause energy loss for the larvae. Our equations explain that toxin exposure and foraging can sharply reduce larval net energy to zero at an instar. Since herbivory needs energy, the only choice left for a larva is to stop feeding at that time point. If that is significantly earlier than the end of the last instar stage, the larva dies without food. Thus, we show that plant toxins can cause immature death in larvae from the perspective of optimal foraging theory. Full article
(This article belongs to the Section Plant Toxins)
Show Figures

Figure 1

21 pages, 1811 KiB  
Article
Exogenous Melatonin Affects the Morphometric Characteristics and Glucosinolates during the Initial Growth Stages of Broccoli
by Donata Arena, Hajer Ben Ammar, Victor Manuel Rodriguez, Pablo Velasco, Gresheen Garcia, Riccardo Calì and Ferdinando Branca
Agronomy 2024, 14(2), 286; https://doi.org/10.3390/agronomy14020286 - 27 Jan 2024
Cited by 6 | Viewed by 1782
Abstract
Nowadays, there is a global surge in interest surrounding novel foods, particularly sprouts, microgreens, and baby leaves, attributed to their rich content of bioactive compounds, such as phenolic derivatives, glucosinolates, and vitamins. This study delves into the impact of exogenously applied melatonin on [...] Read more.
Nowadays, there is a global surge in interest surrounding novel foods, particularly sprouts, microgreens, and baby leaves, attributed to their rich content of bioactive compounds, such as phenolic derivatives, glucosinolates, and vitamins. This study delves into the impact of exogenously applied melatonin on novel foods derived from Brassica oleracea L. Two distinct cultivars of broccoli (Brassica oleracea var. italica Plenck), namely Sicilian sprouting broccoli (Broccolo nero) and a commercial variety (Cavolo Broccolo Ramoso Calabrese), were compared across the sprouts, microgreens, and baby leaves stages, adhering to organic farming practices. Various doses of melatonin (0, 50, and 100 µM) were administered at each harvesting stage. Plantlets were collected at different growth stages and assessed for key morphometric traits, including the weight, hypocotyl length, and cotyledon dimensions during the sprouts stage. For microgreens, the number and dimensions of the true leaves were recorded, while for baby leaves, the stem length was additionally measured. The analysis of glucosinolates was carried out using a high-performance liquid chromatograph with a diode array detector (HPLC-DAD). The results revealed significant variations among the experimental factors considered. Melatonin application significantly influenced the morphometric parameters at different growth stages, exhibiting notable variations in the weight, hypocotyl length, cotyledon width, and leaf width. The GLSs profile exhibited significant variations between the different growth stages and genotypes studied. Particularly noteworthy was the tendency for the GLSs content to be higher during the sprouts stage compared to the baby leaves stage, ranging from 24.07 to 4.61 µmol g−1 d.w. from sprouts to baby leaves, respectively. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

17 pages, 7310 KiB  
Article
Biofortification of Broccoli Microgreens (Brassica oleracea var. italica) with Glucosinolates, Zinc, and Iron through the Combined Application of Bio- and Nanofertilizers
by Carlos Esteban Guardiola-Márquez, C. Valentina García-Sánchez, Óscar Armando Sánchez-Arellano, Erika Melissa Bojorquez-Rodríguez and Daniel A. Jacobo-Velázquez
Foods 2023, 12(20), 3826; https://doi.org/10.3390/foods12203826 - 19 Oct 2023
Cited by 13 | Viewed by 3756
Abstract
There is a severe need to develop a sustainable, affordable, and nutritious food supply system. Broccoli microgreens have attracted attention due to their rich nutritional content and abundant bioactive compounds, constituting an important opportunity to feed the ever-increasing population and fight global health [...] Read more.
There is a severe need to develop a sustainable, affordable, and nutritious food supply system. Broccoli microgreens have attracted attention due to their rich nutritional content and abundant bioactive compounds, constituting an important opportunity to feed the ever-increasing population and fight global health problems. This study aimed to measure the impact of the combined application of biofertilizers and zinc and iron nanofertilizers on plant growth and the biofortification of glucosinolates (GLSs) and micronutrients in broccoli microgreens. Biofertilizers were based on plant growth-promoting (PGP) bacterial consortia previously isolated and characterized for multiple PGP traits. Nanofertilizers consisted of ZnO (77 nm) and γ-Fe2O3 (68 nm) nanoparticles synthesized with the coprecipitation method and functionalized with a Pseudomonas species preparation. Treatments were evaluated under seedbed conditions. Plant growth parameters of plant height (37.0–59.8%), leaf diameter (57.6–81.1%) and fresh weight (112.1–178.0%), as well as zinc (122.19–363.41%) and iron contents (55.19–161.57%), were mainly increased by nanoparticles subjected to the functionalization process with Pseudomonas species and uncapped NPs applied together with the biofertilizer treatment. Regarding GLSs, eight compounds were detected as being most positively influenced by these treatments. This work demonstrated the synergistic interactions of applying ZnO and γ-Fe2O3 nanofertilizers combined with biofertilizers to enhance plant growth and biofortify micronutrients and glucosinolates in broccoli microgreens. Full article
Show Figures

