Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (181)

Search Parameters:
Keywords = global histogramming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1506 KB  
Article
A Unified Preprocessing Pipeline for Noise-Resilient Crack Segmentation in Leaky Infrastructure Surfaces
by Jae-Jun Shin and Jeongho Cho
Sensors 2025, 25(17), 5574; https://doi.org/10.3390/s25175574 (registering DOI) - 6 Sep 2025
Abstract
Wet cracks caused by leakage often exhibit visual and structural distortions due to surface contamination, salt crystallization, and corrosion byproducts. These factors significantly degrade the performance of sensor- and vision-based crack detection systems. In moist environments, the initiation and propagation of cracks tend [...] Read more.
Wet cracks caused by leakage often exhibit visual and structural distortions due to surface contamination, salt crystallization, and corrosion byproducts. These factors significantly degrade the performance of sensor- and vision-based crack detection systems. In moist environments, the initiation and propagation of cracks tend to be highly nonlinear and irregular, making it challenging to distinguish crack regions from the background—especially under visual noise such as reflections, stains, and low contrast. To address these challenges, this study proposes a segmentation framework that integrates a dedicated preprocessing pipeline aimed at suppressing noise and enhancing feature clarity, all without altering the underlying segmentation architecture. The pipeline begins with adaptive thresholding to perform initial binarization under varying lighting conditions. This is followed by morphological operations and connected component analysis to eliminate micro-level noise and restore structural continuity of crack patterns. Subsequently, both local and global contrast are enhanced using histogram stretching and contrast limited adaptive histogram equalization. Finally, a background fusion step is applied to emphasize crack features while preserving the original surface texture. Experimental results demonstrate that the proposed method significantly improves segmentation performance under adverse conditions. Notably, it achieves a precision of 97.5% and exhibits strong robustness against noise introduced by moisture, reflections, and surface irregularities. These findings confirm that targeted preprocessing can substantially enhance the accuracy and reliability of crack detection systems deployed in real-world infrastructure inspection scenarios. Full article
14 pages, 3930 KB  
Article
GWAS-Based Prediction of Genes Regulating Trehalose and Sucrose in Potato Tubers
by Ke Deng, Yuting Bao, Minghao Xu, Chunna Lv, Long Zhao, Jian Wang and Fang Wang
Horticulturae 2025, 11(9), 1033; https://doi.org/10.3390/horticulturae11091033 - 1 Sep 2025
Viewed by 165
Abstract
As the fourth-largest global food crop, the quality and functional characteristics of processed potato products are closely linked to endogenous sugar metabolism in tubers, with the trehalose–sucrose metabolism playing a key role in processing adaptability. This study analyzed 333 accessions from a tetraploid [...] Read more.
As the fourth-largest global food crop, the quality and functional characteristics of processed potato products are closely linked to endogenous sugar metabolism in tubers, with the trehalose–sucrose metabolism playing a key role in processing adaptability. This study analyzed 333 accessions from a tetraploid potato natural population. The trehalose and sucrose content of potato tubers at harvest was quantified using the high-performance liquid chromatography (HPLC) method. Combined with whole-genome resequencing, a genome-wide association study (GWAS) was conducted to map regulatory loci and identify candidate genes. The results showed that relative trehalose content in tubers was 20.38–24.78, while relative sucrose content was 10.32–19.50. Frequency histograms for both sugars exhibited normal distributions characteristic of quantitative traits, and a positive correlation was observed between them. GWAS for trehalose identified 111 significant SNP loci, mainly on chromosomes 10 and 12, leading to the identification of 88 candidate genes. Kyoto encyclopedia of genes and genomes analysis (KEGG) revealed that trehalose-related genes were primarily involved in pathways such as ABC transporters, tricarboxylic acid (TCA) cycle, and cysteine and methionine metabolism. Candidate genes potentially regulating tuber trehalose content included GH10, GH28, GH127, UXS, UGT, PMEI, and MYB108. For sucrose, GWAS identified 279 significant SNP loci, mainly on chromosomes 5, 6, and 12, resulting in 111 candidate genes. KEGG enrichment analysis showed that sucrose-related genes were enriched in pathways including starch and sucrose metabolism, cyanoamino acid metabolism, and phenylpropanoid biosynthesis. Candidate genes potentially regulating tuber sucrose content included GH17, GH31,GH47, GH9A4, SPP1, BGLU12, GSA1, TPS8, cwINV4, HXK, UST, MYB5, MYB14, and WRKY11. Therefore, this study provides marker loci for trehalose and sucrose metabolism research, aiming to clarify their regulatory mechanisms and support potato variety improvement and superior germplasm development. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

