Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = glass surface decoration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5858 KiB  
Article
Ag NP-Decorated Glass Surfaces for Sensing in Medical Applications
by Cornelia-Ioana Ilie, Angela Spoială, Ludmila Motelica, Liliana Marinescu, Zeno Ghizdăveț, Doina-Roxana Trușcă, Ovidiu-Cristian Oprea, Denisa Ficai and Anton Ficai
Coatings 2025, 15(4), 426; https://doi.org/10.3390/coatings15040426 - 3 Apr 2025
Viewed by 511
Abstract
In recent decades, applications related to sensing have grown increasingly, transforming and expanding their fields into innovative research. Lately, researchers have demonstrated that immobilizing metal nanoparticles on glass-based platforms may render innovative perspectives for sensing applications. As a result, the focus of this [...] Read more.
In recent decades, applications related to sensing have grown increasingly, transforming and expanding their fields into innovative research. Lately, researchers have demonstrated that immobilizing metal nanoparticles on glass-based platforms may render innovative perspectives for sensing applications. As a result, the focus of this study was to develop glass-based platforms functionalized with silver nanoparticles, intending them to be utilized in sensing applications. The purpose of using glass-based platforms is due to their availability and eco-friendly features, which will make them suitable for such applications. The study uses a glass-based platform functionalized/modified with organosilanes (such as mercaptoalkyl trialkoxysilane), which can have a high affinity for Ag NPs. By decorating the glass surface with Ag NPs, it becomes active for the adsorption of the mercapto derivatives and further usage in sensing applications (specific drugs with an antitumoral, anti-hypertensive, antiarthritic role, neurotransmitters, etc.) but also for specific classes of pollutants for environmental applications. Therefore, the desired purpose of this study was to develop glass-based platforms decorated with Ag NPs and their further use in the selective adsorption of thioderivatives (cysteine was selected as a model component) even from a mixture of amino acids (cysteine, alanine, and threonine). Full article
Show Figures

Figure 1

27 pages, 17029 KiB  
Article
Influence of the Addition of TiO2 Nanoparticles on the Self-Cleaning Capacity of Cementitious Composites
by Carmen Teodora Florean, Alexandra Csapai, Horatiu Vermesan, Timea Gabor, Andreea Hegyi, Vlad Stoian, Willi Andrei Uriciuc, Cristian Petcu and Marius Cîmpan
Materials 2024, 17(13), 3098; https://doi.org/10.3390/ma17133098 - 25 Jun 2024
Cited by 2 | Viewed by 4496
Abstract
This study evaluated the potential of incorporating TiO2 nanoparticles (NT) into cementitious composites to provide self-cleaning and self-sanitising properties, as well as the partial replacement of natural aggregates with recycled glass (RGA), ceramic brick (RBA), granulated blast furnace slag (GBA), and textolite [...] Read more.
This study evaluated the potential of incorporating TiO2 nanoparticles (NT) into cementitious composites to provide self-cleaning and self-sanitising properties, as well as the partial replacement of natural aggregates with recycled glass (RGA), ceramic brick (RBA), granulated blast furnace slag (GBA), and textolite waste (RTA) from electronic equipment on these properties. Based on the research results, the addition of NT to cementitious composites led to a significant reduction in contact angle, which means an increase in surface hydrophilicity. At the same time, Rhodamine B stain fading was highlighted, with the degree of whiteness recovery of NT composites exceeding that of the control by up to 11% for natural aggregate compositions, 10.6% for RGA compositions, 19.9% for RBA compositions, 15% for GBA compositions, and 13% for RTA compositions. In a mould-contaminated environment, it was shown that the introduction of NT allowed the material to develop a biocidal surface capacity which is also influenced by the nature of the aggregates used. Furthermore, the study revealed that, under controlled conditions, certain recycled waste aggregates, such as textolite, promoted mould growth, while others, such as brick and slag, inhibited it, highlighting not just the effect of the addition of NT, but also the significant influence of the aggregate type on the microbial resistance of cementitious composites. These improvements in the performance of cementitious composites are particularly advantageous when applied to prefabricated elements intended for the finishing and decorative surfaces of institutional (schools, administrative buildings, religious structures, etc.) or residential buildings. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