Figure 1

18 pages, 1518 KiB  
Article
Effect of Sprouting on the Phenolic Compounds, Glucosinolates, and Antioxidant Activity of Five Camelina sativa (L.) Crantz Cultivars
by Elisabetta Bravi, Beatrice Falcinelli, Giorgia Mallia, Ombretta Marconi, Aritz Royo-Esnal and Paolo Benincasa
Antioxidants 2023, 12(8), 1495; https://doi.org/10.3390/antiox12081495 - 26 Jul 2023
Cited by 8 | Viewed by 1910
Abstract
Sprouts are increasingly present in the human diet, being tasty and healthy foods high in antioxidant compounds. Although there is a body of literature on the sprouting of many plant species, Camelina sativa (L.) Crantz has not yet been studied for this purpose. [...] Read more.
Sprouts are increasingly present in the human diet, being tasty and healthy foods high in antioxidant compounds. Although there is a body of literature on the sprouting of many plant species, Camelina sativa (L.) Crantz has not yet been studied for this purpose. This study aimed to characterize the main bioactive compounds and antioxidant potential of seeds and sprouts of five different Camelina cultivars (ALBA, CO46, CCE43, JOELLE, and VERA). In particular, the contents of phenolic compounds (PCs), phenolic acids (PAs), and glucosinolates (GLSs) were investigated. PCs, PAs, GLSs, and the antioxidant activity of seeds differed among cultivars and were greatly increased by sprouting. A PCA analysis underlined both the effect of the cultivar (PC2) and the germination (PC1) on the nutritional properties of Camelina. The best nutritional properties of seeds were observed for ALBA and CCE43, while the best nutritional properties of sprouts were recorded for CCE43 and JOELLE, since the latter cultivar showed a greater enhancement in phytochemical content and antioxidant activity with sprouting. Finally, a UHPLC-UV procedure for the analysis of GLSs in Camelina was developed and validated. The performance criteria of the proposed method demonstrated that it is useful for the analysis of GLSs in Camelina. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

19 pages, 5428 KiB  
Article
The Accumulation of Health-Promoting Nutrients from Representative Organs across Multiple Developmental Stages in Orange Chinese Cabbage
by Ruixing Zhang, Jiahao Zhang, Chao Li, Qiming Pan, Saeed ul Haq, Walid F. A. Mosa, Fang Fang, Lugang Zhang and Baohua Li
Plants 2023, 12(11), 2120; https://doi.org/10.3390/plants12112120 - 26 May 2023
Cited by 5 | Viewed by 4554
Abstract
Orange Chinese cabbage (Brassica rapa L. ssp. pekinensis) is an excellent source of health-promoting nutrients that could reduce the risk of chronic diseases. This study mainly investigated the accumulation patterns of eight lines of orange Chinese cabbage for indolic glucosinolates (GLSs) [...] Read more.
Orange Chinese cabbage (Brassica rapa L. ssp. pekinensis) is an excellent source of health-promoting nutrients that could reduce the risk of chronic diseases. This study mainly investigated the accumulation patterns of eight lines of orange Chinese cabbage for indolic glucosinolates (GLSs) and pigment content from representative plant organs across multiple developmental stages. The indolic GLSs were highly accumulated at the rosette stage (S2), especially in inner and middle leaves, and the order of indolic GLSs accumulation in non-edible organs was flower > seed > stem > silique. The expression levels of biosynthetic genes in light signaling, MEP, carotenoids, and GLS pathways were consistent with the metabolic accumulation patterns. The results of a principal component analysis show a clear separation of high indolic GLS lines (15S1094 and 18BC6) from low indolic GLS lines (20S530). A negative correlation between the accumulation of indolic GLS and carotenoids was identified in our study. Our work contributes to providing valuable knowledge required to breed, grow, and select orange Chinese cabbage varieties and their eatable organs with higher nutritional value. Full article
Show Figures