25 pages, 9720 KB  
Article
ICESat-2 Water Photon Denoising and Water Level Extraction Method Combining Elevation Difference Exponential Attenuation Model with Hough Transform
by Xilai Ju, Yongjian Li, Song Ji, Danchao Gong, Hao Liu, Zhen Yan, Xining Liu and Hao Niu
Remote Sens. 2025, 17(16), 2885; https://doi.org/10.3390/rs17162885 - 19 Aug 2025
Viewed by 450
Abstract
For addressing the technical challenges of photon denoising and water level extraction in ICESat-2 satellite-based water monitoring applications, this paper proposes an innovative solution integrating Gaussian function fitting with Hough transform. The method first employs histogram Gaussian fitting to achieve coarse denoising of [...] Read more.
For addressing the technical challenges of photon denoising and water level extraction in ICESat-2 satellite-based water monitoring applications, this paper proposes an innovative solution integrating Gaussian function fitting with Hough transform. The method first employs histogram Gaussian fitting to achieve coarse denoising of water body regions. Subsequently, a probability attenuation model based on elevation differences between adjacent photons is constructed to accomplish refined denoising through iterative optimization of adaptive thresholds. Building upon this foundation, the Hough transform technique from image processing is introduced into photon cloud processing, enabling robust water level extraction from ICESat-2 data. Through rasterization, discrete photon distributions are converted into image space, where straight lines conforming to the photon distribution are then mapped as intersection points of sinusoidal curves in Hough space. Leveraging the noise-resistant characteristics of the Hough space accumulator, the interference from residual noise photons is effectively eliminated, thereby achieving high-precision water level line extraction. Experiments were conducted across five typical water bodies (Qinghai Lake, Long Land, Ganquan Island, Qilian Yu Islands, and Miyun Reservoir). The results demonstrate that the proposed denoising method outperforms DBSCAN and OPTICS algorithms in terms of accuracy, precision, recall, F1-score, and computational efficiency. In water level estimation, the absolute error of the Hough transform-based line detection method remains below 2 cm, significantly surpassing the performance of mean value, median value, and RANSAC algorithms. This study provides a novel technical framework for effective global water level monitoring. Full article
Show Figures

Figure 1

30 pages, 4741 KB  
Article
TriViT-Lite: A Compact Vision Transformer–MobileNet Model with Texture-Aware Attention for Real-Time Facial Emotion Recognition in Healthcare
by Waqar Riaz, Jiancheng (Charles) Ji and Asif Ullah
Electronics 2025, 14(16), 3256; https://doi.org/10.3390/electronics14163256 - 16 Aug 2025
Viewed by 355
Abstract
Facial emotion recognition has become increasingly important in healthcare, where understanding delicate cues like pain, discomfort, or unconsciousness can support more timely and responsive care. Yet, recognizing facial expressions in real-world settings remains challenging due to varying lighting, facial occlusions, and hardware limitations [...] Read more.
Facial emotion recognition has become increasingly important in healthcare, where understanding delicate cues like pain, discomfort, or unconsciousness can support more timely and responsive care. Yet, recognizing facial expressions in real-world settings remains challenging due to varying lighting, facial occlusions, and hardware limitations in clinical environments. To address this, we propose TriViT-Lite, a lightweight yet powerful model that blends three complementary components: MobileNet, for capturing fine-grained local features efficiently; Vision Transformers (ViT), for modeling global facial patterns; and handcrafted texture descriptors, such as Local Binary Patterns (LBP) and Histograms of Oriented Gradients (HOG), for added robustness. These multi-scale features are brought together through a texture-aware cross-attention fusion mechanism that helps the model focus on the most relevant facial regions dynamically. TriViT-Lite is evaluated on both benchmark datasets (FER2013, AffectNet) and a custom healthcare-oriented dataset covering seven critical emotional states, including pain and unconsciousness. It achieves a competitive accuracy of 91.8% on FER2013 and of 87.5% on the custom dataset while maintaining real-time performance (~15 FPS) on resource-constrained edge devices. Our results show that TriViT-Lite offers a practical and accurate solution for real-time emotion recognition, particularly in healthcare settings. It strikes a balance between performance, interpretability, and efficiency, making it a strong candidate for machine-learning-driven pattern recognition in patient-monitoring applications. Full article
Show Figures