13 pages, 4428 KiB  
Article
Photocatalytic Deposition of Au Nanoparticles on Ti3C2Tx MXene Substrates for Surface-Enhanced Raman Scattering
by Zhi Yang, Lu Yang, Yucun Liu and Lei Chen
Molecules 2024, 29(10), 2383; https://doi.org/10.3390/molecules29102383 - 18 May 2024
Cited by 11 | Viewed by 2618
Abstract
Surface-enhanced Raman scattering (SERS) is a promising technique for sensitive detection. The design and optimization of plasma-enhanced structures for SERS applications is an interesting challenge. In this study, we found that the SERS activity of MXene (Ti3C2Tx) [...] Read more.
Surface-enhanced Raman scattering (SERS) is a promising technique for sensitive detection. The design and optimization of plasma-enhanced structures for SERS applications is an interesting challenge. In this study, we found that the SERS activity of MXene (Ti3C2Tx) can be improved by adding Au nanoparticles (NPs) in a simple photoreduction process. Fluoride-salt-etched MXene was deposited by drop-casting on a glass slide, and Au NPs were formed by the photocatalytic growth of gold(III) chloride trihydrate solutions under ultraviolet (UV) irradiation. The Au–MXene substrate formed by Au NPs anchored on the Ti3C2Tx sheet produced significant SERS through the synergistic effect of chemical and electromagnetic mechanisms. The structure and size of the Au-decorated MXene depended on the reaction time. When the MXene films were irradiated with a large number of UV photons, the size of the Au NPs increased. Hot spots were formed in the nanoscale gaps between the Au NPs, and the abundant surface functional groups of the MXene effectively adsorbed and interacted with the probe molecules. Simultaneously, as a SERS substrate, the proposed Au–MXene composite exhibited a wider linear range of 10−4–10−9 mol/L for detecting carbendazim. In addition, the enhancement factor of the optimized SERS substrate Au–MXene was 1.39 × 106, and its relative standard deviation was less than 13%. This study provides a new concept for extending experimental strategies to further improve the performance of SERS. Full article
(This article belongs to the Special Issue Advances in the Applications of Surface Enhanced Raman Scattering)
Show Figures

Figure 1

32 pages, 9240 KiB  
Article
Gelatine Blends Modified with Polysaccharides: A Potential Alternative to Non-Degradable Plastics
by Oleksandra Dzeikala, Miroslawa Prochon and Natalia Sedzikowska
Int. J. Mol. Sci. 2024, 25(8), 4333; https://doi.org/10.3390/ijms25084333 - 14 Apr 2024
Cited by 5 | Viewed by 1982
Abstract
Non-degradable plastics of petrochemical origin are a contemporary problem of society. Due to the large amount of plastic waste, there are problems with their disposal or storage, where the most common types of plastic waste are disposable tableware, bags, packaging, bottles, and containers, [...] Read more.
Non-degradable plastics of petrochemical origin are a contemporary problem of society. Due to the large amount of plastic waste, there are problems with their disposal or storage, where the most common types of plastic waste are disposable tableware, bags, packaging, bottles, and containers, and not all of them can be recycled. Due to growing ecological awareness, interest in the topics of biodegradable materials suitable for disposable items has begun to reduce the consumption of non-degradable plastics. An example of such materials are biodegradable biopolymers and their derivatives, which can be used to create the so-called bioplastics and biopolymer blends. In this article, gelatine blends modified with polysaccharides (e.g., agarose or carrageenan) were created and tested in order to obtain a stable biopolymer coating. Various techniques were used to characterize the resulting bioplastics, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA)/differential scanning calorimetry (DSC), contact angle measurements, and surface energy characterization. The influence of thermal and microbiological degradation on the properties of the blends was also investigated. From the analysis, it can be observed that the addition of agarose increased the hardness of the mixture by 27% compared to the control sample without the addition of polysaccharides. In addition, there was an increase in the surface energy (24%), softening point (15%), and glass transition temperature (14%) compared to the control sample. The addition of starch to the gelatine matrix increased the softening point by 15% and the glass transition temperature by 6%. After aging, both compounds showed an increase in hardness of 26% and a decrease in tensile strength of 60%. This offers an opportunity as application materials in the form of biopolymer coatings, dietary supplements, skin care products, short-term and single-contact decorative elements, food, medical, floriculture, and decorative industries. Full article
(This article belongs to the Section Materials Science)
Show Figures