Figure 1

19 pages, 1113 KiB  
Article
The Effect of Water Stress on the Glucosinolate Content and Profile: A Comparative Study on Roots and Leaves of Brassica oleracea L. Crops
by Hajer Ben Ammar, Donata Arena, Simone Treccarichi, Maria Concetta Di Bella, Sonia Marghali, Nadia Ficcadenti, Roberto Lo Scalzo and Ferdinando Branca
Agronomy 2023, 13(2), 579; https://doi.org/10.3390/agronomy13020579 - 17 Feb 2023
Cited by 34 | Viewed by 4770
Abstract
Drought is one of the major challenges of global crop production, and its severity is increasing because of climate change. This abiotic stress is an important target for Brassica species, which are generally grown in arid and semi-arid climates. This study was conducted [...] Read more.
Drought is one of the major challenges of global crop production, and its severity is increasing because of climate change. This abiotic stress is an important target for Brassica species, which are generally grown in arid and semi-arid climates. This study was conducted to investigate the effects of water deficit on a set of accessions belonging to the Brassica core collection of the EU H2020 BRESOV project, represented by Brassica oleracea L. crops and Brassica oleracea complex species (n = 9). In particular, the variation in the amount and profile of the glucosinolates (GLSs) compounds was analyzed on the root and the leaf tissues. The plant morphometric traits and GLSs amount and profile were detected for the plants grown in cold greenhouse in Catania (Sicily) during the autumn–winter season for ten weeks. The results showed a wide qualitative and quantitative variation among the Brassica accessions. The GLSs profile varied qualitatively and quantitively among both genotypes and portions of the plants (hypogenous-root and epigeous-leaf). Plants grown under drought stress, for the last two weeks of the growing cycle under consideration, showed a higher amount of GLS in their leaves (190.1 ± 8.9 µmol. g−1 d.w.) compared to their roots (17.3 ± 1.9 µmol. g−1 d.w.). Under water stress conditions, the highest increase in the glucosinolate amount was detected in broccoli (the accession BR1) with 85.4% and in cauliflower (the accession CV1) with 72.8% in the roots and leaves, respectively. Positive correlations were found between the major leaf and root GLSs identified. The selection of chemotypes allows for an important time reduction during the breeding programs after crossing accessions with the specific profiles of glucosinolates. Full article
Show Figures