Figure 1

19 pages, 1217 KB  
Article
Improving Endodontic Radiograph Interpretation with TV-CLAHE for Enhanced Root Canal Detection
by Barbara Obuchowicz, Joanna Zarzecka, Michał Strzelecki, Marzena Jakubowska, Rafał Obuchowicz, Adam Piórkowski, Elżbieta Zarzecka-Francica and Julia Lasek
J. Clin. Med. 2025, 14(15), 5554; https://doi.org/10.3390/jcm14155554 - 6 Aug 2025
Viewed by 554
Abstract
Objective: The accurate visualization of root canal systems on periapical radiographs is critical for successful endodontic treatment. This study aimed to evaluate and compare the effectiveness of several image enhancement algorithms—including a novel Total Variation–Contrast-Limited Adaptive Histogram Equalization (TV-CLAHE) technique—in improving the detectability [...] Read more.
Objective: The accurate visualization of root canal systems on periapical radiographs is critical for successful endodontic treatment. This study aimed to evaluate and compare the effectiveness of several image enhancement algorithms—including a novel Total Variation–Contrast-Limited Adaptive Histogram Equalization (TV-CLAHE) technique—in improving the detectability of root canal configurations in mandibular incisors, using cone-beam computed tomography (CBCT) as the gold standard. A null hypothesis was tested, assuming that enhancement methods would not significantly improve root canal detection compared to original radiographs. Method: A retrospective analysis was conducted on 60 periapical radiographs of mandibular incisors, resulting in 420 images after applying seven enhancement techniques: Histogram Equalization (HE), Contrast-Limited Adaptive Histogram Equalization (CLAHE), CLAHE optimized with Pelican Optimization Algorithm (CLAHE-POA), Global CLAHE (G-CLAHE), k-Caputo Fractional Differential Operator (KCFDO), and the proposed TV-CLAHE. Four experienced observers (two radiologists and two dentists) independently assessed root canal visibility. Subjective evaluation was performed using an own scale inspired by a 5-point Likert scale, and the detection accuracy was compared to the CBCT findings. Quantitative metrics including Peak Signal-to-Noise Ratio (PSNR), Signal-to-Noise Ratio (SNR), image entropy, and Structural Similarity Index Measure (SSIM) were calculated to objectively assess image quality. Results: Root canal detection accuracy improved across all enhancement methods, with the proposed TV-CLAHE algorithm achieving the highest performance (93–98% accuracy), closely approaching CBCT-level visualization. G-CLAHE also showed substantial improvement (up to 92%). Statistical analysis confirmed significant inter-method differences (p < 0.001). TV-CLAHE outperformed all other techniques in subjective quality ratings and yielded superior SNR and entropy values. Conclusions: Advanced image enhancement methods, particularly TV-CLAHE, significantly improve root canal visibility in 2D radiographs and offer a practical, low-cost alternative to CBCT in routine dental diagnostics. These findings support the integration of optimized contrast enhancement techniques into endodontic imaging workflows to reduce the risk of missed canals and improve treatment outcomes. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
Show Figures

Figure 1

24 pages, 3832 KB  
Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by Larissa S. Nazarenko, Nickolai L. Tausnev and Maxwell T. Elling
Atmosphere 2025, 16(8), 920; https://doi.org/10.3390/atmos16080920 - 30 Jul 2025
Viewed by 554
Abstract
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which [...] Read more.
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