Graphical abstract

14 pages, 5133 KiB  
Article
Excellent Photoelectro-Catalytic Performance of In2S3/NiFe-LDH Prepared by a Two-Step Method
by Xiaona Liu, Zhenzhen Li, Wenxia Liu, Huili Wang, Zhaoping Song, Dehai Yu and Guodong Li
Catalysts 2024, 14(4), 230; https://doi.org/10.3390/catal14040230 - 29 Mar 2024
Viewed by 1544
Abstract
In this work, we synthesize hierarchical In2S3/NiFe-layered double hydroxide (In2S3/NiFe-LDH) nanoarrays on an F-doped SnO2 glass substrate via a two-step method, which the In2S3 electrode film was firstly prepared using chemical [...] Read more.
In this work, we synthesize hierarchical In2S3/NiFe-layered double hydroxide (In2S3/NiFe-LDH) nanoarrays on an F-doped SnO2 glass substrate via a two-step method, which the In2S3 electrode film was firstly prepared using chemical bath deposition on F-doped SnO2 glass substrate, and then the layered NiFe-LDH was deposited on In2S3 electrode film by hydrothermal synthesis. The two-component photoanode In2S3/NiFe-LDH exhibits significantly enhanced photoelectrochemical properties compared with the In2S3 single-component; due to that, the NiFe-LDH nanosheets depositing on the surface of In2S3 nanocrystal can reduce the accumulation of photogenic holes, facilitate the separation of photogenerated charge carriers, and enhance the light response and absorption. After being decorated with the NiFe-LDH nanosheets, the In2S3/NiFe-LDH photoanode displays a lower onset potential of 0.06 V and an enhanced photocurrent density as high as 0.30 mA·cm−2 at the potential of 1.0 V (vs. RHE). Furthermore, it also displays a 90% degradation rate of xylose oxidizing into xylose acid in 3 h under UV light. This work provides a promising approach for designing new heterojunctions applied to biomass degradation. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Figure 1

16 pages, 27031 KiB  
Article
Study of Selective Modification Effect of Constructed Structural Color Layers on EUROPEAN Beech Wood Surfaces
by Jing Hu, Yi Liu, Jinxiang Wang and Wei Xu
Forests 2024, 15(2), 261; https://doi.org/10.3390/f15020261 - 29 Jan 2024
Cited by 12 | Viewed by 1384
Abstract
In this study, the brush method was used to construct structural color layers on the surface of European beech wood, which has wide rays. The purpose was to expand the research on the structural color modification of wood surfaces and to promote its [...] Read more.
In this study, the brush method was used to construct structural color layers on the surface of European beech wood, which has wide rays. The purpose was to expand the research on the structural color modification of wood surfaces and to promote its industrial application. By comparing the structural color layers constructed through brushing on beech wood and glass surfaces, the construction speed on the wood surface was significantly faster than that on the glass surface, which was mainly attributed to the porous structure and hydrophilicity of the wood, which made the solvents to be absorbed quickly, greatly improving construction efficiency. At the same time, the wide-ray regions of the European beech wood showed distinct and excellent structural color modification effects. This specific effect was not only reflected in faster construction speeds than other regions, but also in a complete and full-color block. Moreover, by changing the particle size, raw material, and structure of the microspheres, and by brushing several times, the special construction phenomenon and decorative effect still existed. By characterizing the surface morphology and roughness of beech wood, it was found that the surface of the wide rays was flatter than other anatomical structural regions, which was more conducive to the self-assembly of microspheres and the formation of a structural color layer. The results of this study will help to advance the development of technologies such as structural color-selective modification of wood surfaces. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