Figure 1

11 pages, 1910 KiB  
Article
Glucosinolates in Wild-Growing Reseda spp. from Croatia
by Azra Đulović, Josip Tomaš and Ivica Blažević
Molecules 2023, 28(4), 1753; https://doi.org/10.3390/molecules28041753 - 12 Feb 2023
Cited by 6 | Viewed by 2665
Abstract
Glucosinolates (GSLs) are a unique class of thioglucosides that evolved as defense mechanisms in the 16 families of the Brassicales order and present molecular tags which can be placed in a robust phylogenetic framework through investigations into their evolution and diversity. The GSL [...] Read more.
Glucosinolates (GSLs) are a unique class of thioglucosides that evolved as defense mechanisms in the 16 families of the Brassicales order and present molecular tags which can be placed in a robust phylogenetic framework through investigations into their evolution and diversity. The GSL profiles of three Resedaceae species, Reseda alba, R. lutea, and R. phyteuma, were examined qualitatively and quantitatively with respect to their desulfo-counterparts utilizing UHPLC-DAD-MS/MS. In addition, NMR analysis of isolated 2-hydroxy-2-methylpropyl desulfoGSL (d31) was performed. Three Phe-derived GSLs were found in R. lutea, including glucotropaeolin (11) (0.6–106.69 mol g−1 DW), 2-(α-L-ramnopyranosyloxy)benzyl GSL (109) (8.10–57.89 μmol g−1 DW), glucolepigramin (22) (8.66 μmol g−1 DW in flower), and Trp-derived glucobrassicin (43) (0.76–5.92 μmol g−1 DW). The Phe-derived GSLs 109 (50.79–164.37 μmol g−1 DW), gluconasturtiin (105) (1.97 μmol g−1 DW), and 11 (tr), as well as the Trp-derived GSL glucobrassicin (43) (3.13–11.26 μmol g−1 DW), were all present in R. phyteuma. R. alba also contained Phe-derived 105 (0.10–107.77 μmol g−1 DW), followed by Trp-derived 43 (0.85–3.50 μmol g−1 DW) and neoglucobrassicin (47) (0.23–2.74 μmol g−1 DW). However, regarding the GSLs in R. alba, which originated from Leu biosynthesis, 31 was the major GSL (6.48 to 52.72 μmol g−1 DW) and isobutyl GSL (62) was the minor GSL (0.13 to 1.13 μmol g−1 DW). The discovered Reseda profiles, along with new evidence provided by GSL characterizations, were studied in the context of the current knowledge on GLSs in the Resedaceae family. With the exception of R. alba, the aliphatic GSLs of which were outliers among the Resedaceae species studied, this family typically contains GSLs derived primarily from Trp and Phe biosynthesis, which modifications resulted in GSLs unique to this family, implying presence of the specific genes. responsible for this diversification. Full article
Show Figures

Figure 1

17 pages, 2384 KiB  
Article
Lactic Fermentation of Broccoli (Brassica oleracea var. italica) to Enhance the Antioxidant and Antiproliferative Activities
by Daniela Iga-Buitrón, Edgar Torres-Maravilla, Luis G. Bermúdez-Humaran, Juan A. Ascacio-Valdes, Raúl Rodríguez-Herrera, Cristóbal N. Aguilar and Adriana C. Flores-Gallegos
Fermentation 2023, 9(2), 122; https://doi.org/10.3390/fermentation9020122 - 27 Jan 2023
Cited by 10 | Viewed by 3667
Abstract
Lactic acid bacteria (LAB) have been used for centuries to produce fermented foods. Cruciferous vegetables contain large amounts of health-promoting compounds such as glucosinolates (GLSs) and phenolics. GLSs and phenolics have been linked to antioxidant, anticancer, and immunosuppressive effects. However, it has been [...] Read more.
Lactic acid bacteria (LAB) have been used for centuries to produce fermented foods. Cruciferous vegetables contain large amounts of health-promoting compounds such as glucosinolates (GLSs) and phenolics. GLSs and phenolics have been linked to antioxidant, anticancer, and immunosuppressive effects. However, it has been reported that some LAB strains are able to metabolize and enhance the activities and amounts of biomolecules through decarboxylation and/or reduction activities, with positive impacts on human diet and colorectal cancer (CRC) prevention. In the present work, the bioprocessing of broccoli by lactic fermentation was evaluated to produce a functional food using both spontaneous and induced fermentation (Levilactobacillus brevis and Lactococcus lactis as starter co-culture). Changes in the proximal composition, GLSs, and phenolic content as well as the antioxidant, antiproliferative, and immunosuppressive effect of the fermented product were evaluated in in vitro cellular models to validate their potential in CRC chemoprevention. The results demonstrated that fermented broccoli extracts increased the antioxidant activity in Caco2 cells and inhibited the proliferation of HT29 and HT116 cell lines in a concentration-dependent manner, with the best results on day 6 at a concentration of 600 µg/mL. Our findings also provide evidence that fermented broccoli could have an anti-inflammatory effect. Full article
(This article belongs to the Special Issue Plant-Based Fermented Foods and Civilization Diseases)
Show Figures

Figure 1

Back to TopTop