27 pages, 8755 KB  
Article
Mapping Wetlands with High-Resolution Planet SuperDove Satellite Imagery: An Assessment of Machine Learning Models Across the Diverse Waterscapes of New Zealand
by Md. Saiful Islam Khan, Maria C. Vega-Corredor and Matthew D. Wilson
Remote Sens. 2025, 17(15), 2626; https://doi.org/10.3390/rs17152626 - 29 Jul 2025
Viewed by 785
Abstract
(1) Background: Wetlands are ecologically significant ecosystems that support biodiversity and contribute to essential environmental functions such as water purification, carbon storage and flood regulation. However, these ecosystems face increasing pressures from land-use change and degradation, prompting the need for scalable and accurate [...] Read more.
(1) Background: Wetlands are ecologically significant ecosystems that support biodiversity and contribute to essential environmental functions such as water purification, carbon storage and flood regulation. However, these ecosystems face increasing pressures from land-use change and degradation, prompting the need for scalable and accurate classification methods to support conservation and policy efforts. In this research, our motivation was to test whether high-spatial-resolution PlanetScope imagery can be used with pixel-based machine learning to support the mapping and monitoring of wetlands at a national scale. (2) Methods: This study compared four machine learning classification models—Random Forest (RF), XGBoost (XGB), Histogram-Based Gradient Boosting (HGB) and a Multi-Layer Perceptron Classifier (MLPC)—to detect and map wetland areas across New Zealand. All models were trained using eight-band SuperDove satellite imagery from PlanetScope, with a spatial resolution of ~3 m, and ancillary geospatial datasets representing topography and soil drainage characteristics, each of which is available globally. (3) Results: All four machine learning models performed well in detecting wetlands from SuperDove imagery and environmental covariates, with varying strengths. The highest accuracy was achieved using all eight image bands alongside features created from supporting geospatial data. For binary wetland classification, the highest F1 scores were recorded by XGB (0.73) and RF/HGB (both 0.72) when including all covariates. MLPC also showed competitive performance (wetland F1 score of 0.71), despite its relatively lower spatial consistency. However, each model over-predicts total wetland area at a national level, an issue which was able to be reduced by increasing the classification probability threshold and spatial filtering. (4) Conclusions: The comparative analysis highlights the strengths and trade-offs of RF, XGB, HGB and MLPC models for wetland classification. While all four methods are viable, RF offers some key advantages, including ease of deployment and transferability, positioning it as a promising candidate for scalable, high-resolution wetland monitoring across diverse ecological settings. Further work is required for verification of small-scale wetlands (<~0.5 ha) and the addition of fine-spatial-scale covariates. Full article
Show Figures

Figure 1

11 pages, 1521 KB  
Communication
Research on the Grinding Quality Evaluation of Composite Materials Based on Multi-Scale Texture Fusion Analysis
by Yangjun Wang, Zilu Liu, Li Ling, Anru Guo, Jiacheng Li, Jiachang Liu, Chunju Wang, Mingqiang Pan and Wei Song
Materials 2025, 18(15), 3540; https://doi.org/10.3390/ma18153540 - 28 Jul 2025
Viewed by 333
Abstract
To address the challenges of manual inspection dependency, low efficiency, and high costs in evaluating the surface grinding quality of composite materials, this study investigated machine vision-based surface recognition algorithms. We proposed a multi-scale texture fusion analysis algorithm that innovatively integrated luminance analysis [...] Read more.
To address the challenges of manual inspection dependency, low efficiency, and high costs in evaluating the surface grinding quality of composite materials, this study investigated machine vision-based surface recognition algorithms. We proposed a multi-scale texture fusion analysis algorithm that innovatively integrated luminance analysis with multi-scale texture features through decision-level fusion. Specifically, a modified Rayleigh parameter was developed during luminance analysis to rapidly pre-segment unpolished areas by characterizing surface reflection properties. Furthermore, we enhanced the traditional Otsu algorithm by incorporating global grayscale mean (μ) and standard deviation (σ), overcoming its inherent limitations of exclusive reliance on grayscale histograms and lack of multimodal feature integration. This optimization enables simultaneous detection of specular reflection defects and texture uniformity variations. To improve detection window adaptability across heterogeneous surface regions, we designed a multi-scale texture analysis framework operating at multiple resolutions. Through decision-level fusion of luminance analysis and multi-scale texture evaluation, the proposed algorithm achieved 96% recognition accuracy with >95% reliability, demonstrating robust performance for automated surface grinding quality assessment of composite materials. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