16 pages, 8462 KiB  
Article
Osteogenic Potential of a Biomaterial Enriched with Osteostatin and Mesenchymal Stem Cells in Osteoporotic Rabbits
by Gonzalo Luengo-Alonso, Beatriz Bravo-Gimenez, Daniel Lozano, Clara Heras, Sandra Sanchez-Salcedo, Lorena Benito-Garzón, Monica Abella, María Vallet-Regi, David Cecilia-Lopez and Antonio J. Salinas
Biomolecules 2024, 14(2), 143; https://doi.org/10.3390/biom14020143 - 23 Jan 2024
Cited by 3 | Viewed by 1937
Abstract
Mesoporous bioactive glasses (MBGs) of the SiO2–CaO–P2O5 system are biocompatible materials with a quick and effective in vitro and in vivo bioactive response. MBGs can be enhanced by including therapeutically active ions in their composition, by hosting osteogenic [...] Read more.
Mesoporous bioactive glasses (MBGs) of the SiO2–CaO–P2O5 system are biocompatible materials with a quick and effective in vitro and in vivo bioactive response. MBGs can be enhanced by including therapeutically active ions in their composition, by hosting osteogenic molecules within their mesopores, or by decorating their surfaces with mesenchymal stem cells (MSCs). In previous studies, our group showed that MBGs, ZnO-enriched and loaded with the osteogenic peptide osteostatin (OST), and MSCs exhibited osteogenic features under in vitro conditions. The aim of the present study was to evaluate bone repair capability after large bone defect treatment in distal femur osteoporotic rabbits using MBGs (76%SiO2–15%CaO–5%P2O5–4%ZnO (mol-%)) before and after loading with OST and MSCs from a donor rabbit. MSCs presence and/or OST in scaffolds significantly improved bone repair capacity at 6 and 12 weeks, as confirmed by variations observed in trabecular and cortical bone parameters obtained by micro-CT as well as histological analysis results. A greater effect was observed when OST and MSCs were combined. These findings may indicate the great potential for treating critical bone defects by combining MBGs with MSCs and osteogenic peptides such as OST, with good prospects for translation to clinical practice. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 12915 KiB  
Article
Decoration of a Glass Surface with AgNPs Using Thio-Derivates for Environmental Applications
by Cornelia-Ioana Ilie, Angela Spoială, Ludmila Motelica, Liliana Marinescu, Georgiana Dolete, Doina-Roxana Trușcă, Ovidiu-Cristian Oprea, Denisa Ficai and Anton Ficai
Coatings 2024, 14(1), 96; https://doi.org/10.3390/coatings14010096 - 11 Jan 2024
Cited by 4 | Viewed by 2406
Abstract
The aim of this study is to decorate a glass surface with silver nanoparticles (AgNPs) and further prove its efficiency in the removal of some thio-derivatives—potential pollutants from water. Therefore, grafting the surface of glass-based platforms with AgNPs will strongly influence their interaction [...] Read more.
The aim of this study is to decorate a glass surface with silver nanoparticles (AgNPs) and further prove its efficiency in the removal of some thio-derivatives—potential pollutants from water. Therefore, grafting the surface of glass-based platforms with AgNPs will strongly influence their interaction with other substances or molecules. The most commonly used molecules for glass-based platform functionalization/modification are organosilanes. In this case, the main interest is in thioalkyl organosilanes because, after silanization, the thio (-SH) functional groups that have a high affinity for AgNPs can intermediate their binding on the surface. By decorating the glass platforms with AgNPs, these surfaces become active for the adsorption of dyes from wastewater. Certainly, in this case, the dyes must bear -SH groups to ensure a high affinity for these surfaces. Therefore, the desired purpose of this study was to develop glass-based platforms decorated with AgNPs able to bind model molecules—dyes from aqueous media (dithizone—DIT and thioindigo—TIO), with these platforms being potentially used for environmental applications. Full article
Show Figures

Figure 1

18 pages, 6815 KiB  
Article
Enhanced Thermal and Dielectric Properties of Polyarylene Ether Nitrile Nanocomposites Incorporated with BN/TiO2-Based Hybrids for Flexible Dielectrics
by Yong You, Siyi Chen, Shuang Yang, Lianjun Li and Pan Wang
Polymers 2023, 15(21), 4279; https://doi.org/10.3390/polym15214279 - 31 Oct 2023
Cited by 4 | Viewed by 1920
Abstract
Outstanding high-temperature resistance, thermal stability, and dielectric properties are fundamental for dielectric materials used in harsh environments. Herein, TiO2 nanoparticles are decorated on the surface of BN nanosheets by internal crosslinking between polydopamine (PDA) and polyethyleneimine (PEI), forming three-dimensional novel nanohybrids with [...] Read more.
Outstanding high-temperature resistance, thermal stability, and dielectric properties are fundamental for dielectric materials used in harsh environments. Herein, TiO2 nanoparticles are decorated on the surface of BN nanosheets by internal crosslinking between polydopamine (PDA) and polyethyleneimine (PEI), forming three-dimensional novel nanohybrids with a rough surface. Then, an ether nitrile (PEN) matrix is introduced into the polyarylene to form polymer-based nanocomposite dielectric films. Meanwhile, the structure and micromorphology of the newly prepared nanohybrids, as well as the dielectric and thermal properties of PEN nanocomposites, are investigated in detail. The results indicate that TiO2 nanoparticles tightly attach to the surface of BN, creating a new nanohybrid that significantly enhances the comprehensive performance of PEN nanocomposites. Specifically, compared to pure PEN, the nanocomposite film with a nanofiller content of 40 wt% exhibited an 8 °C improvement in the glass transition temperature (Tg) and a 162% enhancement in the dielectric constant at 1 kHz. Moreover, the dielectric constant–temperature coefficient of the nanocomposite films remained below 5.1 × 10−4 °C−1 within the temperature range of 25–160 °C, demonstrating excellent thermal resistance. This work offers a method for preparing highly thermal-resistant dielectric nanocomposites suitable for application in elevated temperature environments. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