14 pages, 1209 KB  
Article
Investigation of Growth Differentiation Factor 15 as a Prognostic Biomarker for Major Adverse Limb Events in Peripheral Artery Disease
by Ben Li, Farah Shaikh, Houssam Younes, Batool Abuhalimeh, Abdelrahman Zamzam, Rawand Abdin and Mohammad Qadura
J. Clin. Med. 2025, 14(15), 5239; https://doi.org/10.3390/jcm14155239 - 24 Jul 2025
Viewed by 456
Abstract
Background/Objectives: Peripheral artery disease (PAD) impacts more than 200 million individuals globally and leads to mortality and morbidity secondary to progressive limb dysfunction and amputation. However, clinical management of PAD remains suboptimal, in part because of the lack of standardized biomarkers to predict [...] Read more.
Background/Objectives: Peripheral artery disease (PAD) impacts more than 200 million individuals globally and leads to mortality and morbidity secondary to progressive limb dysfunction and amputation. However, clinical management of PAD remains suboptimal, in part because of the lack of standardized biomarkers to predict patient outcomes. Growth differentiation factor 15 (GDF15) is a stress-responsive cytokine that has been studied extensively in cardiovascular disease, but its investigation in PAD remains limited. This study aimed to use explainable statistical and machine learning methods to assess the prognostic value of GDF15 for limb outcomes in patients with PAD. Methods: This prognostic investigation was carried out using a prospectively enrolled cohort comprising 454 patients diagnosed with PAD. At baseline, plasma GDF15 levels were measured using a validated multiplex immunoassay. Participants were monitored over a two-year period to assess the occurrence of major adverse limb events (MALE), a composite outcome encompassing major lower extremity amputation, need for open/endovascular revascularization, or acute limb ischemia. An Extreme Gradient Boosting (XGBoost) model was trained to predict 2-year MALE using 10-fold cross-validation, incorporating GDF15 levels along with baseline variables. Model performance was primarily evaluated using the area under the receiver operating characteristic curve (AUROC). Secondary model evaluation metrics were accuracy, sensitivity, specificity, negative predictive value (NPV), and positive predictive value (PPV). Prediction histogram plots were generated to assess the ability of the model to discriminate between patients who develop vs. do not develop 2-year MALE. For model interpretability, SHapley Additive exPlanations (SHAP) analysis was performed to evaluate the relative contribution of each predictor to model outputs. Results: The mean age of the cohort was 71 (SD 10) years, with 31% (n = 139) being female. Over the two-year follow-up period, 157 patients (34.6%) experienced MALE. The XGBoost model incorporating plasma GDF15 levels and demographic/clinical features achieved excellent performance for predicting 2-year MALE in PAD patients: AUROC 0.84, accuracy 83.5%, sensitivity 83.6%, specificity 83.7%, PPV 87.3%, and NPV 86.2%. The prediction probability histogram for the XGBoost model demonstrated clear separation for patients who developed vs. did not develop 2-year MALE, indicating strong discrimination ability. SHAP analysis showed that GDF15 was the strongest predictive feature for 2-year MALE, followed by age, smoking status, and other cardiovascular comorbidities, highlighting its clinical relevance. Conclusions: Using explainable statistical and machine learning methods, we demonstrated that plasma GDF15 levels have important prognostic value for 2-year MALE in patients with PAD. By integrating clinical variables with GDF15 levels, our machine learning model can support early identification of PAD patients at elevated risk for adverse limb events, facilitating timely referral to vascular specialists and aiding in decisions regarding the aggressiveness of medical/surgical treatment. This precision medicine approach based on a biomarker-guided prognostication algorithm offers a promising strategy for improving limb outcomes in individuals with PAD. Full article
(This article belongs to the Special Issue The Role of Biomarkers in Cardiovascular Diseases)
Show Figures

Figure 1

21 pages, 3581 KB  
Article
Non-Destructive Detection of Pomegranate Blackheart Disease via Near-Infrared Spectroscopy and Soft X-ray Imaging Systems
by Rongke Nie, Xingyi Huang, Xiaoyu Tian, Shanshan Yu, Chunxia Dai, Xiaorui Zhang and Qin Fang
Foods 2025, 14(14), 2454; https://doi.org/10.3390/foods14142454 - 12 Jul 2025
Viewed by 295
Abstract
Pomegranate blackheart disease, as an internal disease affecting the global pomegranate industry, is difficult to identify externally and urgently requires non-destructive detection methods for rapid diagnosis. This study established discriminative models for blackheart disease severity in pomegranates by using near-infrared (NIR) spectroscopy and [...] Read more.
Pomegranate blackheart disease, as an internal disease affecting the global pomegranate industry, is difficult to identify externally and urgently requires non-destructive detection methods for rapid diagnosis. This study established discriminative models for blackheart disease severity in pomegranates by using near-infrared (NIR) spectroscopy and soft X-ray imaging techniques. The results showed that the optimal NIR-based discriminative model, constructed with a Random Forest (RF) algorithm based on spectra preprocessed by the second-derivative (D2) denoising and a Competitive Adaptive Reweighted Sampling (CARS) algorithm, achieved a prediction set accuracy of 86.00%; the optimal soft X-ray imaging-based discriminative model, built with an RF algorithm using textural features extracted from images preprocessed by median filtering and a Contrast-Limited Adaptive Histogram Equalization (CLAHE) algorithm combined with gray-level co-occurrence matrix (GLCM) and gray-gradient co-occurrence matrix (GGCM) algorithms, reached a prediction set accuracy of 93.10%. In terms of model performance, the model based on soft X-ray imaging exhibited superior performance. Both techniques possess distinct advantages and limitations yet enable non-destructive detection of pomegranate blackheart disease. Further technical optimizations in the future could provide enhanced support for the healthy development of the pomegranate industry. Full article
Show Figures

Figure 1

25 pages, 2841 KB  
Article
Dynamic Graph Neural Network for Garbage Classification Based on Multimodal Feature Fusion
by Yuhang Yang, Yuanqing Luo, Yingyu Yang and Shuang Kang
Appl. Sci. 2025, 15(14), 7688; https://doi.org/10.3390/app15147688 - 9 Jul 2025
Viewed by 400
Abstract
Amid the accelerating pace of global urbanization, the volume of municipal solid garbage has surged dramatically, thereby demanding more efficient and precise garbage management technologies. In this paper, we introduce a novel garbage classification approach that leverages a dynamic graph neural network based [...] Read more.
Amid the accelerating pace of global urbanization, the volume of municipal solid garbage has surged dramatically, thereby demanding more efficient and precise garbage management technologies. In this paper, we introduce a novel garbage classification approach that leverages a dynamic graph neural network based on multimodal feature fusion. Specifically, the proposed method employs an enhanced Residual Network Attention Module (RNAM) network to capture deep semantic features and utilizes CIELAB color (LAB) histograms to extract color distribution characteristics, achieving a complementary integration of multimodal information. An adaptive K-nearest neighbor algorithm is utilized to construct the dynamic graph structure, while the incorporation of a multi-head attention layer within the graph neural network facilitates the efficient aggregation of both local and global features. This design significantly enhances the model’s ability to discriminate among various garbage categories. Experimental evaluations reveal that on our self-curated KRHO dataset, all performance metrics approach 1.00, and the overall classification accuracy reaches an impressive 99.33%, surpassing existing mainstream models. Moreover, on the public TrashNet dataset, the proposed method demonstrates equally outstanding classification performance and robustness, achieving an overall accuracy of 99.49%. Additionally, hyperparameter studies indicate that the model attains optimal performance with a learning rate of 2 × 10−4, a dropout rate of 0.3, an initial neighbor count of 20, and 8 attention heads. Full article
Show Figures