10 pages, 2412 KiB  
Article
Suppressing Optical Losses in Solar Cells via Multifunctional and Large-Scale Geometric Arrays
by Xiangqian Shen, Sihan Jiang, Xiaodan Wang, Hua Zhou and Zhiqiang Yu
Nanomaterials 2023, 13(20), 2766; https://doi.org/10.3390/nano13202766 - 16 Oct 2023
Cited by 1 | Viewed by 1538
Abstract
The occurrence of optical loss on the surface of solar cells is inevitable due to the difference in the refractive index between air and glass, as well as the insufficient absorption of the active layer. To address this challenge, micron-sized geometry arrays, such [...] Read more.
The occurrence of optical loss on the surface of solar cells is inevitable due to the difference in the refractive index between air and glass, as well as the insufficient absorption of the active layer. To address this challenge, micron-sized geometry arrays, such as hemispheres and hemisphere pits, are prepared on quartz glass through the advanced indirect patterning technology of UV-LIGA. These geometric arrays exhibit multiple mechanisms for controlling light waves, including multiple rebounds, diffraction scattering, and total internal reflection. These synergistic effects suppress optical losses at the device’s surface and prolong the photon propagation path in the active layer. After being patterned with this structure, the average transmittance and haze of the quartz glass reach 93.91% and 75%, respectively. Compared to their flat counterpart, the decorated monocrystalline silicon solar cells demonstrated an apparent improvement in photocurrent and produced a 7.2% enhancement in power conversion efficiency. Full article
Show Figures

Figure 1

12 pages, 2743 KiB  
Article
A Self-Healing Thermoset Epoxy Modulated by Dynamic Boronic Ester for Powder Coating
by Yongqi Liu, Ziyuan Li, Caifu Zhang, Biru Yang and Hua Ren
Polymers 2023, 15(19), 3894; https://doi.org/10.3390/polym15193894 - 26 Sep 2023
Cited by 4 | Viewed by 2819
Abstract
Thermoset powder coatings exhibit distinctive characteristics such as remarkable hardness and exceptional resistance to corrosion. In contrast to conventional paints, powder coatings are environmentally friendly due to the absence of volatile organic compounds (VOCs). However, their irreversible cross-linking structures limit their chain segment [...] Read more.
Thermoset powder coatings exhibit distinctive characteristics such as remarkable hardness and exceptional resistance to corrosion. In contrast to conventional paints, powder coatings are environmentally friendly due to the absence of volatile organic compounds (VOCs). However, their irreversible cross-linking structures limit their chain segment mobility, preventing polymers from autonomously repairing cracks. Dynamic cross-linking networks have garnered attention for their remarkable self-healing capabilities, facilitated by rapid internal bond exchange. Herein, we introduce an innovative method for synthesizing thermoset epoxy containing boronic ester moieties which could prolong the life of the powder coating. The epoxy resin system relies on the incorporation of two curing agents: one featuring small-molecule diamines with boronic bonds and the other a modified polyurethane prepolymer. A state of equilibrium in mechanical properties was achieved via precise manipulation of the proportions of these agents, with the epoxy composite exhibiting a fracture stress of 67.95 MPa while maintaining a stable glass transition temperature (Tg) of 51.39 °C. This imparts remarkable self-healing ability to the coating surface, capable of returning to its original state even after undergoing 1000 cycles of rubbing (using 1200-grit abrasive paper). Furthermore, the introduction of carbon nanotube nanoparticles enabled non-contact sequential self-healing. Subsequently, we introduce this method into powder coatings of different materials. Therefore, this work provides a strategy to develop functional interior decoration and ensure its potential for broad-ranging applications, such as aerospace, transportation, and other fields. Full article
(This article belongs to the Special Issue Advances in Functional Polymer Coatings and Surfaces)
Show Figures