Figure 1

26 pages, 4907 KB  
Article
A Novel Approach Utilizing Bagging, Histogram Gradient Boosting, and Advanced Feature Selection for Predicting the Onset of Cardiovascular Diseases
by Norma Latif Fitriyani, Muhammad Syafrudin, Nur Chamidah, Marisa Rifada, Hendri Susilo, Dursun Aydin, Syifa Latif Qolbiyani and Seung Won Lee
Mathematics 2025, 13(13), 2194; https://doi.org/10.3390/math13132194 - 4 Jul 2025
Viewed by 544
Abstract
Cardiovascular diseases (CVDs) rank among the leading global causes of mortality, underscoring the necessity for early detection and effective management. This research presents a novel prediction model for CVDs utilizing a bagging algorithm that incorporates histogram gradient boosting as the estimator. This study [...] Read more.
Cardiovascular diseases (CVDs) rank among the leading global causes of mortality, underscoring the necessity for early detection and effective management. This research presents a novel prediction model for CVDs utilizing a bagging algorithm that incorporates histogram gradient boosting as the estimator. This study leverages three preprocessed cardiovascular datasets, employing the Local Outlier Factor technique for outlier removal and the information gain method for feature selection. Through rigorous experimentation, the proposed model demonstrates superior performance compared to conventional machine learning approaches, such as Logistic Regression, Support Vector Classification, Gaussian Naïve Bayes, Multi-Layer Perceptron, k-nearest neighbors, Random Forest, AdaBoost, gradient boosting, and histogram gradient boosting. Evaluation metrics, including precision, recall, F1 score, accuracy, and AUC, yielded impressive results: 93.90%, 98.83%, 96.30%, 96.25%, and 0.9916 for dataset I; 94.17%, 99.05%, 96.54%, 96.48%, and 0.9931 for dataset II; and 89.81%, 82.40%, 85.91%, 86.66%, and 0.9274 for dataset III. The findings indicate that the proposed prediction model has the potential to facilitate early CVD detection, thereby enhancing preventive strategies and improving patient outcomes. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Decision Making)
Show Figures

Figure 1

24 pages, 1732 KB  
Article
Model-Based Design of Contrast-Limited Histogram Equalization for Low-Complexity, High-Speed, and Low-Power Tone-Mapping Operation
by Wei Dong, Maikon Nascimento and Dileepan Joseph
Electronics 2025, 14(12), 2416; https://doi.org/10.3390/electronics14122416 - 13 Jun 2025
Viewed by 469
Abstract
Imaging applications involving outdoor scenes and fast motion require sensing and processing of high-dynamic-range images at video rates. In turn, image signal processing pipelines that serve low-dynamic-range displays require tone mapping operators (TMOs). For high-speed and low-power applications with low-cost field-programmable gate arrays [...] Read more.
Imaging applications involving outdoor scenes and fast motion require sensing and processing of high-dynamic-range images at video rates. In turn, image signal processing pipelines that serve low-dynamic-range displays require tone mapping operators (TMOs). For high-speed and low-power applications with low-cost field-programmable gate arrays (FPGAs), global TMOs that employ contrast-limited histogram equalization prove ideal. To develop such TMOs, this work proposes a MATLAB–Simulink–Vivado design flow. A realized design capable of megapixel video rates using milliwatts of power requires only a fraction of the resources available in the lowest-cost Artix-7 device from Xilinx (now Advanced Micro Devices). Unlike histogram-based TMO approaches for nonlinear sensors in the literature, this work exploits Simulink modeling to reduce the total required FPGA memory by orders of magnitude with minimal impact on video output. After refactoring an approach from the literature that incorporates two subsystems (Base Histograms and Tone Mapping) to one incorporating four subsystems (Scene Histogram, Perceived Histogram, Tone Function, and Global Mapping), memory is exponentially reduced by introducing a fifth subsystem (Interpolation). As a crucial stepping stone between MATLAB algorithm abstraction and Vivado circuit realization, the Simulink modeling facilitated a bit-true design flow. Full article
(This article belongs to the Special Issue Design of Low-Voltage and Low-Power Integrated Circuits)
Show Figures