Figure 1

23 pages, 7793 KiB  
Article
Application of the NSGA-II Algorithm and Kriging Model to Optimise the Process Parameters for the Improvement of the Quality of Fresnel Lenses
by Hanjui Chang, Yue Sun, Rui Wang and Shuzhou Lu
Polymers 2023, 15(16), 3403; https://doi.org/10.3390/polym15163403 - 14 Aug 2023
Cited by 4 | Viewed by 1832
Abstract
The Fresnel lens is an optical system consisting of a series of concentric diamond grooves. One surface of the lens is smooth, while the other is engraved with concentric circles of increasing size. Optical interference, diffraction, and sensitivity to the angle of incidence [...] Read more.
The Fresnel lens is an optical system consisting of a series of concentric diamond grooves. One surface of the lens is smooth, while the other is engraved with concentric circles of increasing size. Optical interference, diffraction, and sensitivity to the angle of incidence are used to design the microstructure on the lens surface. The imaging of the optical surface depends on its curvature. By reducing the thickness of the lens, light can still be focused at the same focal point as with a thicker lens. Previously, lenses, including Fresnel lenses, were made of glass due to material limitations. However, the traditional grinding and polishing methods for making Fresnel lenses were not only time-consuming, but also labour-intensive. As a result, costs were high. Later, a thermal pressing process using metal moulds was invented. However, the high surface tension of glass caused some detailed parts to be deformed during the pressing process, resulting in unsatisfactory Fresnel lens performance. In addition, the complex manufacturing process and unstable processing accuracy hindered mass production. This resulted in high prices and limited applications for Fresnel lenses. These factors prevented the widespread use of early Fresnel lenses. In contrast, polymer materials offer advantages, such as low density, light weight, high strength-to-weight ratios, and corrosion resistance. They are also cost effective and available in a wide range of grades. Polymer materials have gradually replaced optical glass and other materials in the manufacture of micro-optical lenses and other miniaturised devices. Therefore, this study focuses on investigating the manufacturing parameters of Fresnel lenses in the injection moulding process. We compare the quality of products obtained by two-stage injection moulding, injection compression moulding, and IMD (in-mould decoration) techniques. The results show that the optimal method is IMD, which reduces the nodal displacement on the Fresnel lens surface and improves the transmission performance. To achieve this, we first establish a Kriging model to correlate the process parameters with optimisation objectives, mapping the design parameters and optimisation objectives. Based on the Kriging model, we integrate the NSGA-II algorithm with the predictive model to obtain the Pareto optimal solutions. By analysing the Pareto frontier, we identify the best process parameters. Finally, it is determined that the average nodal displacement on the Fresnel surface is 0.393 mm, at a holding pressure of 320.35 MPa and a melt temperature of 251.40 °C. Combined with IMD technology, product testing shows a transmittance of 95.43% and an optimisation rate of 59.64%. Full article
(This article belongs to the Special Issue Advances in Polymers Processing and Injection Molding)
Show Figures

Figure 1

14 pages, 3007 KiB  
Article
SERS-Tags: Selective Immobilization and Detection of Bacteria by Strain-Specific Antibodies and Surface-Enhanced Raman Scattering
by Markéta Benešová, Silvie Bernatová, Filip Mika, Zuzana Pokorná, Jan Ježek, Martin Šiler, Ota Samek, Filip Růžička, Katarina Rebrošová, Pavel Zemánek and Zdeněk Pilát
Biosensors 2023, 13(2), 182; https://doi.org/10.3390/bios13020182 - 24 Jan 2023
Cited by 13 | Viewed by 4065
Abstract
Efficient separation and sensitive identification of pathogenic bacterial strains is essential for a prosperous modern society, with direct applications in medical diagnostics, drug discovery, biodefense, and food safety. We developed a fast and reliable method for antibody-based selective immobilization of bacteria from suspension [...] Read more.
Efficient separation and sensitive identification of pathogenic bacterial strains is essential for a prosperous modern society, with direct applications in medical diagnostics, drug discovery, biodefense, and food safety. We developed a fast and reliable method for antibody-based selective immobilization of bacteria from suspension onto a gold-plated glass surface, followed by detection using strain-specific antibodies linked to gold nanoparticles decorated with a reporter molecule. The reporter molecules are subsequently detected by surface-enhanced Raman spectroscopy (SERS). Such a multi-functionalized nanoparticle is called a SERS-tag. The presented procedure uses widely accessible and cheap materials for manufacturing and functionalization of the nanoparticles and the immobilization surfaces. Here, we exemplify the use of the produced SERS-tags for sensitive single-cell detection of opportunistic pathogen Escherichia coli, and we demonstrate the selectivity of our method using two other bacterial strains, Staphylococcus aureus and Serratia marcescens, as negative controls. We believe that the described approach has a potential to inspire the development of novel medical diagnostic tools for rapid identification of bacterial pathogens. Full article
(This article belongs to the Special Issue Raman Spectroscopy for Clinics)
Show Figures

Figure 1

12 pages, 862 KiB  
Article
Phthalates in Glass Window Films of Chinese University Dormitories and Their Associations with Indoor Decorating Materials and Personal Care Products
by Liujia Fan, Lixin Wang, Kexin Wang, Fang Liu and Gang Wang
Int. J. Environ. Res. Public Health 2022, 19(22), 15297; https://doi.org/10.3390/ijerph192215297 - 19 Nov 2022
Cited by 6 | Viewed by 2728
Abstract
Phthalates are widely used as plasticizers in the production of various consumer products used daily. We analyzed phthalate concentrations in window film samples from 144 dormitories in 13 universities and combined them with the results of questionnaires to explore the associations of phthalate [...] Read more.
Phthalates are widely used as plasticizers in the production of various consumer products used daily. We analyzed phthalate concentrations in window film samples from 144 dormitories in 13 universities and combined them with the results of questionnaires to explore the associations of phthalate concentrations with indoor decorating materials and personal care products. The phthalate pollution levels discovered in this study were much higher than those in previous studies of baby rooms and university buildings. Moreover, it was found that phthalate concentrations in glass window films were associated with laminated wood or polyvinyl chloride (PVC) flooring, iron furniture, medium density fiberboard (MDF) furniture, and the usage frequency of bottled skincare products. Laminated wood or PVC flooring, wallpaper, and iron furniture are very likely sources of specific phthalates, and the large surface areas of MDF furniture can act as sinks of phthalates. Transport of phthalates from the packaging of bottled skincare products into cosmetics should be given more attention. Our results provide a deep understanding of the sources of phthalates in glass window films. Full article
(This article belongs to the Special Issue Environmental Chemical Exposure and Human Health in the Modern Era)
Show Figures

Figure 1

12 pages, 2304 KiB  
Article
A Flexible and Robust Structural Color Film Obtained by Assembly of Surface-Modified Melanin Particles
by Daiki Yoshioka, Keiki Kishikawa and Michinari Kohri
Nanomaterials 2022, 12(19), 3338; https://doi.org/10.3390/nano12193338 - 25 Sep 2022
Cited by 7 | Viewed by 2463
Abstract
In this study, core–shell-hairy-type melanin particles surface modified with a polydopamine shell layer and a polymer brush hairy layer were fabricated and assembled to readily obtain bright structural color films. The hot pressing of freeze-dried samples of melanin particles decorated with a hydrophilic, [...] Read more.
In this study, core–shell-hairy-type melanin particles surface modified with a polydopamine shell layer and a polymer brush hairy layer were fabricated and assembled to readily obtain bright structural color films. The hot pressing of freeze-dried samples of melanin particles decorated with a hydrophilic, low glass transition temperature polymer brush results in films that exhibit an angle-dependent structural color due to a highly periodic microstructure, with increased regularity in the arrangement of the particle array due to the fluidity of the particles. Flexible, self-supporting, and easy-to-cut and process structural color films are obtained, and their flexibility and robustness are demonstrated using compression tests. This method of obtaining highly visible structural color films using melanin particles as a single component will have a significant impact on practical materials and applications. Full article
Show Figures

Figure 1

Back to TopTop