Figure 1

35 pages, 24325 KB  
Article
Enhancing Digital Twin Fidelity Through Low-Discrepancy Sequence and Hilbert Curve-Driven Point Cloud Down-Sampling
by Yuening Ma, Liang Guo and Min Li
Sensors 2025, 25(12), 3656; https://doi.org/10.3390/s25123656 - 11 Jun 2025
Viewed by 684
Abstract
This paper addresses the critical challenge of point cloud down-sampling for digital twin creation, where reducing data volume while preserving geometric fidelity remains an ongoing research problem. We propose a novel down-sampling approach that combines Low-Discrepancy Sequences (LDS) with Hilbert curve ordering to [...] Read more.
This paper addresses the critical challenge of point cloud down-sampling for digital twin creation, where reducing data volume while preserving geometric fidelity remains an ongoing research problem. We propose a novel down-sampling approach that combines Low-Discrepancy Sequences (LDS) with Hilbert curve ordering to create a method that preserves both global distribution characteristics and local geometric features. Unlike traditional methods that impose uniform density or rely on computationally intensive feature detection, our LDS-Hilbert approach leverages the complementary mathematical properties of Low-Discrepancy Sequences and space-filling curves to achieve balanced sampling that respects the original density distribution while ensuring comprehensive coverage. Through four comprehensive experiments covering parametric surface fitting, mesh reconstruction from basic closed geometries, complex CAD models, and real-world laser scans, we demonstrate that LDS-Hilbert consistently outperforms established methods, including Simple Random Sampling (SRS), Farthest Point Sampling (FPS), and Voxel Grid Filtering (Voxel). Results show parameter recovery improvements often exceeding 50% for parametric models compared to the FPS and Voxel methods, nearly 50% better shape preservation as measured by the Point-to-Mesh Distance (than FPS) and up to 160% as measured by the Viewpoint Feature Histogram Distance (than SRS) on complex real-world scans. The method achieves these improvements without requiring feature-specific calculations, extensive pre-processing, or task-specific training data, making it a practical advance for enhancing digital twin fidelity across diverse application domains. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

22 pages, 4582 KB  
Article
Enhanced Object Detection in Thangka Images Using Gabor, Wavelet, and Color Feature Fusion
by Yukai Xian, Yurui Lee, Te Shen, Ping Lan, Qijun Zhao and Liang Yan
Sensors 2025, 25(11), 3565; https://doi.org/10.3390/s25113565 - 5 Jun 2025
Cited by 1 | Viewed by 585
Abstract
Thangka image detection poses unique challenges due to complex iconography, densely packed small-scale elements, and stylized color–texture compositions. Existing detectors often struggle to capture both global structures and local details and rarely leverage domain-specific visual priors. To address this, we propose a frequency- [...] Read more.
Thangka image detection poses unique challenges due to complex iconography, densely packed small-scale elements, and stylized color–texture compositions. Existing detectors often struggle to capture both global structures and local details and rarely leverage domain-specific visual priors. To address this, we propose a frequency- and prior-enhanced detection framework based on YOLOv11, specifically tailored for Thangka images. We introduce a Learnable Lifting Wavelet Block (LLWB) to decompose features into low- and high-frequency components, while LLWB_Down and LLWB_Up enable frequency-guided multi-scale fusion. To incorporate chromatic and directional cues, we design a Color-Gabor Block (CGBlock), a dual-branch attention module based on HSV histograms and Gabor responses, and embed it via the Color-Gabor Cross Gate (C2CG) residual fusion module. Furthermore, we redesign all detection heads with decoupled branches and introduce center-ness prediction, alongside an additional shallow detection head to improve recall for ultra-small targets. Extensive experiments on a curated Thangka dataset demonstrate that our model achieves 89.5% mAP@0.5, 59.4% mAP@[0.5:0.95], and 84.7% recall, surpassing all baseline detectors while maintaining a compact size of 20.9 M parameters. Ablation studies validate the individual and synergistic contributions of each proposed component. Our method provides a robust and interpretable solution for fine-grained object detection in complex heritage images. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

Back to TopTop